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ABSTRACT
We present a new design of a state observer for linear time-invariant multibody systems
subjected to unilateral constraints using only the information of the impact time. It
extends the approach presented in [4] with the new concept of switched geometric unilateral
constraints. These constraints introduce constraint forces in the kinematic equation which
render the generalized coordinates discontinuous. The introduction of position jumps
improves the synchronization rate and expands the applicability of the observer.
A master–slave synchronization setup is used for which the unidirectional coupling be-
tween the master (observed system) and the slave system (observer) consists only of the
impact time information. The dynamics of the slave system is shown to be attractively
incrementally stable due to the switched constraints. The observer replicates the full state
for all initial conditions, also in the presence of accumulations points (Zeno behavior)
and in the vicinity of grazing impacts. The results are illustrated using two examples of
impacting mechanical systems.
Keywords: observer design, master–slave synchronization, switched unilateral constraint,
measure differential inclusion, non-smooth dynamics.

1 Introduction
In this paper we introduce a new type of constraints called switched geometric unilateral
constraints, which allow for position jumps. Sufficient conditions are shown for which
linear time-invariant systems subjected to switched geometric unilateral constraints are
attractively incrementally stable. This result is used to design a state observer based on
master–slave synchronization which uses only the Boolean information of the impact time
instants. The proposed observer improves the observer presented in [4] by extending the
applicability and increasing the synchronization rate.
The multibody systems considered in this paper are subjected to unilateral constraints.
The states of these non-smooth systems are discontinuous and assumed to be special
functions of locally bounded variation [2]. The dynamics can conveniently be described
using the framework of measure differential inclusions [15, 14, 5, 1, 9] and phenomena such
as accumulation points (Zeno behavior) do not have to be excluded.
The new concept of switched geometric unilateral constraints are accompanied by con-
straint forced which act on the kinematic equation. These constraints are used to improve
the observer presented in [4] by extending the applicability and increasing the synchro-
nization rate. Using these new type of constraints, the generalized coordinates become
discontinuous, which raises the question of a suitable metric for the position jumps. The
same problem arises when considering the Gear-Gupta-Leimkuhler method to enforce the
geometric constraints when simulating mechanical system with impacts [8, 10, 19]. The
GGL approach classically projects the generalized coordinates to the non-penetration con-
straint using the identity metric or the metric induced by the mass matrix, which is
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non-energy consistent. Energy considerations imply the use of the stiffness matrix for the
metric, which is only applicable if the stiffness matrix is known and positive definite.
The observer uses a master–slave synchronization setup and the decay of the synchro-
nization error is based on the property of attractive incremental stability of the slave
system. Incremental stability is a system property and several similar notions have been
presented in the literature [21, 6, 7, 3]. Incremental stability is beneficial in many control
problems such as stabilization, output regulation problems, synchronization and observer
design [16, 20, 17, 11].
The proposed observer uses only the Boolean impact time information and no additional
continuous measurement is necessary. Mechanical systems without any feedback are gen-
erally not strictly passive. More precisely, the transfer matrix of the linear part of the
system is positive real, but not strictly positive real. Therefore, invariance like results are
necessary for this class of mechanical systems to show the property of incremental stability.
This paper is organized as follows. The dynamics of the observed system is described
in Section 2 using the framework of measure differential inclusions. The main result
is presented in Section 3, where the design of the state observer is shown. Sufficient
conditions are provided for which the dynamics of the observer is attractively incrementally
stable. The results are illustrated with simulations of two examples of impact oscillators
in Section 4 and final conclusions are given in Section 5.

2 Dynamics of the observed system
In this section we describe the dynamics of the system for which we will design a state
observer. The dynamics is expressed in the form of a measure differential inclusion which
allows us to describe the impulsive and non-impulsive dynamics in a combined form [15].
We consider an n-DOF linear time-invariant multibody system subjected to geometric
unilateral constraints. The generalized coordinates q(t) are absolutely continuous in time
and the generalized velocities u(t) are discontinuous due to the unilateral constraints and
are assumed to be special functions of bounded variation [2]. The dynamics of the observed
system is given by

dq = u dt

M du = (−Cu − Kq + f(t)) dt + W λ dt + W Λ dη.
(1)

The differential measure dq = q̇ dt has only a density with respect to the Lebesgue mea-
sure dt, whereas the differential measure du = u̇ dt +

(
u+ − u−)

dη has additionally a
density with respect to an atomic measure dη. The atoms correspond to the impact
times and the atomic measure can be interpreted as the sum of Dirac point measures.
See [5, 14, 1] for a detailed description of the framework of measure differential inclusions
for mechanical systems.
The mass matrix M = MT and the stiffness matrix K = KT are assumed to be symmet-
ric. The system matrices M , C, K ∈ Rn×n are positive definite and time invariant. The
external forcing f(t) is independent of the state. The mechanical system (1) is subjected
to m geometric unilateral constraints. The generalized force directions wi are collected
in the matrix W = {w1, w2, . . . , wm} ∈ Rn×m and are assumed to be linearly indepen-
dent and time invariant. The constraint forces λ and constraint impulses Λ are given by
constitutive laws defined using the local kinematic quantities

constraint distance: g(q, t) = W Tq + ν(t), (2)
constraint velocity: γ(u, t) = W Tu + ν̇(t), (3)

where ν(t) is an absolutely continuous function in time.
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The i-th geometric unilateral constraint restricts the sign of the constraint distance gi ≥ 0.
Its force law 0 ≤ λi ⊥ gi ≥ 0, also referred to as Signorini’s law, can be written on velocity
level (see [9]) as

−λi ∈




∂ΨR+
0

(γi) if gi(q, t) = 0,

0 if gi(q, t) > 0,
(4)

where ∂ΨR+
0

is the subdifferential of the indicator function ΨR+
0

on the set R+
0 . Therefore,

the admissible set of system (1) is given by A =
{(

q
u

)
∈ R2n

��� g(q) ≥ 0
}

. The impact

law for the impulsive unilateral constraint forces Λ is given by the inclusion

−Λ ∈ Hg(γ̄). (5)

The set-valued map Hg puts a relationship between the dual variables γ̄ := 1
2(γ+ + γ−)

and Λ (see [13]). The index indicates the dependence on the set of closed contacts (given
by g). It will become apparent in Subsection 3.2 that monotonicity of the impact map is a
useful property of the impact map. The definition of monotone maps can be found in [18].

Definition 1. The set-valued map Hg(γ̄) is called monotone if it fulfills

(Λ1 − Λ2)T(γ̄1 − γ̄2) ≤ 0 ∀ − Λ1 ∈ Hg(γ̄1), ∀ − Λ2 ∈ Hg(γ̄2). (6)

Commonly used impact laws such as the generalized Newton’s impact law [13] or the
generalized Poisson’s impact law [4] are monotone under some mild assumptions. The
monotonicity property will directly be used in Subsection 3.2 to show the decrease of the
velocity error between the observer and the observed system.

3 Observer design
We present the design of a state observer for the class of mechanical systems described
in Section 2. We assume that the model of the observed system is known, and the only
available measurement is the time information when the impacts occur. We use a master–
slave synchronization setup, where the observed system is the master system and state of
the slave system (observer) is the estimate.
In the first step, the dynamics of the slave system is presented. Secondly, it shown that
the master and the slave system have the same solution if they are initialized with the
same initial conditions. Finally, we show that all solutions of the slave system converge to
each other and therefore also to the solution of the master system.

3.1 Observer dynamics
The model of the observer (slave system) is a replica of the observed system (master
system) except for the constraints. The observer system is subjected to switched geometric
unilateral constraints and the dynamics is described by

(
K 0
0 M

) (
dq
du

)
=

(
Ku

−Cu − Kq + f(t)

)
dt +

(
W σ
W λ

)
dt +

(
W Σ
W Λ

)
dη. (7)

The new concept of switched geometric unilateral constraints extends switched kinematic
unilateral constraints (introduced in [4]) with position jumps by introducing the con-
straint forces σ and impulses Σ in the kinematic equation. Therefore, the generalized
velocities u(t) and constraint distances γ(u(t), t) are generally no longer the time deriva-
tive of the generalized coordinates q(t) and constraint distances g(q(t), t), respectively.
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Furthermore, the generalized coordinates q(t) are no longer absolutely continuous, but
they are assumed to be functions of special locally bounded variation.
The switched kinematic unilateral constraints with the constraint forces λ and impulses Λ
are kinematic unilateral constraints, which are switched on and off by an external Boolean
switching function χ(t) : R → {0, 1}m. The i-th constraint imposes a kinematic unilateral
constraint γi ≥ 0 whenever the corresponding external Boolean switching function χi(t) =
1. Its force law is described by the inequality complementarity

−λi ∈




∂ΨR+
0

(γi) if χi(t) = 1,

0 if χi(t) = 0.
(8)

The impact law for the constraint impulses Λ is given by the inclusion (see [13])

−Λ ∈ Hχ(t)(γ̄). (9)

The operator Hχ(t) is chosen such that it is identical to the operator Hg in (5) if the same
contacts are closed or switched on, respectively.
The i-th switched geometric bilateral constraint ensures that the i-th constraint is closed
when χi(t) = 1 and imposes no constraint otherwise. Therefore, the constitutive laws for
the constraint forces σ and the constraint impulses Σ of the switched geometric bilateral
constraint are given by

− σi ∈
{

∂Ψ{0}(gi)
0

if χi(t) = 1,

if χi(t) = 0,
(10)

− Σi ∈




∂Ψ{0}
(
g+

i

)

0
if χi(t) = 1,

if χi(t) = 0.
(11)

The switched geometric unilateral constraints are ‘time-triggered’ and χ(t) is an external
input independent of the constraint distances. The ‘state-triggered’ geometric unilateral
constraints of the observed system, however, are closed if the corresponding constraint
distances vanish. In order to relate these two types of constraints, we make the following
definition.

Definition 2. The Boolean switching functions χ(t) are called to be generated by g(t) if
every component χi(t) of χ(t) fulfills

χi(t) =
{

1 if gi(t) = 0,

0 if gi(t) > 0.
(12)

If the observer is initialized with the same initial conditions as the observed system and
the switching functions χ(t) are generated by the constraint distances of the observed
system, then both solutions are identical. This statement is the content of the following
proposition.

Proposition 1. Let the master system be described by (1)–(5) and let the slave system

be described by (7)–(11) together with (2)–(3). Let
(

qm(t)
um(t)

)
be the solution of the master

system for the initial conditions
(

qm(t0)
um(t0)

)
=

(
q0
u0

)
∈ A and let

(
qs(t)
us(t)

)
be the solution of

the slave system for the same initial conditions
(

qs(t0)
us(t0)

)
=

(
q0
u0

)
. Then, both solutions

are identical if the Boolean switching functions χ(t) in (8)–(11) are generated by the
constraint distances gm(t) of the master system.
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Proof. The only difference between the master and the slave system are the constraints.
The condition that χ(t) is generated by gm directly implies that the force laws (4) and
(8) as well as the impact laws (5) and (9) are identical. For the constraint forces σ and
constraint impulses Σ we seek an explicit expression in order to show that both vanish for
the considered solutions.
We define I as the index set of closed constraints at a certain point in time as I(t) =
{i | χi(t) = 0} and introduce the following notation. A subscript I indicates that only
the closed constraints are considered, e.g. WI = {. . . , wi, . . . }, gs,I = (. . . , gs,i, . . . )T,
where i ∈ I.
We multiply the kinematic equation in (7) from the left by W T

I K−1 and obtain

W T
I

(
q̇s dt +

(
q+

s − q−
s

)
dη

)
= W T

I us dt + W T
I K−1W σ dt + W T

I K−1W Σ dη.

Substituting (2)–(3)and using the absolute continuity of ν(t) yields

ġs,I dt +
(
g+

s,I − g−
s,I

)
dη = γs,I dt + W T

I K−1W σ dt + W T
I K−1W Σ dη.

The force law (10) (written on velocity level) and the impact law (11) imply ġs,I = 0 and
g+

s,I = 0, since the inverse of ∂Ψ{0} is the zero function, and we obtain σI = −L−1
I γs,I

and ΣI = −L−1
I g−

s,I , where LI := W T
I K−1WI . We define the matrix PI as the matrix

obtained by taking the identity matrix P ∈ Rm×m and removing all columns with an
index i /∈ I. The force and impact laws state σi = Σi = 0 ∀i /∈ I, which implies σ = PI σI

and Σ = PI ΣI . Together with γs,I = P T
I γs and g−

s,I = P T
I g−

s , an explicit form for σ
and Σ is obtained as

σ = −PIL−1
I P T

I γs, (13)
Σ = −PIL−1

I P T
I g−

s , (14)

where the product of matrices PIL−1
I P T

I ∈ Rm×m is positive semi-definite.
The absolute continuity of the generalized coordinates qm of the master system, and
therefore of the generalized constraint distances gm, implies g−

m,I = 0 for a given set I.
Together with (14), we obtain that q−

m = q−
s implies Σ = 0, which yields q+

m = q+
s

almost everywhere w.r.t. dη. Analogously, the absolute continuity of qm implies γm,I = 0
for a given set I. Together with (13), we obtain that um = us implies σ = 0, which

yields q̇m = q̇s almost everywhere w.r.t. dt. Finally, we obtain
(

dqm

dum

)
=

(
dqs

dus

)
together

with
(

qm(t0)
um(t0)

)
=

(
qs(t0)
us(t0)

)
, which concludes the proof.

In order that the observer (slave) provides an estimate of the observed system (master),
the systems need to synchronize with each other. The master-slave synchronization is
based on the attractive incremental stability of the observer, which is presented in the
following subsection.

3.2 Attractive incremental stability
Attractive incremental stability (a.i.s.) is a stability property of dynamical systems which
implies that all solution curves are globally uniformly attractively stable. Therefore, all
solution curves approach each other and remain close in the sense of Lyapunov for all
initial conditions and the information of the initial condition is lost. Here, we consider the
definition of a.i.s. for measure differential inclusions as presented in [4]. Other notions of
incremental stability have been presented in literature, see e.g. [3, 22].
In order to state the a.i.s. of the observer, we will make the following assumptions:
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A1 The switching functions χ(t) are generated by an absolutely continuous function.

A2 The external forcing f(t) is bounded, i.e. supt∈R ∥f(t)∥ ≤ fmax for a given bound
fmax < ∞.

A3 The impact map Hχ(t)(γ̄) is monotone for any χ(t).

Assumption A1 guarantees that all intervals during which a constraint is switched off are
open time intervals. This property is used for the existence of solutions, but this is not in
the scope of this paper. The following theorem states the a.i.s. of the slave system under
the previous assumptions and is an extension of the corresponding theorem in [4].

Theorem 1. System (7)–(11) together with (2)–(3) for given switching functions χ(t) is
attractively incrementally stable if the Assumptions A1–A3 are fulfilled.

Proof. We will proof the property of a.i.s. by showing that all solution curves are globally

uniformly attractively stable. Therefore, consider two arbitrary solutions
(

q1(t)
u1(t))

)
and

(
q2(t)
u2(t)

)
for given switching functions χ(t). The position and velocity errors are given

by e = q1 − q2 and v = u1 − u2, where the index is used to distinguish between the two
solutions. The error dynamics follows from (7) as

(
K 0
0 M

) (
de
dv

)
=

(
Kv

−Cv − Ke

)
dt +

(
W (σ1 − σ2)
W (λ1 − λ2)

)
dt +

(
W (Σ1 − Σ2)
W (Λ1 − Λ2)

)
dη. (15)

The constraints forces and impulses are given by (8)–(11), where the switching func-
tions χ(t) are the same for both considered solutions. We introduce the Lyapunov function

V (e, v) = 1
2

(
e
v

)T (
K 0
0 M

) (
e
v

)
= ∥v∥2

M + 1
2

∥e∥2
K , (16)

which is positive definite on the error states gives a notion of distance between these
two solutions. We evaluate V along solutions e(t), v(t) and the differential measure dV
contains the densities with respect to the measures dt and dη. Using the symmetry of K

and M , the differential measure dV can be written as dV =
(

ē
v̄

)T (
K 0
0 M

) (
de
dv

)
,

where ē := 1
2

(
e+ + e−)

and v̄ := 1
2

(
v+ + v−)

. Substituting the error dynamics (15) and
using the local kinematic quantities (2)–(3), we obtain

dV =
(

e
v

)T (
Kv

−Cv − Ke

)
dt +

(
W Te
W Tv

)T (
σ1 − σ2
λ1 − λ2

)
dt +

(
W Tē
W Tv̄

)T (
Σ1 − Σ2
Λ1 − Λ2

)
dη

= −∥v∥2
C̄

dt +
(

g1 − g2
γ1 − γ2

)T (
σ1 − σ2
λ1 − λ2

)
dt +

(
ḡ1 − ḡ2
γ̄1 − γ̄2

)T (
Σ1 − Σ2
Λ1 − Λ2

)
dη,

where ḡ := 1
2

(
g+ + g−)

and C̄ := 1
2

(
C + CT

)
is the symmetric part of the damping ma-

trix C. The terms (g1 − g2)T (σ1 − σ2) and (γ1 − γ2)T (λ1 − λ2)vanish, since the force
laws (8) and (10) are given by complementarity conditions. Similarly, the impact law (11)
yields (ḡ1 − ḡ2)T (Σ1 − Σ2) =

(
1
2g−

1 − 1
2g−

2

)T
(Σ1 − Σ2). Therefore, the differential mea-

sure dV simplifies to

dV = −∥v∥2
C̄

dt +
(1

2
g−

1 − 1
2

g−
2

)T
(Σ1 − Σ2) dη + (γ̄1 − γ̄2)T (Λ1 − Λ2) dη.
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The constraint impulses Σ1 and Σ2 are explicitly derived in the proof of Proposition 1.
Furthermore, the impact map Hχ(t)(γ̄) in (9) is monotone according to Assumption A3,
which implies (γ̄1 − γ̄2)T (Λ1 − Λ2) ≤ 0 according to (6), and we obtain

dV ≤ −∥v∥2
C̄

dt − 1
2

∥g−
1 − g−

2 ∥2
PIL−1

I P T
I

dη. (17)

The matrix C̄ is positive definite and PIL−1
I P T

I is positive semi-definite. Hence, we
have dV ≤ 0 and the equilibrium at the origin is uniformly stable [14]. Furthermore, since
the Lyapunov function V is bounded from below and non-increasing, the limit

V∞ := lim
t→∞

V (e(t), v(t)) = lim
t→∞

(1
2

∥v(t)∥2
M + 1

2
∥e(t)∥2

K

)
(18)

exists and lies in the interval 0 ≤ V∞ ≤ V (e−(t0), v−(t0)).
The Lyapunov function V (e(t), v(t)) tends to an absolutely continuous function (constant
function) and both summands in (16) have a non-positive density with respect to dη.
Therefore, we conclude that ∥v(t)∥2

M , ∥e(t)∥2
K and, hence, v(t) and e(t) are asymptotically

absolutely continuous as well. From (17) and (18) follows

V∞ − V (e−(t0), v−(t0)) ≤ − lim
t→∞

∫

[t0,t]
∥v∥2

C̄
dt − lim

t→∞

∫

[t0,t]

1
2

∥g−
1 − g−

2 ∥2
L−1

χ(t)
dη. (19)

Since the left-hand side in (19) is finite, we deduce that

lim
t→∞

∫

[t0,t]
∥v∥2

C̄
dt < ∞. (20)

We cannot invoke Barbalat’s lemma [12] since the solution v(t) is not uniformly contin-
uous in time. The extension of this lemma is presented in [4] for the class of asymp-
totically absolutely continuous functions to which v(t) belongs. Applying the extended
Barbalat’s lemma to (20) yields limt→∞ ∥v(t)∥2

C̄
= 0. The positive definiteness of C̄ im-

plies limt→∞ v(t) = 0. Substituting the limit of v into (18) yields limt→∞ e(t) = c for some
c satisfying V (e−(t0), v−(t0)) ≥ 1

2∥c∥2
K ≥ V∞ ≥ 0. In the next step, we show that c = 0.

Therefore, we integrate the equality of measures (15) over a time interval ∆T = [t, t + ∆t]
with an arbitrary ∆t > 0 and obtain

(
K 0
0 M

) (
e+(t + ∆t) − e−(t)
v+(t + ∆t) − v−(t)

)
=

∫

∆T

(
Kv

−Cv − Ke

)
dt +

∫

∆T

(
W (dΣ1 − dΣ2)
W (dΛ1 − dΛ2)

)
,

where dΣi := σi dt+Σi dη, dΛi := λi dt+Λi dη for i ∈ {1, 2}. It proves useful to introduce
the quantities Σ̃∆t(t) = 1

∆t

∫
∆T (dΣ1 − dΣ2) and Λ̃∆t(t) = 1

∆t

∫
∆T (dΛ1 − dΛ2), which can

be regarded as the average constraint forces of the error dynamics over the time lapse ∆T .
Subsequently, we take the limit t → ∞ and use v(t) → 0 and e → c for t → ∞. The
integrated equality of measures, divided by ∆t, yields

(
0
0

)
=

(
0

−Kc

)
+ lim

t→∞

(
W Σ̃∆t(t)
W Λ̃∆t(t)

)
,

which describes, in an averaged sense, the equilibrium of forces at infinity. Since the
columns wi of W are linearly independent,we obtain

Kc = lim
t→∞

m∑
i=1

wiΛ̃∆t,i(t), (21)
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from which we deduce that each of the limits limt→∞ Λ̃∆t,i(t) has to exist. Let I be the set
of constraints for which the limit limt→∞ Λ̃∆t,i(t) does not vanish for any ∆t. The error
in constraint distances for these constraints vanish due to the force and impact laws (10)–
(11), i.e. g1,I − g2,I = W T

I c = 0. We multiply equation (21) from the left by W T
I K−1

and obtain

0 = W T
I c = W T

I K−1 lim
t→∞

∑
i∈I

wiΛ̃∆t,i(t) = LI lim
t→∞

Λ̃∆t,I(t),

where the notation introduced in Proposition 1 has been used for LI and Λ̃∆t,I . The
positive definiteness of LI yields limt→∞ Λ̃∆t,I(t) = 0 and we obtain c = 0. Therefore,

the equilibrium at the origin
(

e
v

)
= 0 is globally uniformly attractively stable, which

concludes the proof.

Theorem 1 together with Proposition 1 imply that any solution of the slave system ap-
proaches the solution of the master system and can thus be used as state estimate.

4 Examples
In Section 3 we have presented a new observer design for the class of mechanical systems
shown in Section 2. The proposed observer uses only the information which constraints
of the observed system are open or closed and no continuous measurement of the states
is necessary. The synchronization of the unilaterally coupled systems is based on the
attractive incremental stability of the observer dynamics. The results are illustrated using
simulations of two examples of impact oscillators.

Example 1 (Double mass impact oscillator). The first example is a double mass im-
pact oscillator, which consists of two masses coupled by spring-damper elements and the
upper mass is harmonically forced. Figure 1 depicts the synchronization setup with the
coupled master (left) and slave system (right). Both systems are described by (7)–(11) to-
gether with (2)–(3) subjected to switched geometric unilateral constraints. The switching
functions χ(t) are generated by the constraint distances gm of the master system. There-
fore, the (real) master system is subjected to geometric unilateral constraints, whereas
the (artificial) slave system is a perfect replica subjected to switched geometric unilateral
constraints that are switched on when the corresponding constraints of the master system
are closed. The generalized Poisson’s impact law is chosen with a global coefficient of
restitution of ε = 0.8.
The system matrices M , C and K are all symmetric and positive definite. Assumption A1
is fulfilled, since the constraint distances of the master system are absolutely continuous.
The external forcing is chosen as a harmonic function such that Assumption A2 is fulfilled.
The impact law is described by a monotone impact map, which fulfills Assumption A3.
Since the Assumptions A1–A3 from Section 3 are fulfilled, the slave system is attractively
incrementally stable according to Theorem 1. Therefore, the synchronization error tends
to zero and the slave system reproduces the full state of the master system using only the
impact time instants.
The example is simulated for a certain choice of parameters, and the Lyapunov func-
tion (16) is shown in Figure 2 for the observer presented in this paper with position jumps
(blue) as well as for the observer without position jumps presented in [4] (red). Both
observers tend to the observed system, but the observer including position jumps has a
higher synchronization rate.
Figure 3 shows the time evolution of the distance between the ground and the first mass.
Depicted is the master system (black), the slave system including position jumps (blue)
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Figure 1. Master-slave system
unidirectionally coupled by the
Boolean switching functions χ(t).

Figure 2. Lyapunov function
with position jumps (blue) and
without position jumps (red).

and the slave system without position jumps (red). The newly proposed observer tends
faster to the master system since it additionally imposes a projection of the generalized
coordinates. Both observers reproduce the full state of the observed system using only the
impact time information also in the presence of accumulation points, which correspond to
infinitely many impacts in a finite time interval (also called Zeno behavior).

Figure 3. Time evolution of the generalized coordinate and velocity of the first mass
of the double mass impact oscillator for the master system (black), slave system with
position jumps (blue) and without position jumps (red).

Example 2 (Chain of rocking blocks). The second example consists of a chain of blocks
which are connected by spring-damper elements as depicted in Figure 4. Each block can
move vertically and rotate about its center of gravity. The lowest block is connected to
the harmonically moving ground. Between each neighboring block and between the lowest
block and the ground there are on both sides unilateral constraints. Only small deflections
are considered such that the system can be considered linear time-invariant with symmetric
and positive definite system matrices. The generalized Poisson’s impact law is chosen with
a global coefficient of restitution of ε = 0.9. The master system is subjected to geometric
unilateral constraints and the slave system is subjected to switched geometric unilateral
constraints. The slave system is a.i.s. according to Theorem 1.
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Figure 4. Master-slave system unilaterally coupled by the switching functions χ(t).

The coupled system is simulated with a chain consisting of 10 blocks, which corresponds to
20 degrees of freedom. As for Example 1, the observer presented in this paper with position
jump as well as the observer without position jumps presented in [4] are implemented.
The time evolution of the constraint distance and coordinate of a constraint (bottom right
constraint in Figure 4) is shown in Figure 5 for the master system (black), slave system
with position jumps (blue) and without position jumps (red). The Lyapunov function for
both observers is depicted in Figure 6 using a logarithmic scale. During the time interval
4 ≤ t ≤ 8, the Boolean switching functions χ(t) are generated by the master system, and
the slave system (having switched constraints) acts as a state observer. For illustrative
purposes, the switching functions are generated by the slave system itself for t ∈ [0, 4).
Therefore, the slave systems are subjected to geometric unilateral constraints during this
time interval and there is only one solution visible since the solutions of the uncoupled
slave systems are identical.
The slave systems are initialized using initial conditions which are very close to the initial
conditions of the master system. The uncoupled case shows that the master and the slave
system do generally not synchronize without any coupling. Furthermore, the system has
extreme sensitivity on initial conditions such that the solutions will diverge for any small
initial error. Therefore, there is no local synchronization and the zero-solution of the error
dynamics is unstable in the uncoupled case.

5 Conclusions
An observer is proposed which uses the new concept of switched geometric unilateral
constraints in order to extend the approach presented in [4]. These constraints introduce
position jumps which are feasible since the observer is not a physical system. The new
observer clearly improves the synchronization speed and it relaxes the assumptions on the
switching functions, e.g. it allows for persistent constraints (constraints which close and
do not open again).
The presented observer uses the property of attractive incremental stability and is based
on master–slave synchronization. The observer uses only the information of the impact
time instants and no continuous measurement is used. Furthermore, it reproduces the
full state of the observed system for every initial condition and also in the presence of
accumulation points.

594



Figure 5. Time evolution of the constraint distance and coordinate of a constraint
(bottom right in Figure 4) for the master system (black), slave system with position
jumps (blue) and without position jumps (red). The systems are decoupled during
the time interval 0 ≤ t < 4 for which there is generally no (local) synchronization.

Figure 6. Lyapunov function for the coupled chain of rocking blocks system with
position jumps (blue) and without position jumps (red) using a logarithmic scale.
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