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Convergence based synchronization of unilaterally constrained multibody systems

Michael Baumann∗ and Remco I. Leine∗
∗ETH Zurich, Department of Mechanical and Process Engineering, Institute of Mechanical Systems

Summary. The convergence property of a dynamical system is a strong condition with various useful implications. A convergent
system exhibits a bounded globally attractively stable solution and thus its asymptotic (or symptotic) behaviour is independent of initial
conditions. This paper presents conditions for the convergence property of mechanical systems submitted to unilateral constraints. A
key role plays the maximal monotonicity of the impact law, which is a stronger condition than dissipativity. The convergence property
can directly be used for the design of a state observer for mechanical systems with unilateral constraints. These observers are based
on master-slave synchronization and replicate the full state of the observed system for every choice of initial conditions using only the
impact time instants. The results are illustrated with the example of a harmonically excited beam with unilateral support.

Introduction

In this paper we investigate the convergence property of non-smooth dynamical systems and its application to the design
of a state observer in a master-slave synchronization setup. The concept of convergence from nonlinear stability theory has
been developed in the 60s in the Russian research community [2] and is a topic of active research [10]. A system excited by
an input (e.g. a forced mechanical system) is called convergent if it possesses a bounded globally attractively stable steady
state solution thereby attracting all other solutions regardless of their initial conditions [6, 10]. Convergent dynamics is
beneficial in many control problems such as stabilization, tracking control, output regulation problems, synchronization
and observer design. The input to the system may originate from various sources, e.g. it may be an external command
signal, a signal generated by the feedback part of a controller or a measured signal from the observed system.
Here, we consider the design of a state observer using a master-slave coupling of two identical Lagrangian systems with
unilateral constraints. The convergent dynamics ensures full state synchronization for all initial conditions. The coupling
is unidirectional and consists only of the impact time instants of the master system and therefore requiring only little effort
in measuring. A similar approach has been proposed in [12], where a system theoretical framework has been adopted.
The class of Lagrangian systems which we consider in this paper does however not require the strict passivity property as
has been assumed in [12]. More precisely, the transfer matrix of the linear part of the system is in our case (in the absence
of additional measurements) not strictly positive real [1].
Commonly used impact laws, such as the generalized Newton’s impact law, enjoy the maximal monotonicity property as
is shown in the accompanying paper [8]. In the first part of this paper it is shown that Lagrangian systems with switched
frictionless unilateral constraints exhibit the convergence property if the impact law is maximal monotone. In the second
part the use of the convergence property is shown for the design of a state observer based on master-slave synchronization.
The theoretical results are illustrated using numerical simulations of a harmonically excited beam with a unilateral support.
The slave system, acting as the state observer, reproduces the full state of the master system using only the impact time
instants of the master system.

The convergence property

We briefly review the convergence property as defined in [6] for a time-invariant measure differential inclusion with inputs

dx ∈ dΓ(x,w), (1)

where x(t) ∈ Rn is the state vector and w ∈ Rd is the time-varying input. We will restrict the input w to the class W
which at least guarantees that a solution x(t) of locally bounded variation exists.
A convergent system has a globally attractively1 stable steady state solution x̄w(t), which is defined and bounded almost
everywhere on the time axis [6]. The term almost everywhere captures that the solution is not defined at impact time
instants and is referred to as a.e. in the following. This class of systems ‘forgets’ their initial conditions and all solutions
converge to the same particular solution (see Figure 1). In addition, if the system is uniformly convergent, then the steady
state solution x̄w is unique. Let us formally define the property of convergence for systems with inputs.

Definition 1
System (1) is said to be

• convergent if there exists a solution x̄w(t) for every w(t) ∈W satisfying the following conditions:

1. x̄w(t) is defined for almost all t ∈ R,
2. x̄w(t) is bounded for almost all t ∈ R,
3. x̄w(t) is globally attractively stable.

• uniformly convergent if it is convergent and x̄w(t) is globally uniformly attractively stable for every w(t) ∈W.

1The wording ‘attractively stable’ has been used instead of the usual term ‘asymptotically stable’, because attractivity of solutions in (measure)
differential inclusions can be asymptotic or symptotic (finite-time attractivity), see [6].



ENOC 2014, July 6-11, 2014, Vienna, Austria

Figure 1: A convergent system has a globally attractive steady state solution xw for every input w(t) within a given class.

Convergence of a Lagrangian system with switched kinematic unilateral constraints
We show under which conditions mechanical systems exhibit the convergence property. More specifically, we consider
forced linear time-invariant Lagrangian systems with positive definite system matrices, which are subjected to switched
kinematic unilateral constraints. Let q ∈ Rf be the generalized coordinates and u ∈ Rf be the generalized velocities.
The non-impulsive dynamics of the system is described the equation of motion together with the kinematic equation

Mu̇+Cu+Kq = Wλ+ f(t), q̇ = u, a.e. (2)

where the mass matrix M and the stiffness matrix K are symmetric and the time-dependent external forcing f(t) is
bounded. The motion of the system is restricted by m unilateral constraints, which invoke unilateral constraint forces
λ ∈ Rm together with generalized force directionsW ∈ Rf×m, which we assume to be linearly independent.
Correspondingly, the impulsive dynamics is described by the impact equation

M(u+ − u−) = WΛ, (3)

where u− and u+ denote pre- and post-impact velocities and Λ ∈ Rm are the impulsive constraint forces.
The system, described by the equation of motion (2) together with the impact equation (3), needs to be complemented
with a force law for the constraint forces λ and an impact law for the impulsive constraint forces Λ. These constitutive
laws depend on the type of unilateral constraint and typically operate on local kinematic quantities. We will assume that
the constraint distances g are an affine function of the generalized positions and the constraint velocities γ are therefore a
linear function of the generalized velocities, i.e. γ = WTu.
Here, we will consider two different unilateral constraints. A switched kinematic unilateral constraint (also called one-
way clutch or sprag clutch) imposes a kinematic unilateral constraint γi ≥ 0 for contact i whenever the corresponding
binary switching function χi = 1 and imposes no constraint if χi = 0. The kinematic unilateral constraint restricts
the sign of the constraint velocity γi ≥ 0, thereby allowing for relative motion in positive direction and blocking in the
opposite direction. The force law is described by the inequality complementarity

−λi ∈

{
Upr(γi) if χi = 1,

0 if χi = 0,
(4)

where Upr denotes the unilateral primitive [3]. It is defined as the subdifferential of the indicator function ΨR+
0

on the
set R+

0 , i.e. Upr(x) = ∂ΨR+
0

. This inequality complementarity is identical to −λi ∈ Upr(γi) ⇔ 0 ≤ λi ⊥ γi ≥ 0. A
geometric unilateral constraint, also known as impenetrability constraint, restricts the sign of a constraint distance gi ≥ 0.
Its force law 0 ≤ λi ⊥ gi ≥ 0 (also referred to as Signorini’s law) can be written on velocity level using the switched
inequality complementarity (4) for which the switching function χi is determined by the constraint distance gi as

χi =

{
1 if gi = 0,

0 if gi > 0.
(5)

The impact law for the impulsive unilateral constraint forces Λ is given by the inclusion (see [8])

−Λ ∈ H(γ̄,χ(t)), where γ̄ :=
1

2
(γ+ + γ−). (6)

The set-valued operator H, defined as a function of the kinematic variable γ̄ and the binary switching functions χ(t), is
assumed to be maximal monotone with respect to the first argument and to fulfill the natural condition 0 ∈ H(0,χ(t)).
The maximal monotonicity property ofH is given by the condition (Λ1 −Λ2)T(γ̄1 − γ̄2) ≤ 0 for all pairs (Λ1, γ̄1) and
(Λ2, γ̄2) which fulfill the impact law (6) for a fixed χ(t). These assumptions are fulfilled by the generalized Newton’s
impact law [8] and generalized Poisson’s impact law [7] with global coefficients of restitution. It is shown in [8] that the
mapping Z : u+ = Z(u−) from pre-impact to post-impact generalized velocities, defined by the impact equation (3)
together with the impact law (6), is maximal non-expansive [11] in the metricM , i.e.

‖u+
1 − u

+
2 ‖2M ≤ ‖u

−
1 − u

−
2 ‖2M , (7)

if and only if H is maximal monotone. This implies the dissipativity of the impact, assuming the natural condition 0 ∈
H(0,χ(t)). The Lagrangian system (2)-(4),(6) is chosen as simple as possible in order to keep the further analysis concise.
The switching functions χ(t) must not allow for persistent contact for all times. In order to define the allowed class of
switching functions, we introduce the notation ã∆t(t) = 1

∆t

∫ t+∆t

t
a(τ) dτ for a given ∆t > 0.
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Definition 2
A function χ(t) is of class K if for each t there exists a t∗(t) > t and a number ∆t > 0 independent of t such that
χ̃∆t(t

∗) = 0. Furthermore, a function χ(t) is of class Kn if each component χi(t) is of class K.

We will make the following standing assumptions on the system:

A1 The function χ(t) is of class Kn.

A2 The function χ(t) and the external forcing f(t) are such that there exists a bounded solution for almost all t.

A3 The impact map H(γ̄,χ(t)) is maximal monotone with respect to the first argument, 0 ∈ H(0,χ(t)) and 0 =
H(γ̄,0).

Theorem 1
System (2)-(4),(6) with the assumptions A1-A3 is uniformly convergent.

Proof: According to Definition 1 we must show that there exists a bounded steady state solution a.e. which is globally uni-
formly attractively stable. The existence of a bounded steady state solution is directly given by assumption A2. Therefore,
the proof is reduced to show that all solution curves of the system (2)-(4),(6) with the assumptions A1-A3 are globally
uniformly attractively stable, which is also referred to as incremental stability.
Consider two arbitrary solutions (q1(t),u1(t)) and (q2(t),u2(t)) of system (2)-(4),(6). Let e = q1−q2 and v = u1−u2

be the position and the velocity error between these two solutions, which we gather in the state vector xe =
(
eT vT

)T
of the error dynamics. The Lyapunov function

V (xe) =
1

2
‖u1 − u2‖2M +

1

2
‖q1 − q2‖2K =

1

2
‖v‖2M +

1

2
‖e‖2K (8)

gives a notion of distance between these two solutions and it is a positive definite function, since M , K > 0. The two
solutions agree if and only if V = 0. The differential measure of the Lyapunov function contains a density V̇ with respect
to the Lebesgue measure dt and a density V + − V − with respect to the atomic measure dη. The density V̇ is given by

V̇ (t,xe) = (u1 − u2)TM(u̇1 − u̇2) + (q1 − q2)TK(u1 − u2)

= (u1 − u2)T (−C(u1 − u2) +W (λ1 − λ2))

= −‖u1 − u2‖2C + (γ1 − γ2)T(λ1 − λ2).

(9)

Hence, the positive definiteness ofC and the maximal monotonicity of the force law (4) imply V̇ (t,xe) ≤ −W (xe) a.e.,
where W (xe) = ‖u1 − u2‖2C is a positive semi-definite function in xe.
The jump in the Lyapunov function at impulsive time-instants is given by

V + − V − =
1

2
‖u+

1 − u
+
2 ‖2M −

1

2
‖u−1 − u

−
2 ‖2M ≤ 0, (10)

where the non-expansivity of the mapping Z (7) has been used, since the impact map H(γ̄,χ(t)) is monotone (assump-
tion A3). Consequently, the Lyapunov function V can not increase neither during continuous nor discontinuous flow.
Therefore, the equilibrium xe = 0 is uniformly stable [6]. From

V (xe(t))− V (xe(t0)) ≤ −
∫ t

t0

W (xe(τ))dτ (11)

and the fact that V is bounded from below, we deduce that

lim
t→∞

∫ t

t0

W (xe(τ))dτ = lim
t→∞

∫ t

t0

‖v(τ)‖2Cdτ <∞. (12)

The solution xe(t) is not continuous in time and we can therefore not invoke Barbalat’s lemma [5]. However, the
condition (12) and the equivalence of norms yield limt→∞

∫ t

t0
‖v(τ)‖dτ < ∞. The variation function Vare(t) =

var(e, [t0, t]) =
∫ t

t0
‖v‖dt is absolutely continuous and monotonically increasing and, thus, e(t) attains a limit. Ad-

ditionally, each level set of V is a compact positively invariant set, which implies boundedness of e(t) and v(t) in forward
time. Therefore it holds that limt→∞ e(t) = c for some c satisfying 1

2‖c‖
2
K ≤ V (xe(t0)). Next, we prove that also

limt→∞ v = 0. The Lyapunov function V is bounded from below and non-increasing. Hence, the limit

V∞ := lim
t→∞

V (xe(t)) = lim
t→∞

(
1

2
‖v‖2M +

1

2
‖e‖2K

)
(13)
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exists and lies in the interval 0 ≤ V∞ ≤ V (xe(t0)). Using limt→∞ e(t) = c, we obtain the limit

lim
t→∞

1

2
‖v‖2M = V∞ −

1

2
‖c‖2K . (14)

Hence, due to the positive definiteness of M and C and the equivalence of norms, also the limit limt→∞ ‖v‖C exists.
Together with the boundedness condition (12) we have limt→∞ v = 0 and V∞ = 1

2‖c‖
2
K .

Up to now, we have proven that the error dynamics, governed by the equality of measures

Mdv +Cvdt+Kedt = W (dP1 − dP2), (15)

is tending towards the limit point (c,0) for t → ∞, where dP1 = λ1dt + Λ1dη and dP2 = λ2dt + Λ2dη are the
constraint impulse measures. Integrating the equality of measures over the time interval [t, t+ ∆t] yields

M(v+(t+ ∆t)− v−(t)) +C(e(t+ ∆t)− e(t)) +K

∫ t+∆t

t

e(τ)dτ =

∫
[t,t+∆t]

W (dP1 − dP2), (16)

where ∆t > 0 is arbitrary. It proves useful to introduce the quantity λ̃∆t(t) = 1
∆t

∫
[t,t+∆t]

(dP1 − dP2), which can be
regarded as the average constraint force of the error dynamics over the time lapse [t, t + ∆t]. Subsequently, we take the
limit t→∞ and use v(t)→ 0 and e(t)→ c for t→∞. The integrated equality of measures, divided by ∆t, yields

Kc = lim
t→∞

Wλ̃∆t(t) = lim
t→∞

m∑
i=1

wiλ̃∆t,i(t), (17)

which is, in an averaged sense, the equilibrium of forces at infinity. The columns wi of W are linearly independent from
which we deduce that each of the limits limt→∞ λ̃∆t,i(t) have to exist. Moreover, it holds that λ1i(t) = λ2i(t) = 0 and
Λ1i(t) = Λ2i(t) = 0 for χi(t) = 0 according to (4) and assumption A3. Taking a small enough ∆t, we conclude that the
limit of λ̃∆t,i(t) must vanish, since each switching function χi(t) is of class K. According to (17) andK > 0, we obtain
c = 0. Therefore, xe(t) = 0 is uniformly stable and globally attractive, which concludes the proof. �

Synchronization of master-slave systems

The convergence property is used to design a state observer using master-slave synchronization. The master system
(indexm) and the slave system (index s) are described by the set of equations (2)-(4),(6). The switching function is defined
by (5), where the gap function of the master system is taken in both cases. Therefore, the master system is subjected to
geometric unilateral constraints, whereas and the slave system is a perfect replica with one-way clutch constraints that
are switched on when the corresponding contacts of the master system are closed. According to Theorem 1, the slave
system is uniformly convergent. Therefore, the synchronization error tends to zero and the full state of the master system
is reconstructed by the slave system using only the impact time instants.
We illustrate the synchronization based observer using the example of a harmonically excited beam with a unilateral
support as depicted in Figure 2. The master system is subjected to a geometric unilateral constraint and the slave system
has a switched kinematic unilateral constraint. The only coupling between the master system and the slave system is
given through the collision time-instants ti of the master system, captured by the binary switching function χ(t), and is
unidirectional.
The vertical displacement w(t, x) of the beam is measured with respect to a solid frame, which itself is excited by
e(t) = e0 cosωt. The support is at the location xc and the contact is closed for w(t, xc) = 0. The beam is modeled as a
plane linearized Euler-Bernoulli beam. In this case the virtual work is given by the Lagrange’s central equation as

0 = δW =

∫ l

0

{
δw′′EIw′′ + δwAρẅ + δwd(ẇ − ė)

}
dx− δw(xc)λ ∀δw|δw(0) = 0. (18)

The damping is modeled as linear viscous damping with the frame as reference. Even though there are physically more
intuitive ways to model the damping effects, this choice is made since it leads to the same decay rate for all eigenmodes.
The first three eigenmodes of the free beam are given by

vi(x) = cosβix− coshβix+
cosβil + coshβil

sinβil + sinhβil
(− sinβix+ sinhβix) for i ∈ 1, 2, 3, (19)

where βi is the i-th root of cosβil coshβil + 1 = 0. We proceed with the Galerkin approach by approximating the
displacement w(t, x) and the virtual displacements δw(t, x) using the first three eigenmodes as

w(t, x) ≈ wn(t, x) = v(x)Tq(t) + e(t) + const.,

δw(t, x) ≈ δwn(t, x) = v(x)Tδq(t),
(20)
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where q(t) are the generalized coordinates and δq(t) the corresponding virtual displacements. Substituting the approxi-
mation (20) into (18) yields

0 = δqT
(∫ l

0

v′′EIv′′Tdx︸ ︷︷ ︸
K

q +

∫ l

0

vAρvTdx︸ ︷︷ ︸
M

q̈ +

∫ l

0

vAρ dx ë︸ ︷︷ ︸
−f(t)

+

∫ l

0

v dvTdx︸ ︷︷ ︸
C

q̇ − v(xc)︸ ︷︷ ︸
W

λ
)
∀ δq. (21)

The impacting beam model can therefore be written in the form (2)-(4),(6) with

M = ρAl

1 0 0
0 1 0
0 0 1

 , C = dl

1 0 0
0 1 0
0 0 1

 , K =
EI

l3

(β1l)
4 0 0

0 (β2l)
4 0

0 0 (β3l)
4

 ,

W = v(xc), fi(t) = −2
ρAl

βil

cosβil + coshβil

sinβil + sinhβil
e0ω

2 cosωt.

(22)

The kinematic unilateral constraint of the slave system is switched on (χ(t) = 1), whenever the geometric unilateral
constraint of the master system is closed (gm(t) = 0). The impacts are modeled using the generalized Poisson’s impact
law [4], which is compatible with switched kinematic unilateral constraints in contrast to e.g. the generalized Newton’s
impact law. Furthermore, the generalized Poisson’s impact law fulfills assumption A3 as it is shown in [7].

Figure 2: Master-slave system coupled by the binary switching function χ(t) for a harmonically excited beam with unilateral support.

We take the mechanical energy of the error dynamics as the positive definite Lyapunov function

V (t) =
1

2
‖um − us‖2M +

1

2
‖qm − qs‖2K . (23)

According to Theorem 1 the Lyapunov function tends to zero as t tends to infinity and we have limt→∞ qs(t) = qm(t)
and limt→∞ us(t) = um(t). Thus synchronization is achieved and the state of the slave system can be used as state
observer of the master system.
The Lyapunov function can be split up into the energy contents of each eigenmode as

V (t) =

3∑
i=1

Vi(t), where Vi(t) =
1

2
ρAl(umi − usi)2 +

1

2

EI

l3
(βil)

4(qmi − qsi)2. (24)

The time evolution of the Lyapunov function V (t) as well as the energy content V1(t), V2(t), V3(t) of the eigenmodes are
depicted in Figure 3. The Lyapunov function is plotted on a logarithmic axis for a simulation with the set of parameters
E I = ρA = l = 1, e0 = 0.03, ω = 9.5, d = 0.17, ε = 0.7, xc = 0.868 and the initial conditions qm0 =

(
0.05 0 0

)T
,

qs0 = −0.5
(
β−2

1 β−2
2 β−2

3

)T
, um0 = us0 =

(
0 0 0

)T
.

During non-impulsive motion the eigenmodes are decoupled and their energy is non-increasing due to the positive defi-
niteness of the damping matrix C. The only coupling of the eigenmodes is due to the support. At the time instants of an
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impact, energy may transfer between the first two eigenmodes. The energy content V1(t) or V2(t) of the first or second
eigenmode generally increase during an impact, but the sum is strictly decreasing. The third eigenmode is not influenced
by the impact since the support is chosen to be located at a node of this eigenmode and it is therefore completely decoupled
from the other eigenmodes.

Figure 3: Lyapunov function for the impacting beam and the energy content in the modeled eigenmodes.

Conclusions

A convergence based design of a state observer for Lagrangian systems with unilateral constraints has been presented
and has been applied to a unilaterally supported beam. The convergence property of the impacting beam model is due to
the maximal monotonicity of the impact law and the internal damping. This property persists for an arbitrary number n
of eigenmodes (or generally Ansatz functions) and other approaches for the internal damping as long as the system
matrices remain positive definite. The synchronization does not rely on the impacts although the rate of synchronization
is improved by the impacts as long as the master system is not blocked by a persistent contact.
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