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Abstract

This paper presents the stability and bifurcation analysis of a nonlinear thermoacoustic model consisting of a combustion
chamber coupled to a Helmholtz damper. Only the acoustic mode in the cavity of the combustion chamber to which the
Helmholtz damper is tuned is considered. The Helmholtz damper includes a non-smooth damping term and can be seen
as a tuned vibration absorber with a coupling on velocity level with non-vanishing gyroscopic terms.

Conditions for which self-sustained pressure oscillations are present in the coupled system are derived. Furthermore,
the effects of nonlinearities on the stability properties of the system are investigated using standard techniques of multi-
body dynamics. The bifurcation analysis shows a more rich dynamics than expected, considering that the investigated
model describes the ideal case with perfectly tuned eigenfrequencies of the subsystems. The bifurcation branches of the
occurring Hopf and fold bifurcations can be used to define a partition of the parameter space with different qualitative
behaviour. The theoretical results are validated using numerical simulations.
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1 Introduction

The mitigation of combustion instabilities is a challenging task in the development and improvement of gas turbines.
This problem gains in importance due to progressively more stringent emission regulations. To meet this requirement the
fuel/air mixing quality in the burners is constantly improved but this is often accompanied with an increase of pulsations
due to thermoacoustic coupling. These oscillations result from constructive interaction between the flame and acoustic
eigenmodes of the combustor and induce structural vibrations.

Thermoacoustic instabilities are induced by the coupling between the combustion dynamics, combustion noise and
burner acoustics [8]. The combustion dynamics describes the flame response, i.e. the relation between fluctuations in the
heat release rate and velocity perturbations. For a linear flame response this dynamics is commonly captured by the flame
transfer function. Flames are essentially surfaces across which reactants are converted into products. The heat release can
be perturbed by flame surface area fluctuations, which itself is sensitive to the acoustic velocity. The fluctuations in heat
release rate induce unsteady gas expansions which generate acoustic pressure oscillations. This process is referred to as
combustion noise. The pressure fluctuations propagate in the combustion chamber and get reflected and damped at the
boundaries or at area discontinuities. The acoustic pressure and velocity oscillations can be sustained like in an organ-pipe
and their coupling is described by the burner acoustics.

The investigation of combustion oscillations dates back to 1802 when Higgins [4] reported the phenomenon of the
‘singing flame’. His experimental setup consisted of a gas flame which was placed in a tube being open at both ends. The
flame excited a harmonic oscillation in the tube and, therefore, produced an audible sound. In 1878, Rayleigh [11, 12]
stated his famous criterion

∫

T

∫

V

p′(x, t)q′(x, t)dxdt >
∫

T

∫

V

Φ(x, t)dxdt, (1)

indicating the importance of the phase between the pressure oscillation and the unsteady heat release in encouraging
the instability. The left-hand side of (1) captures the power transformed from the fluctuating heat release rate q′ to the
pressure oscillations p′ during one oscillation cycle with period time T inside the control volume V . Thus, when the
acoustic pressure and the heat release rate oscillations are in phase, total mechanical energy is added to the oscillation.
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The dissipation in the acoustic field, which is not taken into account in the original criterion, is described by the wave
energy dissipation Φ in the right-hand side of (1). If the energy addition overcomes the total energy dissipation, the
acoustic energy in the combustor is increased, which leads to thermoacoustic instability of the combustion process.

There exist several passive and active means of control. Helmholtz dampers are commonly used to increase the acous-
tic dissipation (i.e. increase the term Φ in the Rayleigh Criterion (1)) and in turn decrease the amplitude of the pressure
oscillations [1, 2]. Such acoustic resonators can be seen as tuned vibration absorbers commonly used to reduce mechani-
cal vibrations. The ability of acoustic resonators to stabilize the system has to be evaluated prior to their implementation.
In order to predict the damper performance, a greatly simplified theoretical model combining the combustion instability
and the damper dynamics has been derived in [9]. This model has been extended to account for nonlinearities of the
combustion chamber and the tuned acoustic vibration absorber.

Generally, linear analysis is used in the first acoustic design step. The eigenfrequency of the dampers are adjusted
to the unstable mode, for which the acoustic absorption is maximized, and the stability of the equilibrium is determined
by an eigenvalue analysis. However, the results of the present paper shows that it is of prime importance to consider the
nonlinearities present in the system, since they significantly influence the system behaviour away from the equilibrium.

This paper presents the nonlinear stability and bifurcation analysis of a thermoacoustic model consisting of a combus-
tion chamber with self-sustained pressure oscillation coupled to a Helmholtz damper. The thermoacoustic model, which
is derived in Section 2, describes the acoustic pressure oscillation in the combustion chamber of one particular acoustic
mode and the acoustic velocity oscillation in the neck of the Helmholtz damper. The ideal case of maximal acoustic
absorption is considered, i.e. the eigenfrequency of the Helmholtz damper is adjusted to the unstable mode of the com-
bustion chamber [3]. Section 3 presents the stability analysis including an eigenvalue analysis and the use of Lyapunov
techniques. The bifurcation analysis has been conducted using the method of averaging (also called method of slowly
changing phase and amplitude) and the results are compared to numerical simulations, which is shown in Section 4. A
discussion of the results and concluding remarks are given in Section 5.

2 Model Derivation

The considered thermoacoustic model consists of a combustion chamber coupled to a Helmholtz damper (see Figure 1).
The combustor dynamics and the dynamics of the Helmholz damper are derived separately and coupled afterwards via
the acoustic velocity in the neck of the Helmholtz damper.

Figure 1. Thermoacoustic model consisting of a combustion chamber (left) coupled to a Helmholtz damper (right).

2.1 Dynamics of the Combustion Chamber

The variables pressure, velocity and heat release rate are decomposed into a mean part and a fluctuating part (also referred
to as acoustic part). The mean part is assumed to be spatially constant and the fluctuating part is assumed to be small
compared to the mean part. We assume no thermal conductivity to the surrounding, small Mach-numbers and viscous
stresses to be negligible for low frequency acoustic perturbations. The acoustic pressure p′ in the cavity of a combustion
chamber with a fluctuating heat release rate q′ is described by the forced acoustic wave equation [6]

(
∂2

∂t2
− c̄2∇2

)
p′ = (γ − 1)

∂

∂t
q′, (2)
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where c̄ is the average speed of sound and γ is the specific heat ratio. The boundary condition at the location of the
Helmholtz damper imposes a acoustic impedance which couples the acoustic pressure to the acoustic velocity. The
boundary condition away from the Helmholtz damper is either open (reflecting outlet) or closed (reflecting inlet). The
open boundary is zeroing the pressure fluctuation (Dirichlet condition) and at the closed boundary the normal velocity
vanishes (von-Neumann condition).

The acoustic pressure distribution is spanned on a complete orthonormal basis as p′(x, t) =
∑∞
i=0 ηi(t)Ψi(x), where

the basis functions Ψi are defined by the acoustic eigenmodes of the system without acoustic sources. As an approx-
imation, only the eigenmode with the largest growth rate is considered and all other eigenmodes are neglected, which
corresponds to a Galerkin approach. The eigenfunction Ψ of the considered eigenmode is assumed to be real. This
assumption is valid if the thermoacoustic coupling is weak and the surface where the damper with complex impedance
is applied is small compared to the overall boundary. The interaction between the fluctuating heat release rate and the
acoustic pressure as well as the acoustic flux across the control surface excluding the damper is captured by introducing a
linear damping term κ0. For negative values of κ0, the constructive interaction is larger than the energy dissipation which
leads to thermoacoustic instability of the undamped system (see Rayleigh Criterion (1)). The acoustic mode is therefore
described by the linear damped oscillator

d2

dt2
η + κ0

d
dt
η + ω2η = 0, (3)

where η(t) is the participation factor of the Galerkin approach and ω is the eigenfrequency of the considered acoustic
mode. The boundary condition at the location of the Helmholtz damper is described by the acoustic impedance which
couples the acoustic pressure to the acoustic velocity perpendicular to the surrounding surface. Including additional
nonlinear terms according to [10], we obtain a nonlinear forced oscillator as

d2

dt2
η +

(
κ0 + κ1η

2 + κ2

(
d
dt
η

)2
)

d
dt
η + ω2η = −εχ d

dt
u′. (4)

The Van-der-Pol type terms with positive parameters κ1 and κ2 ensures boundedness of η for bounded acoustic velocities
u′. The parameter χ > 0 depends on fluid properties whereas ε > 0 depends on the location of the Helmholtz damper
w.r.t. the acoustic mode and therefore can be seen as the coupling efficiency of the two subsystems.

2.2 Dynamics of the Helmholtz Damper

A Helmholtz damper has a shape which is similar to a bottle. If the dimensions are small compared to the acoustic
wavelength and the cross-sectional area of the bottle is much larger than the cross-sectional area of the neck, then the
pressure perturbation inside the bottle can be assumed to be uniform. Therefore, the gas in the body acts as an acoustic
spring whereas the gas in the neck acts as an acoustic mass. The damping of the resonator can be increased by a continuous
volume flow Q̄ injected into the bottle.

Assuming the flow to be uniform and frictionless, the dynamics of the acoustic velocity in the neck of the damper can
be derived using the unsteady Bernoulli equation between a point at the entrance and a point at the exit of the neck as

d2

dt2
u′ + ζ|ū+ u′| d

dt
u′ + ω2

du
′ =

ω2
d

χ

d
dt
η, (5)

where ū is the mean flow due to the continuous volume flow Q̄, ωd is the eigenfrequency of the damper and ζ > 0 is
a damping efficiency. Depending on the sign of the velocity in the neck u = ū + u′, a jet on either side of the neck is
formed. The pressure inside the quasi-stationary jet is assumed to be constant and equal to the external pressure, which
is reasonable for small Mach-numbers. The Helmholtz damper can be seen as a vibration absorber with a non-smooth
damping term.

2.3 Coupled Dynamics

The two subsystems described by (4) and (5) are coupled and the time as well as the states and parameters are normalized
in order to write the model equations in a more manageable way. The time is normalised by the inverse natural frequency
of the combustor as τ = ωt. Therefore, the time derivative becomes d

dt = ω d
dτ . We define ˙( ) as the derivative w.r.t.

the dimensionless time τ . The acoustic velocity is normalized as ξ = χ
ωu and new parameters are defined as q = κ0

ω ,
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c1 = κ1

ω > 0, c2 = ωκ2 > 0, d = ζū
ω > 0, δ = ζ

χ > 0. Additionally, only the ideal case of a perfectly tuned vibration
absorber is considered, i.e. ω = ωd. Therefore, the coupled dynamics of (4) and (5) is obtained as

η̈ + (q + c1η
2 + c2η̇

2)η̇ + η =−εξ̇, (6)

ξ̈ + |d+ δξ|ξ̇ + ξ = η̇. (7)

From the viewpoint of multi-body dynamics, the dynamics of the acoustic pressure in the combustion chamber η(t) is
described by a mass-spring system with a Van der Pol-type damping (6) and the dynamics of normalized acoustic velocity
in the neck of the Helmholtz damper ξ(t) can be seen as a tuned vibration absorber with non-smooth damping (7). The
coupling of the two systems is on velocity level with non-vanishing gyroscopic terms.

3 Stability Analysis

The coupled dynamics (6)-(7) has only one equilibrium, which is located at the origin. The stability of the equilibrium
point is determined using Lyapunov’s indirect method (see [5]). We introduce a new state vector x ∈ R4 as x =(
x1 x2 x3 x4

)T
:=
(
η η̇ ξ ξ̇

)T
. The linearization of the dynamics (6)-(7) in the new coordinate x is obtained

as ẋ = Ax with

A =




0 1 0 0
−1 −q 0 −ε
0 0 0 1
0 1 −1 −d


 . (8)

The Hurwitz criterion gives us the following two conditions for which all eigenvalues of A have negative real part

µ := ε+ dq> 0, (9)
ν := d+ q> 0. (10)

In the absence of thermoacoustic instability, i.e. q > 0, the conditions (9)-(10) are always fulfilled since d > 0, ε > 0
and, thus, the equilibrium is asymptotically stable. The first condition (9) gives a lower bound for the coupling efficiency
ε. Interestingly, if condition (9) is violated, then an increase of the linear damping d of the Helmholtz resonator does not
stabilize the system. The second condition (10) states that the linear damping of the Helmholtz damper d must be larger
than the linear growth rate q of the considered acoustic mode.

For small values of q, the eigenvalues appear as two complex conjugated pairs. According to conditions (9)-(10) we
can define three regions:

Region I: (µ > 0 ∧ ν > 0): both pairs of eigenvalues have negative real part and the equilibrium is stable,
Region II: (µ < 0): one pair of eigenvalues has negative real part, while the other pair has positive real part,
Region III: (µ > 0 ∧ ν < 0): both pairs of eigenvalues have positive real part.

By continuously decreasing q we change from Region I to either Region II if d2 > ε or to Region III if d2 < ε, i.e.
depending on which condition is more restrictive. The latter transition is structurally unstable because it does not appear
for an infinitesimal disturbance of the tuning of the Helmholtz damper. Therefore, we consider only transitions from
Region I to Region II under the influence of the parameter µ, while assuming that the condition (10) is always fulfilled.
At µ = 0, one pair of complex conjugated eigenvalues cross the imaginary axis which gives rise to a Hopf bifurcation.

In order to determine the stability of the equilibrium it is sufficient to investigate the Jacobian matrix. Yet, depending
on the nonlinearities, the attractivity property is only valid in a (possibly arbitrarily small) neighborhood of the equilib-
rium. The region of attraction, or at least a conservative estimate, can be found using Lyapunov’s direct method (see [5]).
Consider the Lyapunov function

V1(x) =
1

2
(η2 + η̇2) +

1

2
ε(ξ2 + ξ̇2), (11)

which is positive definite, since ε > 0. The time derivative of (11), along solution curves of the coupled dynamics (6)-(7),
is obtained as

V̇1(x) = −(q + c1η
2 + c2η̇

2)η̇2 − εθ|d+ δξ|ξ̇2. (12)
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For q > 0 the derivative V̇1 is negative semi-definite, which proves stability of the equilibrium for q > 0 as we have seen
in the eigenvalue analysis. The largest invariant set inside V̇1 = 0 is the equilibrium itself and, according to LaSalle’s
invariance principle [5], the equilibrium is globally asymptotically stable for q > 0. The Lyapunov function V1(x) is
inconclusive for the case q < 0. We proceed by assuming a linear Helmholtz damper and consider the positive definite
Lyapunov function and the corresponding time derivative given by

V2(x) =
1

2

(
(qξ + η)2 + (qξ̇ + η̇)2

)
+

1

2
µ
(
ξ2 + ξ̇2

)
, (13)

V̇2(x) = −(c1η
2 + c2η̇

2)
(q

2
ξ̇ + η̇

)2

−
(
νµ−

(q
2

)2

(c1η
2 + c2η̇

2)

)
ξ̇2. (14)

The derivative V̇2 is negative semidefinite for µ > 0 and ν > 0 inside the cylinder defined by 4νµ
q2 ≥ c1η

2 + c2η̇
2. Only

local asymptotic stability can be shown using LaSalle’s invariance principle. A global result is found using the additional
assumption c = c1 = c2. Hereto, we add a positive semidefinite term to V2(x) and obtain

V3(x) = V2(x) +
1

4

(
−qc
ε

)
(η2 + η̇2)2, (15)

V̇3(x) = −νµξ̇2 − c

ε
(µ− qν) (η2 + η̇2)η̇2 −

(
−qc

2

ε

)
(η2 + η̇2)2η̇2. (16)

Using this Lyapunov function and the invariance principle, global asymptotic stability of the equilibrium of the coupled
system (6)-(7) with δ = 0 and q < 0 is proven for µ ≥ 0 and ν > 0 under the assumption c = c1 = c2.

4 Bifurcation Analysis

The equilibrium of the system (6)-(7) is asymptotically stable for µ > 0 and ν > 0. At µ = 0 one pair of eigenvalues
cross the imaginary axis and the solutions remain bounded due to the Van-der-Pol type damping terms in the combustion
dynamics (6). This gives rise to a supercritical Hopf bifurcation under the influence of the bifurcation parameter µ. The
bifurcation can be approximated using common tools from nonlinear dynamics such as the center manifold reduction, the
method of multiple scales [7] or the method of averaging [13, 14]. Due to the non-smooth damping terms, the most useful
results can be obtained with the method of averaging, which is shown in the following.

The dynamics (6)-(7) is rewritten as

η̈ − q
(
dξ̇ − η̇

)
+ η =−µξ̇ − (c1η

2 + c2η̇
2)η̇, (17)

ξ̈ + dξ̇ − η̇ + ξ = −(|d+ δξ| − d)ξ̇, (18)

where µ = ε + dq is chosen as the bifurcation parameter. The stationary solution of (17)-(18) for vanishing right-hand
sides fulfills η = dξ and is given by

η = A cos t+B sin t, (19)
ξ = C cos t+D sin t, (20)

with constant coefficients A = dC and B = dD.
Since the solutions η and ξ near the bifurcation are small, also the right-hand sides of (17)-(18) are small near the

bifurcation, but do not exactly fulfill η = dξ. According to the method of averaging, we assume that the solution of (17)-
(18) can still be written in the form (19)-(20) for small µ, but with slowly time-varying coefficients A(t), B(t), C(t) and
D(t). For time varying coefficients, the set of equations (19)-(20) define a variable transformation. Due to the slow time
dependence, the terms which have a vanishing average over a period time T = 2π are omitted. After several intermediate
steps, the transformed dynamics is obtained as

Ȧ =
1

2
(dq − µ)C − 1

2

(
q +

c1 + 3c2
4

(A2 +B2)

)
A, (21)

Ḃ =
1

2
(dq − µ)D − 1

2

(
q +

c1 + 3c2
4

(A2 +B2)

)
B, (22)

Ċ = −1

2
d(1 + g(a))C +

1

2
A, (23)

Ḋ = −1

2
d(1 + g(a))D +

1

2
B, (24)

M. Baumann, R. I. Leine, N. Noiray and B. Schuermans 861



where

g(a) =

{
2
π

(√
a2−1(1+2a2)

3a2 − arccos 1
|a|

)
for |a| > 1,

0 for |a| ≤ 1,
(25)

a =
δ

d

√
C2 +D2. (26)

According to the transformation (19)-(20), the amplitudes of oscillation in the original coordinates ξ and η are given by

rξ =
√
C2 +D2, (27)

rη =
√
A2 +B2. (28)

The dynamics (21)-(24) has an equilibrium at the origin, which is stable for µ ≥ 0 and unstable otherwise, which
corresponds to results obtained from the eigenvalue analysis. The nontrivial equilibria of (21)-(24) are given by the
implicit equations

r2
ξ = − 4(µ+ dqg(a))

d3(c1 + 3c2)(1 + g(a))3
, (29)

r2
η = − 4(µ+ dqg(a))

d(c1 + 3c2)(1 + g(a))
= d2(1 + g(a))2r2

ξ . (30)

For a linear Helmholtz damper, i.e. δ = 0, we have a = 0 and g(a) = 0 according to (25)-(26) and the nontrivial equilibria
are obtained as

r2
ξ = − 4µ

d3(c1 + 3c2)
, (31)

r2
η = − 4µ

d(c1 + 3c2)
. (32)

The equilibria (31)-(32) exist only for µ < 0. One of the four eigenvalues is at zero and the others are in the left open half
complex plane for µ < 0. The zero eigenvalue expresses the ‘freedom of phase’ because the system is autonomous. We
note that for a linear Helmholtz damper a supercritical Hopf bifurcation occurs. The stable periodic solution branching off
at µ = 0 corresponds to a harmonic oscillation in the original coordinates η and ξ with unit frequency and an amplitude
given by (31)-(32).

In order to find the periodic solutions for a nonlinear Helmholtz damper, we rewrite (29) with (26) and (27) as

a2 − k2
1

k2 + g(a)

(1 + g(a))3
= 0, (33)

where

k1 =
2δ

d2

√
− q

(c1 + 3c2)
, (34)

k2 =
µ

dq
. (35)

We consider only negative q, because for q > 0 no periodic solutions exist as shown in Section 3. Therefore, k1 is always
positive and k2 is positive for negative µ and vice versa. The roots of (33) correspond to harmonic oscillations of the
states η and ξ with a unit frequency and an amplitude given by

rξ =
d

δ
a, (36)

rη =
d2

δ
(1 + g(a))a. (37)

Figure 2 shows the scaled amplitude of oscillation of ξ as a function of the new bifurcation parameter k2 for different
values of k1. The black lines correspond to stable periodic solutions, whereas the grey lines correspond to unstable
periodic solutions. According to (35), the equilibrium is unstable for k2 > 0 and stable otherwise. The parameter k1,
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Figure 2. Stable (black) and unstable (grey) periodic solutions for different values of k1 and k2. Depicted is the amplitude of oscillation
of ξ, scaled by the factor δ

d
.

defined by (34), captures the linear and nonlinear damping in the system and, most importantly, it is proportional to δ.
Therefore, k1 captures the nonlinearity of the Helmholtz damper. For a weakly nonlinear Helmholtz damper, i.e. k1 < 5.2,
the system experiences only a Hopf bifurcation under the influence of the parameter k2. For k1 > 5.2 two additional fold
bifurcations occur and we have coexistence of stable limit sets. Keeping k1 fixed, e.g. at k1 = 6, and slowly sweeping
k2 up and down, the solution follows the stable branches and ‘jump’ at the fold bifurcations from one periodic solution to
the other, which leads to a hysteresis effect. For k1 > 6.2 the ‘elbow’ in Figure 2 even reaches inside the region where
k2 < 0 and the equilibrium is only locally asymptotically stable.

At Section (1) (left dotted line in Figure 2), there exist a stable equilibrium without coexisting periodic solutions for
small k1, which is depicted in Figure 3 labelled with (1a). For a highly nonlinear Helmholtz damper there are additionally
a stable and an unstable periodic solution, which is shown in Figure 2 labelled with (1b). At Section (2) (right dotted line
in Figure 2), the equilibrium is unstable and it is either surrounded by one stable periodic solution (k1 small), depicted in
Figure 3 labelled with (2a), or it coexists with three periodic solutions with alternating stability (k1 large), which is shown
in Figure 3 labelled with (2b).

The location of the bifurcations in the k1-k2-plane is depicted in Figure 5. The dashed line shows the location of
the supercritical Hopf bifurcation and the solid lines show at which location the fold bifurcations occur. The two fold
bifurcations meet at (k2, k1) = (0.051, 5.2). At this point, the fold bifurcations cancel each other out and we have a cusp
catastrophe, which is a bifurcation of codimension 2. One fold bifurcation tends to infinity for k2 → 0+. This can be seen
be expanding (33) in a Taylor series around a = 1 and omitting terms of higher order than O

(
(a− 1)2

)
, which yields

a2 − k2
1k2 = 0. The escaping fold bifurcation asymptotically approaches k1 =

√
1
k2

in the k1-k2-plane.

As it shown in Figure 5, the parameter space is partitioned into four regions (1a), (1b), (2a) and (2b). The periodic
solutions occurring in each region are depicted in Figure 3. For a weakly nonlinear Helmholtz resonator, i.e. k1 < 5.2, we
have only a Hopf bifurcation and no fold bifurcations. The stable equilibrium has possibly coexisting periodic solutions
if k1 > 6.2.

The limit sets of the original coupled dynamics (6)-(7) are computed using computer simulations for four different
parameter sets and they are depicted in Figure 4 in the scaled ξ-ξ̇-plane. The stable (black) and unstable (grey) limit sets
are drawn with solid lines and the dotted lines show the limit sets obtained using the method of averaging. The system
parameters q = −0.1, d = 0.3, c1 = 0.001, and c2 = 0 are the same in all four cases and the parameters δ and ε are
chosen such that the parameters k1 and k2 are k1 = 5, k2 = −0.02 (corresponding to case (1a)) for the top left plot,
k1 = 8, k2 = −0.02 (corresponding to case (1b)) for the top right plot, k1 = 8, k2 = 0.04 (corresponding to case (2a))
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Figure 3. The stable equilibrium either has no coexisting periodic solutions (top left) or it is surrounded by a stable and an unstable
periodic solution (top right). The unstable equilibrium is surrounded by either one stable periodic solution (bottom left) or it coexists
with three periodic solutions with alternating stability (bottom right).

for the bottom left plot and k1 = 8, k2 = 0.01 (corresponding to case (2b)) for the bottom right plot in Figure 4. The
comparison shows that the averaging results are valid as long as the amplitudes are slowly changing.

5 Conclusions

The coupled model of a combustion chamber with a perfectly tuned Helmholtz damper is derived. Only one acoustic mode
in the cavity of the combustion chamber is considered. The dynamics of the participation factor of the Galerkin approach
is described by a mass-spring system. The linear damping is positive in the presence of destructive interaction between
the flame and the considered acoustic eigenmode. The nonlinear damping terms ensure boundedness of the solutions. The
Helmholtz damper can be seen as a tuned acoustic vibration absorber with non-smooth damping. The coupling of the two
subsystems include non-vanishing gyroscopic terms which makes it difficult to find a simple mechanical analogon.

In the absence of thermoacoustic instability the quiescent state is globally asymptotically stable. In the more interest-
ing case of thermoacoustic instability the use of a Helmholtz damper is necessary. The linear damping of the Helmholtz
damper is assumed to be sufficiently large and the coupling efficiency and the nonlinearity of the Helmholtz damper are
varied. For a linear or weakly nonlinear Helmholtz damper, asymptotic stability can still be achieved. Decreasing the
coupling efficiency a supercritical Hopf bifurcation occurs and the stable periodic solution branching off at this point
represent a self-sustained oscillation. The acoustic pressure in the combustion chamber and the acoustic velocity in the
neck of the Helmholtz damper oscillate at the same frequency and with a vanishing phase shift. In contrast to this, the
bifurcation analysis for a highly nonlinear Helmholtz damper shows a more rich dynamics than expected, considering
that the investigated model describes the ideal case with perfectly tuned eigenfrequencies of the subsystems. Increasing
the parameter capturing the nonlinearity of the Helmholtz damper additional fold bifurcations can occur which leads to
additional periodic solutions. An important result is that the stable equilibrium will eventually become only locally attrac-
tive due to coexisting limit cycles. Additionally, the presence of coexisting stable limit sets explains the hysteresis-effect
observed in experiments where a system parameter is changed quasi-stationary.

The six system parameters have been reduced to only two relevant parameters. The bifurcation branches of the Hopf
bifurcation and the fold bifurcations as a function of these new parameters define a partition of the parameter space with
four regions of which every region has a different number of limit sets. A cusp catastrophe happens where the two
branches of the fold bifurcations meet.
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Figure 4. Stable (black) and unstable (grey) limit sets in the scaled ξ-ξ̇-plane obtained using simulations of the full non-smooth coupled
system (solid) and using the method of averaging (dotted) for different values of k1 and k2: top left: k1 = 5, k2 = −0.02 (case (1a));
top right: k1 = 8, k2 = −0.02 (case (1b)); bottom left: k1 = 8, k2 = 0.04 (case (2a)); bottom right: k1 = 8, k2 = 0.01 (case (2b)).

Figure 5. Hopf bifurcation (dashed) and fold bifurcations (solid) in the k1-k2-plane. A cusp catastrophe occurs at (k2, k1) =

(0.051, 5.2).
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