
Synchronization–based state observer including position jumps for
impacting multibody systems

Michael Baumann and Remco I. Leine

Abstract— We present an observer design for linear time-
invariant systems with unilateral constraints using only the
time information of the impacts. The approach presented
in [4] is extended with switched geometric bilateral constraints.
These constraints introduce position jumps which improve
the synchronization rate and extend the applicability of the
observer to systems with a rigid body mode.

A master–slave synchronization setup is used for which the
unidirectional coupling between the master (observed system)
and the slave system (observer) consists only of the impact time
information. The dynamics of the slave system is shown to be
attractively incrementally stable due to the switched constraints.
The decrease of the synchronization error follows directly from
the property of attractive incremental stability. The slave system
acts as state observer which replicates the full state for all initial
conditions, also in the presence of accumulations points (Zeno
behavior) or in the vicinity of grazing impacts.

The results are applied to an example of a robotic leg hopping
on a moving ground.

I. INTRODUCTION

In this paper we show sufficient conditions for which a
linear time-invariant system subjected to switched unilateral
constraints is attractively incrementally stable. This result
is used to design a state observer using master–slave syn-
chronization which uses only the Boolean information of the
impact time instants. Switched kinematic as well as switched
geometric unilateral constraints are considered which extend
the results presented in [4].

The present paper considers dynamical systems subjected
to unilateral constraints. Such type of nonsmooth systems can
conveniently be described using the framework of measure
differential inclusions [17], [16], [6], [1], [10]. The states are
assumed to be special functions of locally bounded variation
and phenomena such as accumulation points (Zeno behavior)
do not have to be excluded.

The observer is also applicable to systems with a rigid
body mode, i.e. the observer system is allowed to have a free
rigid body motion. For example the classical bouncing ball
system has a rigid body mode since the ball is not connected
to the ground with a force element such as a linear spring,
which manifests itself in a singular stiffness matrix.

The switched geometric bilateral constraints are accompa-
nied with a constraint force in the kinematic equation. This
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extension improves the synchronization rate and extends the
applicability of the observer presented in [4], but it entails
several difficulties. The generalized coordinates are no longer
absolutely continuous, but discontinuous. Furthermore, it
raises the question of a suitable metric for the position jumps.
This problem has also been considered in the Gear-Gupta-
Leimkuhler method to enforce the geometric constraints
in simulations of impacting mechanical system [9], [12],
[21]. This approach classically uses a non-energy consistent
coordinate projection to the non-penetration constraint using
the identity metric or the metric induced by the mass matrix.
Energy considerations imply the use of the stiffness matrix
for the metric. However, this is not applicable for systems
with a rigid body mode as the stiffness matrix is only positive
semi-definite.

The observer is based on a master–slave setup and the
synchronization results are obtained using the property of
attractive incremental stability. Incremental stability is a sys-
tem property and several similar notions have been presented
in the literature [23], [7], [8], [3]. Incremental stability is
beneficial in many control problems such as stabilization,
tracking control, output regulation problems, synchronization
and observer design [18], [22], [19], [13].

In this paper an observer for impact oscillators with a
rigid body mode is developed. The only measurement used is
the Boolean impact time information and no additional con-
tinuous measurement is necessary. The class of mechanical
systems subjected to unilateral constraints considered here
are generally not strictly passive. More precisely, the transfer
matrix of the linear part of the system is only positive real
and not strictly positive real. Mechanical systems without any
feedback do generally not fulfill the strict passivity condition.
Furthermore, the concept of switched geometric unilateral
constraints is used in order to cope with the rigid body mode.

This paper is organized as follows. The dynamics of the
observed systems is described in Section II. The dynamics
consists of an impulsive and a non-impulsive part and is
accompanied by the constitutive laws of the constraint forces
and impulses. The design of the state observer together with
sufficient conditions for which the observer dynamics is
attractively incrementally stable is presented in Section III.
The results are illustrated with simulations of a 3-DOF
robotic leg in Section IV and final conclusions are given
in Section V.

II. DYNAMICS OF THE OBSERVED SYSTEM

In this section we describe the model of the mechanical
system for which we will design a state observer. We
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consider an n-DOF linear time-invariant multibody system
subjected to geometric unilateral constraints. The system has
one rigid body mode, which is influenced by one of the
unilateral constraints. The generalized coordinates q(t) are
absolutely continuous in time and the generalized veloci-
ties u(t) are assumed to be special functions of locally
bounded variation [2]. The non-impulsive dynamics is de-
scribed by the kinematic equation together with the equation
of motion as

q̇ = u, (1)
Mu̇+Cu+Kq = Wλ+ f(t). (2)

The system matrices are assumed to be symmetric and time
invariant. The mass matrix M = MT ≻ 0 ∈ Rn×n is
positive definite, whereas the stiffness matrix K = KT ≽
0 ∈ Rn×n and the damping matrix C = CT ≽ 0 ∈ Rn×n

are only positive semi-definite. Furthermore, K and C have
the same nullspace and are of rank n − 1. Therefore, the
mechanical system has a rigid body mode which is described
by the eigenvector corresponding to the zero eigenvalue of K
and C. The external forcing f(t) is independent of the state.

Equations (1)–(2) are valid almost everywhere on the
time axis. The term almost everywhere captures that the
state is not defined for a Lebesgue-negligible set, i.e. for
the collection of the impact time instants. The impulsive
dynamics is given by the impact equation

M(u+ − u−) = WΛ, (3)

where u− and u+ denote pre- and post-impact velocities.
The mechanical system (1)–(3) is subjected to m geomet-

ric unilateral constraints. The generalized force directions
are collected in the matrix W = [w1,w2, . . . ,wm] ∈
Rn×m and are assumed to be linearly independent and time
invariant. There is a constraint k which influences the rigid
body mode and the corresponding force direction wk will
be referred to as wRBM. Therefore, we have

wRBM /∈ range (K),

wj ∈ range (K) ∀wj ̸= wRBM.

The geometric unilateral constraints, also known as im-
penetrability constraints, induce constraint forces λ in the
equation of motion (2) and constraint impulses Λ in the
impact equation (3). The force law and impact law are
constitutive laws defined using the local kinematic quantities

constraint distance: g(q, t) = W Tq + η(t), (4)

constraint velocity: γ(u, t) = W Tu+ η̇(t), (5)

where η(t) is an absolutely continuous function in time.
The i-th geometric unilateral constraint restricts the sign of

the constraint distance gi ≥ 0. Its force law 0 ≤ λi ⊥ gi ≥ 0,
also referred to as Signorini’s law, can be written on velocity
level (see [10]) as

−λi ∈

{
∂ΨR+

0
(γi) if gi = 0,

0 if gi > 0,
(6)

where ∂ΨR+
0

is the subdifferential of the indicator func-
tion ΨR+

0
on the set R+

0 .
The impact law for the impulsive unilateral constraint

forces Λ is given by the inclusion (see [15])

−Λ ∈ Hg(γ̄). (7)

The set-valued map Hg puts a relationship between the dual
variables γ̄ = 1

2 (γ
+ + γ−) and Λ. The index indicates the

dependence on the index set of closed contacts (given by g).
Monotonicity and (inverse) strong monotonicity are useful
properties of the impact map, which are defined in [20].

Definition 1: The set-valued map Hg(γ̄) is called mono-
tone if ∀ −Λ1 ∈ Hg(γ̄1), ∀ −Λ2 ∈ Hg(γ̄2) it fulfills

(Λ1 −Λ2)
T(γ̄1 − γ̄2) ≤ 0.

In addition, if

(Λ1 −Λ2)
T(γ̄1 − γ̄2) ≤ −α∥γ̄1 − γ̄2∥2

for some α > 0, then the set-valued map is strongly
monotone. Analogously, if there exists a β > 0 such that

(Λ1 −Λ2)
T(γ̄1 − γ̄2) ≤ −β∥Λ1 −Λ2∥2

is fulfilled, then the set-valued map is inverse strongly
monotone.

Commonly used impact laws such as the generalized
Newton’s impact law [15] or the generalized Poisson’s im-
pact law [4] are monotone under some mild assumptions.
Furthermore, these impact laws are strongly monotone if
none of the constraints are superfluous and inverse strongly
monotone for a single constraint with a coefficient of resti-
tution less than one. It is shown in [15] that the mapping Z :
u+ = Z(u−) from pre-impact to post-impact generalized
velocities, defined by the impact equation (3) together with
the impact law (7), is non-expansive [20] in the metric M ,
i.e.

∥u+
1 − u+

2 ∥2M ≤ ∥u−
1 − u−

2 ∥2M , (8)

if and only if the impact map is monotone. The property of
non-expansivity will be used later to prove synchronization
of the master–slave system.

III. OBSERVER DESIGN

In this section we present the design of the state observer
for the class of mechanical systems presented in Section II.
We assume that the model of the observed system is known,
but the only available measurement is the time information
when the impacts occur, i.e. which contacts are closed and
which are open. We use a master–slave synchronization
setup, where the observed system is the master system and
the state of the slave system is the estimate.

A. Dynamics of the Observer

The slave system is a replica of the master system with two
major modifications. First, the slave system is subjected to
switched kinematic unilateral constraints instead of geomet-
ric unilateral constraints. Secondly, the kinematic equation is
extended with a constraint force which influences (only) the
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rigid body mode. Therefore, the non-impulsive dynamics of
the slave system is described by

q̇ = u+K⊥wRBM σ, (9)
Mu̇+Cu+Kq = Wλ+ f(t). (10)

The matrix K⊥ ensures that the constraint force σ has only
an influence on the nullspace of K. It is defined as the
orthogonal projector onto null (K) as

K⊥ :=
(
I −K+K

)
,

where I is the identity matrix and K+ is the Moore–Penrose
pseudoinverse of K. Here, the projector K⊥ is given by
the Cartesian product of the normalized eigenvector of the
stiffness matrix K corresponding to the zero eigenvalue and
it has the properties K⊥K⊥ = K⊥ and KK⊥ = 0.

The constraint distances g and constraint velocities γ are
defined as for the master system by (4)–(5). The constraint
force σ implies that the generalized velocities u(t) and the
constraint velocities γ(u(t), t) are no longer the time deriva-
tive of the generalized coordinates q(t) and the constraint
distances g(q(t), t), respectively.

The constraint force σ might become arbitrarily large such
that the impulsive dynamics has to be extended by the impact
equation of the kinematic equation given by

q+ − q− = K⊥wRBM Σ, (11)
M(u+ − u−) = WΛ, (12)

where Σ is the constraint impulse of the kinematic impact
equation. The generalized coordinates q are no longer abso-
lutely continuous, but special functions of locally bounded
variation.

The constraint forces λ and constraint impulses Λ of
the slave system describe switched kinematic unilateral
constraints, whereas the constraint force σ and constraint
impulse Σ describe a switched geometric bilateral constraint.
Both types of switched constraints are switched on and off by
an external Boolean switching function χ(t) : R → {0, 1}m.

The i-th switched kinematic unilateral constraint imposes
a kinematic unilateral constraint γi ≥ 0 whenever the
corresponding external Boolean switching function χi(t) = 1
and imposes no constraint if χi(t) = 0. Its force law is
described by the inequality complementarity

−λi ∈

{
∂ΨR+

0
(γi) if χi(t) = 1,

0 if χi(t) = 0.
(13)

The impact law for the constraint impulses Λ is given by
the inclusion (see [15])

−Λ ∈ Hχ(t)(γ̄). (14)

The operator Hχ(t) is chosen such that it is identical to the
operator Hg in (7) if the same contacts are closed or switched
on, respectively.

The switched geometric bilateral constraint ensures that
the constraint corresponding to the force direction wRBM
is closed (i.e. g+RBM=0) for χRBM(t) = 1 and imposes no

constraint otherwise. Therefore, the constraint force σ and
constraint impulse Σ are obtained as

σ ∈

{
∂Ψ{0}(gRBM) if χRBM(t) = 1,

0 if χRBM(t) = 0,
(15)

and

Σ ∈

{
∂Ψ{0}(g

+
RBM) if χRBM(t) = 1,

0 if χRBM(t) = 0.
(16)

If the slave system is initialized with the same initial
conditions as the master system and if the constraints of the
slave system are switched on whenever the constraints of the
master system are closed, then both solutions are identical.
This statement is the content of the following proposition.

Proposition 1: Let the master system be described by (1)–
(3) together with (6)–(7) and let the slave system be de-

scribed by (9)–(16). Let
(
qm(t)
um(t)

)
be the unique solution

of the master system for the initial conditions
(
qm(t0)
um(t0)

)
=(

q0
u0

)
and let

(
qs(t)
us(t)

)
be the unique solution of the slave

system for the same initial conditions
(
qs(t0)
us(t0)

)
=

(
q0
u0

)
.

Then, both solutions are identical if the Boolean switching
function χ(t) in (13)–(16) is generated by gm(t), i.e.

χi(t) =

{
1 if gm,i(t) = 0,

0 if gm,i(t) > 0,
(17)

for all i ∈ {1, 2, . . . ,m}, where gm(t) are the constraint
distances of the master system.

Proof: First, the relation (17) directly implies that the
force laws (6) and (13) as well as the impact laws (7) and
(14) are identical. Secondly, we seek an explicit expression
for the constraint force σ and constraint impulse Σ in order to
show that both vanish if the relation (17) holds. The impact
law (16) for χRBM(t) = 1 can be written1 as g+RBM,s = 0,
where gs are the constraint distances of the slave system.
Multiplying (11) from the left with wT

RBM and substituting (4)
and g+RBM,s = 0 yields

Σ = −
(
wT

RBM K⊥wRBM
)−1

g−RBM,s. (18)

The scalar wT
RBM K⊥wRBM is non-zero since wRBM /∈

range (K) and, thus, wRBM /∈ null (K⊥). The absolute
continuity of the generalized coordinates qm, and therefore
of the generalized constraint distances gm, implies g−RBM,m =
0 for χRBM(t) = 1. Together with (18), we obtain that q−

m =
q−
s implies Σ = 0, which yields q+

m = q+
s . Furthermore, the

generalized coordinates qs of the slave system are absolutely
continuous.

The force law (15) for χRBM(t) = 1 can be written on
velocity level as ġRBM = 0. Together with (9) and (4)–(5)
and using similar steps as before, we obtain

σ = −
(
wT

RBM K⊥wRBM
)−1

γRBM,s. (19)

1The inverse of ∂Ψ{0} is the zero function.
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The absolute continuity of qm implies γRBM,m = 0 for
χRBM(t) = 1 almost everywhere. Together with (19), we
obtain that um = us implies σ = 0. Therefore, we
obtain q̇m = q̇s almost everywhere, which concludes the
proof.

In the following we will show that the slave system
described by the set of equations (9)–(12) together with the
force and impact laws (13)–(16) is attractively incrementally
stable.

B. Attractive Incremental Stability of the Observer

The synchronization of the master and the slave system
is based on the attractive incremental stability of the slave
system. Attractive incremental stability (a.i.s.) is a stability
property of dynamical systems which implies that all solution
curves are globally uniformly attractively stable. Therefore,
all solution curves approach each other and remain close
in the sense of Lyapunov for all initial conditions. The
information of the initial condition is lost. Here, we consider
the definition of a.i.s for measure differential inclusions as
presented in [4]. Other incremental stability notions have
been presented in literature, see e.g. [3]. We briefly recall
the definition of a.i.s. for the considered class of systems.

Definition 2: System (9)–(16) for a given switching func-
tion χ(t) is called attractively incrementally stable if for any

two solution curves x1(t) =

(
q1(t)
u1(t)

)
, x2(t) =

(
q2(t)
u2(t)

)
it

holds that ∀ε > 0, ∃δ = δ(ε) such that ∥x1(t0)−x2(t0)∥ < δ
implies ∥x1(t) − x2(t)∥ < ε for almost all t ≥ t0 and
additionally limt→∞ ∥x1(t)− x2(t)∥ = 0.

Before we state the assumptions on the system, we define
the classes of functions K and Km. Hereto, we introduce the
notation

ã∆t(t) =
1

∆t

∫ t+∆t

t

a(τ) dτ for a given ∆t > 0. (20)

Definition 3: A Boolean switching function χ(t) : R →
{0, 1} is of class K if for each t there exists a t∗(t) > t and
a number ∆t > 0 independent of t such that χ̃∆t(t

∗) = 0.
Furthermore, a function χ(t) : R → {0, 1}m is of class Km

if each component χi(t) is of class K.
We will make the following assumptions on the system:

A1 The switching function χ(t) is of class Km and is
generated by an absolutely continuous function.

A2 There exists a maximal time interval for which the
constraint influencing the RBM is open or superfluous,
i.e. ∀t ∃t∗ ∈ (t, t+ Tmax) such that ΛRBM(t∗) ̸= 0 for a
given Tmax ∈ (0,∞).

A3 The external forcing f(t) is bounded, i.e.
supt∈R ∥f(t)∥ ≤ fmax for a given bound fmax < ∞.

A4 The impact map Hχ(t)(γ̄) is monotone for all χ(t). Fur-
thermore, it is strongly monotone in γ̄RBM for ΛRBM ̸= 0
and inverse strongly monotone in ΛRBM.

Assumption A1 guarantees that the Lebesgue measure
of the sum of time intervals for which each contact is
switched off is infinite. Furthermore, it is used for the
existence of solutions, but this is not in the scope of this

paper. Assumption A2 gives an upper bound of the time
intervals for which the rigid body mode is not detectable.
The following theorem states the a.i.s. of the slave system
under the previous assumptions and is an extension of the
corresponding theorem in [4].

Theorem 1: System (9)–(16) for a given switching func-
tion χ(t) is attractively incrementally stable if the Assump-
tions A1–A4 are fulfilled.

Proof: We will show that all solution curves of
system (9)–(16) are globally uniformly attractively stable.

Therefore, consider two solutions
(
q1(t)
u1(t))

)
and

(
q2(t)
u2(t)

)
for a given switching function χ(t). The state vector of the

error dynamics is given by xe =

(
e
v

)
, where e = q1 − q2

and v = u1 − u2 are the position and the velocity errors
between these two solutions. We introduce the Lyapunov
function

V (xe) =
1

2
∥v∥2M +

1

2
∥e∥2K , (21)

which gives a notion of distance between these two solutions.
It is only positive semi-definite since the stiffness matrix is
singular.

The differential measure of the Lyapunov function dV
contains a density V̇ with respect to the Lebesgue measure
dt and a density V +−V − with respect to the atomic measure
dη. According to (9)–(10) and (5), the density V̇ is obtained
as

V̇ = vTMv̇ + eTKė

= vT (−Cv +W (λ1 − λ2)) + eTKK⊥wRBM(σ1 − σ2),

= −∥v∥2C + (γ1 − γ2)
T(λ1 − λ2),

(22)

where KK⊥ = 0 has been used. Due to the maximal
monotonicity of the force law (13), we obtain V̇ ≤ −W (xe),
where W (xe) = ∥v∥2C is a positive semi-definite function
in xe.

The jump in the Lyapunov function at impulsive time-
instants is obtained as

V + − V − =
1

2
(v+ + v−)TM(v+ − v−)

+
1

2
(e+ + e−)TK(e+ − e−)

=
1

2
∥v+∥2M − 1

2
∥v−∥2M

+
1

2
(e+ + e−)TKK⊥wRBM(Σ1 − Σ2)

(23)

where (11)–(12) have been used. The monotonicity of
the impact map Hχ(t)(γ̄) (Assumption A4) implies non-
expansivity of the mapping Z. Substituting (8) and KK⊥ =
0 into (23) yields V + − V − ≤ 0. Consequently, the Lya-
punov function V cannot increase neither during continuous
nor discontinuous flow. Since the Lyapunov function V is
bounded from below and non-increasing, the limit

V∞ := lim
t→∞

V (xe(t)) = lim
t→∞

(
1

2
∥v∥2M +

1

2
∥e∥2K

)
(24)
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exists and lies in the interval 0 ≤ V∞ ≤ V (xe(t0)). Note
that ∥e(t)∥2K is absolutely continuous in time and V (xe(t))
tends to an absolutely continuous function (constant func-
tion) as shown in (23). From these two observations, we
conclude that ∥v(t)∥2M must tend to an absolutely continu-
ous function as well.

From (22) and (23) follows

V∞ − V (x−
e (t0)) ≤ − lim

t→∞

∫ t

t0

W (xe(τ))dτ. (25)

Since the left-hand side in (25) is finite, we deduce that

lim
t→∞

∫ t

t0

W (xe(τ))dτ = lim
t→∞

∫ t

t0

∥v(τ)∥2Cdτ < ∞. (26)

We cannot invoke Barbalat’s lemma [14] since the solution
xe(t) is not continuous in time. The extension of this
lemma for asymptotically absolutely continuous functions is
presented in [4]. Applying the extended Barbalat’s lemma
to (26) yields

lim
t→∞

∥v(t)∥2C = 0. (27)

We introduce an orthogonal decomposition of the position
error as e = e∥+e⊥, where e∥ = K+Ke and e⊥ = K⊥e.
The velocity error v = v∥ +v⊥ is decomposed accordingly.
Using this decomposition, (27) yields limt→∞ v∥ = 0,
since K and C have the same nullspace and, thus, Cv =
Cv∥.

An impact with ΛRBM ̸= 0 occurs at least once every time
interval [t, t+ Tmax] due to Assumption A2. Using (23) and
Assumption A4, the Lyapunov function is non-decreasing at
these time instants only if γ̄RBM,1 = γ̄RBM,2 and ΛRBM,1 =
ΛRBM,2, which imply γ−

RBM.1 = γ−
RBM,2. Therefore, the lower

bound of V implies limt→∞ v⊥ = 0 using a contradiction
argument2.

Substituting limt→∞ v = 0 into (24) yields limt→∞ e∥ =
c for some c satisfying 1

2∥c∥
2
K ≤ V (xe(t0)). In the next

step, we show that c = 0.
The error dynamics is governed by the equality of mea-

sures

Mdv +Cvdt+Kedt = W (dP1 − dP2), (28)

where dP1 = λ1dt + Λ1dη and dP2 = λ2dt + Λ2dη are
the constraint impulse measures. Integrating the equality of
measures (28) over the time interval [t, t+∆t] yields

M(v+(t+∆t)− v−(t)) +C(e∥(t+∆t)− e∥(t))

+K

∫ t+∆t

t

e∥(τ)dτ =

∫
[t,t+∆t]

W (dP1 − dP2),
(29)

where ∆t > 0 is arbitrary. For the second term in (29), we
used Cė = Cv, since K and C have the same nullspace.

2We assume the contrary, i.e. limt→∞ v⊥(t) ̸= 0. Then,
limt→∞ γ−

RBM,1 − γ−
RBM,2 ̸= 0 implies V + − V − ≤ −β < 0 for some

constant β > 0 at least once every time interval [t, t + Tmax]. Therefore,
the Lyapunov function decreases unboundedly, which is in contradiction
with V ≥ 0.

It proves useful to introduce the quantity λ̃∆t(t) =
1
∆t

∫
[t,t+∆t]

(dP1 − dP2), which can be regarded as the
average constraint force of the error dynamics over the time
lapse [t, t+∆t]. Subsequently, we take the limit t → ∞ and
use v(t) → 0 and e∥(t) → c for t → ∞. The integrated
equality of measures (29), divided by ∆t, yields

Kc = lim
t→∞

Wλ̃∆t(t) = lim
t→∞

m∑
i=1

wiλ̃∆t,i(t), (30)

where the notation (20) has bee used. Equation (30) de-
scribes, in an averaged sense, the equilibrium of forces at
infinity. The columns wi of W are linearly independent from
which we deduce that each of the limits limt→∞ λ̃∆t,i(t)
has to exist. Moreover, it holds that λ1,i(t) = λ2,i(t) = 0
and Λ1,i(t) = Λ2,i(t) = 0 for χi(t) = 0. Taking a small
enough ∆t, we conclude that the limit of λ̃∆t,i(t) must
vanish, since each switching function χi(t) is of class K
by Assumption A1. Since c is in the range of K, we obtain
c = 0.

The Lyapunov function is only positive semi-definite since
it is independent of e⊥. For χRBM(t) = 1, we have
e⊥ = 0 according to (15). Otherwise, limt→∞ u = 0
implies limt→∞ e⊥ = 0, since Assumption A2 together
with (16) implies that e⊥

+
= 0 at least once every time

interval [t, t + Tmax]. Therefore, we obtain limt→∞ xe = 0
which shows global attractivity. Uniform stability of xe = 0
does not follow from dV ≤ 0, since V is only positive
semi-definite. Nevertheless, e⊥ is bounded by V , since the
increase of ∥e⊥∥ in any interval [t, t + Tmax] is bounded
by ∥v∥, which itself is bounded by V . Therefore, xe(t) = 0
is uniformly stable, which concludes the proof.

We have shown that the master system can be written using
the equations of the slave system as shown in Proposition 1.
Furthermore, any two solutions of the slave system approach
each other due to the a.i.s shown in Theorem 1. Therefore,
synchronization of the master–slave system is guaranteed.

IV. EXAMPLE: ROBOTIC LEG

We illustrate the synchronization-based observer proposed
in Section III using the example of a 3-DOF robotic leg
as depicted in Fig. 1. The hip is vertically guided and the
thigh as well as the shank are connected by rotational joints
with spring–damper elements. All three parts have non-
zero mass and gravitation is present. The master and the
slave system are subjected to a switched unilateral constraint
between the foot and the harmonically moving ground. The
switching function is generated by the constraint distance of
the master system in both cases. Therefore, the master system
is subjected to a geometric unilateral constraint according to
Proposition 1.

A perfectly elastic generalized Poisson’s impact law is
chosen for the normal direction. We introduce friction with
a sufficiently large friction coefficient in order to prevent
the foot from sliding on the ground. The frictional impacts
[11] are chosen to be inelastic. Therefore, the friction can
be modeled as two opposing switched unilateral constraints
acting in the tangential direction together with a perfectly
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inelastic impact law. Since these constraints are switched on
whenever the constraint in the normal direction is closed, it
does not change the analysis presented in Section III.

Fig. 1. Master-slave synchronization setup for the hopping leg example.
The unidirectional coupling consists of the Boolean switching function χ(t)

The system is nonlinear and therefore not linear time-
invariant. Nevertheless, large spring constants are chosen
such that the configuration of the leg remains close to the
equilibrium position. Therefore, the geometric nonlinearities
remain small. The parameters are chosen such that the
solution of the master system is chaotic and the jumping
height is bounded. Thus, the switching function χ(t) is of
class K and there exists a maximal time interval for which
the constraint is open or superfluous. Since the Assump-
tions A1–A4 from Section III are fulfilled3, the system is
attractively incrementally stable according to Theorem 1.
Therefore, the synchronization error tends to zero and the
slave system reproduces the full state of the master system
using only the impact time instants.

A simulation of the master–slave system is depicted in
Fig. 2. Shown are the foot positions and the foot velocities
of the master system (blue) and the slave system (red).
The position and velocity of the ground is shown in gray.
During the time interval 4 ≤ t ≤ 8, the Boolean switching
function χ(t) is generated by the master system and the slave
system (having switched constraints) acts as a state observer.
For illustrative purposes, the switching function is generated
by the slave system itself during the time intervals 0 ≤ t < 4
and 8 < t ≤ 16. Therefore, both systems are subjected to
a geometric unilateral constraint during these intervals and
there is no coupling. The uncoupled case shows that the
master and the slave system do generally not synchronize
without any coupling. Furthermore, the system has extreme

3The system is a.i.s. although the impact law in normal direction is
not inverse strongly monotone. The inverse strong monotonicity is not a
necessary condition here, since the rigid body mode is not decoupled from
the remaining dynamics.

Fig. 3. Magnification of the foot velocities showing a simultaneous
accumulation point followed by an interval of persistent contact

sensitivity on initial conditions such that the solutions will
diverge for any small initial error. Therefore, there is no local
synchronization and the zero-solution of the error dynamics
is unstable.

Fig. 3 shows a magnification of the foot velocities. The
master system and, thus, the slave system repeatedly expe-
rience accumulation points, which correspond to infinitely
many impacts in a finite time (also called Zeno behavior).
This behavior is inherently part of the dynamics also in this
case of a perfectly elastic impact law. The accumulation
points are followed by an interval of persistent contact and
a subsequent flight phase.

The time evolution of the Lyapunov function (21) for this
simulation example is depicted in Fig. 4. During the time
interval where the observer is active, the impact time instants
of the master and slave system coincide. The Lyapunov is
discontinuous but non-increasing and it tends to zero. The
impact time instants do not coincide during the uncoupled
time intervals and the Lyapunov function shows a ‘peaking
behavior’ [5].

Fig. 4. Time evolution of the Lyapunov function
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Fig. 2. Foot position and velocity of the master (blue) and slave system (red). The systems are decoupled at the beginning and the end of the simulation
for which there is generally no (local) synchronization

V. CONCLUSIONS

The proposed observer reproduces the full state of the
observed system using only the impact time instants. The
applicability has been extended to linear time-invariant me-
chanical systems with a rigid body mode. The kinematic
equation has been extended with a constraint force, which
renders the generalized coordinates discontinuous.

The observer is based on master–slave synchronization,
where the solution of the slave system (observer) tends to the
solution of the master system (observed system) for every
initial condition and also in the presence of accumulation
points. In order to obtain the synchronization results, the
property of attractive incremental stability has been shown
for this type of systems.
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