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A novel Lyapunov-like method for the non-autonomous bouncig ball system
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Summary The non-autonomous bouncing ball system consists of a pmissm in a constant gravitational fielg, which bounces
inelastically on a flat vibrating table. The presented Lyapulike method is set up for non-autonomous measure diftél inclusions
and constructs a decreasing step funciidrabove the oscillating Lyapunov functidn. Furthermore, it is proven that the attractivity
of the equilibrium of the bouncing ball system is symptoticia conservative estimate of the finite attraction timeveiyi

Aim

The main result of the paper is a novel Lyapunov-like methardttie stability analysis of a class of non-autonomous
measure differential inclusions. Systems which exposeodisnuities in the state and/or vector field can be desdriitye
measure differential inclusions, a concept which dessrthe continuous dynamics as well as the impulsive dynamics
with a single statement in terms of an inclusion and is abléetrribe accumulation phenomena with impact through an
integration process. A Lyapunov-like technique is presént prove global uniform attractive stability of the edfurila

of non-autonomous measure differential inclusions in #rese of comparison functions. This theorem allows, in esttr

to the classical direct method of Lyapunov, where the fumcli is required to be non-increasing, to choose among a
more general class of Lyapunov candidate functions, whiaf atso temporarily increase along solution curves, erg. fo
the choice of Lyapunov functions with a clear physical megnin a brief communication of the authors [1], a sufficient
condition for global symptotic attractive stability of tlegjuilibrium of the bouncing ball system with a harmonically
vibrating table is proved by using this method with a simpiergy-like Lyapunov function and an upper-bound for the
attraction time is given. In this paper, the presented Lyaptlike method in [1] is generalized to the stability arsady

of a class of measure differential inclusions and a Lyapuaockinique to prove the conditional global uniform symptoti
attractive stability of the equilibrium of the bouncing beystem with an arbitrary motion of the table (see also [2]).

The bouncing ball system

A standard problem of chaotic dynamics is a ball in a congjeatitational field bouncing inelastically on a flat vibragi
table as depicted in Figure 1. We consider the vertical mareajt) € C> of the table to be an analytic kinematic excita-
tion. The vertical position and the velocity of the ball adeleessed by the absolute coordingte andu(t), respectively.
We describe the motion of the bouncing ball system with thtestectoer(¢) expressed in relative coordinates

1 (t) gN(t)] [q(t) - e(t)}
t) = = = . 1
2(t) [xg(t)} [WN(t) ult) — é(t)] (1)
such that the equilibrium position is located at the origin= 0. The non-impulsive dynamics of the ball is described by
mi(t) = —mg+ An(t), 2)

wheremg is the weight of the ball andy (¢) is the contact force between the ball and the table. The cbfutece is non-
negative because the ball and the table can only push on #amtimthe absence of adhesion. The constitutive behaviour
of the unilateral contact forcey is therefore described by Signorini’'s law as an inequaldsnplementarity condition
between the non-negative dual variabjgsand ;. The impulsive dynamics is described by the impact equation

m (u'(t) —u”(t)) = An(t), ®3)

whereA y(t) is the contact impulse which causes an instantaneous tejorip. Naturally, the contact impulse vanishes
if the contact is open, i.e. foyn (t) > 0, it holds thatAx () = 0. For time-instants for which the contact is closed
(gn(t) = 0) we will consider a Newton-type of restitution law expresbg the inequality complementarity condition

gn(@)=0: &n(t) >0, An(t) >0, En(H)An(t) =0, (4)

mc(t)‘ g\

(b)
Figure 1: The bouncing ball system (a) and the equivalerefbsystem (b).
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whereéy (t) = v (t) + (t)vy () ande(t) € C° is Newton's coefficient of restitution with the restriction
0<e(t)<e<1 Vt, (5)

which we consider to be time-dependent. The inequality dementarity condition (4) implies that a positive contant i
pulseA y(¢) > 0 can only be transmitted by the contacgif (t) = 0, i.e. if Newton’s restitution lawy; (t) = —e(t)vy (t)
holds. Similarly, iféx () > 0, then the contact impulsky (¢) must vanish. Using the impact equation (3) together with
An(t) = 0, we infer that there is no velocity jump () = u~(¢)). The relative velocityyy (¢) therefore also remains
continuous angy (t) > 0 therefore implies that the momentarily closed contact epkn ¢/ (t) > 0).

In the following, the kinematic excitatiof(t) of the table will be assumed to be analytic and to satisfy thends

Amin S e(t) S Amax Vt . (6)

The velocity and the acceleration of the table are contisamal given by:(¢) andé(t), respectively. We say that the ball is
in persistent contact with the table at timyef g (¢) = 0 on some time-intervdty, ¢*], and it therefore holds thaty (¢) =
An(t) = 0fort € (to,t*) fromwhich we retrieve the contact forée; (¢) during persistent contacky (t) = mé(t) +mag.
Detachment occurs at= t* if 45 () = 0 can no longer be fulfilled, i.e. il2é(t) + mg < 0. We conclude that if the

equilibrium condition: ayi, +9>0 @)

holds, then a ball which is initially on the table will remain the table for all future times. We will refer to this steady
state behaviour as the equilibrium position of the ball.

Throughout the paper, illustrations are given based on mdwic excitatiore(t) = —Asin (Qt) with the amplitude4
and the angular frequengy. For harmonic excitation it holds thatamin, = amax = AQ?, and we will use the ratio
AQ?

=5 which we call the relative acceleration of the table. Femthore, the equilibrium condition (7) in the case of

harmonic excitation reads gs- AQ? > 0 and can be expressed using the relative acceleratier<as =: .

The equation of motion (2) and the impact equation (3) togret¥ith the impact law (4) describe the motion of the ball
at every time-instant. We use the concept of measure diffiaténclusions to describe the impulsive and non-impusi
dynamics in a unified way. The stat€t) of the dynamical system is interpreted as the result of eagnation process
over the differential measurecdi.e.z*(t) = = (to) + f[tmt] dz for t > to with dx = &dt + (z™ — £ ~) dy. The inte-
gration process takes the left limit™ (¢y) of the initial value to the right limitc* (¢) of the final value over the compact
interval [to, t]. The differential measurexdcontains a densitg:(¢) with respect to the differential Lebesgue measture d
and contains a density™ — =~ with respect to the atomic measurg d’he Lebesgue pait dt describes the continuous
variation ofz(¢). The atomic parfz™ — x~)dn is used to describe discontinuities:rit). The upper and lower limits
of x(t) at impulsive time-instants, are denoted by (¢,,) := limy ¢, (t) andz ™~ (¢,,) := limye, x(t), respectively.
Note that/,(-)dn = 0 if the functionz(t) is absolutely continuous oh If dx: is integrated over a singletdft, }, then
f{tn}(-)dt =0 andf{tn} dx = ™ (t,)—x (t,). The gap function; (t) = g (¢) is an absolutely continuous function in
time and its differential measure only consists of a Lebesgart: d:; () = z2(¢)dt. The relative velocity:s (t) = v (t)

is considered to be a function of special locally boundedatian which is discontinuous at collision time-instaints
The equations (2) and (3) can be combined in a single equdlityeasures gy (1) = — (g + &(t)) dt + L dPy (t), where
dPy(t) = An(t)dt + A (t)dn contains the total contact percussion of the forces/ingsuisat act on the ball. The consti-
tutive behaviour of the total contact percussion for a dasmtact y (¢) = 0) can be expressed in the same way as in (4)

Ry gN =&nv =0,
0 else,

fN(t) > O, dPN(t) > O, gN(t)dPN(t) = O, = —dPN (S NT)C(!]N)(gN) = { (8)

whereTic(gn) is the tangent cone on the dét= {gy € R | gv > 0} of admissible positions. The dynamics of the
bouncing ball system can therefore be given in terms of amdonomous measure differential inclusion

Ith
_ (g + e(t)) dt + %NT)C(QN)(gN)

with Ex (t) = o5 (t) + e(t)x5 (t). The system (9) has the admissible det {x € R? | 71 € K} = {x € R? | 21 > 0}.
Due to the choice of the state(t) in (1), both the setsd and K are time-independent. The non-autonomicity of the
system (9) is caused by explicit time-dependence of the @ixteleratiof(¢). In this respect, also note the equivalence
with the forced system depicted in Figure 1(b).

We will use the notatiop(t, to, o) for a solution curver(t) with the initial conditionz~(¢t9) = @¢. This solution is
generally not unique in forward time. In [3] it has been proteat the solution of (9) is unique in forward time if the
external excitatiore(t) of the table is an analytic function. For this reason we asstimte(t) is analytic. Note that
the solutions of the bouncing ball system are generally nague in backward time. The bouncing ball system (9) is
consistent in the sense that an admissible initial conditip< .4 leads to an admissible solution curgét, to, x¢) € A

for all t > ty. We therefore have existence and uniqueness of solutidosviard time.

da € } = dr(t, ), (9)
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Figure 2: Sinusoidal excitatioa(t) = —Asin (2t): Trajectory of the bouncing ball system (a) and the corredpm Lyapunov
function V' and the step functiofl’ (b) for xk = 0.2 < kguas, € = 0.8, to = 0s, gn(to) = 0m, v (to) = 8 el

Lyapunov stability of the equilibrium

In this section, a Lyapunov-like method for the stabilityabsis of non-autonomous measure differential inclusioins
the form (9) is introduced. A point* is called an equilibrium point of@(¢) € dI'(¢, ) if there exists a solution curve
such thatp(t, to, *) = x*,Vt > to. In contrast to smooth dynamical systems (i.e. ODE’s withpsthitz constant),
the attractivity of an equilibrium point of a hon-smooth &y is not necessarily asymptotic as it might be reached in
finite time. We will define global uniform attractive stabjliby making use of comparison functions as given in [4]
and briefly recall the definitions. A continuous functien [0,a) — [0, 00) is said to belong to class if it is strictly
increasing andy(0) = 0. It is said to belong to clas§, if a = co anda(r) — oo asr — oco. A continuous function

B :]0,a) x [0,00) — [0,00) is said to belong to clas§ L if, for each fixeds, the mapping3(r, s) belongs to clas&

with respect ta- and, for each fixed, the mapping(r, s) is decreasing with respect tcandS(r, s) — 0 ass — oo.

Definition 1 (Global Uniform Attractive Stability)
An equilibrium pointx* of (9) is called globally uniformly attractively stable Hi¢re exists a clagsL functiong such
that each solution curve(-,to, o) for xo € A satisfies

llo(t, to, o) — x*|| < B(|Jxo — x*||,t — to), foralmostallt > ty.

Stability properties are usually defined in terms of a Lyapua+d argument or, equivalently, by using comparison func-
tions, see Appendix C.6 in [4]. The proofin [4], that the drerization with comparison functions implies the deitimit

is given for ordinary differential equations, but the prdo&s not use a solution concept and is therefore immedizaéity

for measure differential inclusions. The proof that themigéin also implies the characterization is much more téchn
cal. Instead, we allow ourselves to take the characteoizatith comparison functions aefinition We now present a
Lyapunov-like technique to prove global uniform attraetatability in the sense of Definition 1. L&t denote the initial
time-instant and:~ (¢o) = x¢ the initial condition. Doing so, we allow for a possible intgive event at the initial time-
instant. Let{¢,,} denote the sequence of time-instafis t-, - - - , ¢~ } for which the solution curve(t) := (¢, to, o)

is discontinuous fot > t. The solutionz(t) has an accumulation pointif, is finite.

Theorem 1
Letz* = 0 be an equilibrium point of (9). If there exists a positive déé functionV : R* — RI U {+oc}, being
bounded on the admissible s&tof (9), such that the step functidfi (t) along solution curves of the system, defined by

SUPyety,y) V(27 (1) ¢ € [to, t]
W(it)=<S V(™ (th1)) t € (th-1,tn],n>1, (20)
0 t> 1t

has the following properties

W(t1) < o(V(zo)) for some clas& functiono,

W (t) is decreasing in time,

W (t) satisfies/ (x(t)) < W(t) on each interval € (t,,—1,tn), n > 1,
W (t) converges to zero far— t, i.e.lim;,,_ W (t) =0,

then the equilibriunx* is globally uniformly attractively stable.

Proof: If the functionV is positive definite and bounded ot then there exist functiong, andas of classK, such that
ar(flzl]) < V(x) < ax(lz])  VoeA (11)
The functionW (¢) therefore satisfies the inequality

Wi(to) = W(t1) < o(V(o)) < o(az(lzoll)). (12)
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Define the comparison function

W(t1) to <t <t,
Bw (W (t1),t — to) = { W= Wlnt) (4 g ) 4 W(tyo1) tnog <t <t (13)
0 t> oo,

where the second case holds forrall> 1. Clearly, Sy is a continuous function in both arguments. For fixedt,, the
mappingSw (W (t1),t — to) is upper-bounded by (W (t1),t — to) < W (t1), i.e. a classC function with respect to
W (t1). For fixedW (¢, ), the mappingw (W (1), t—to) is non-increasing with respectte-to andgy (W (t1),t—to) —
0 ast — t~. Hence By is upper-bounded by a claks function Sy, (W (t1),t—to) = Bw (W (t1), t—to)+ W (t1)eto~t.
It therefore holds that _

lz(®)] < ait (B (o(az(lloll)), t — o)) = Bllzoll, t — to), (14)
for almost allt > to, where B

Bla,t) = a1 (Bw (0 (az(2))) 1)

is a clasgCL function, which concludes the proof. O

We will use Theorem 1 to prove a sufficient condition for thelgll uniform attractive stability of the equilibrium of the
bouncing ball system, see Proposition 1. Subsequently,ilvprave that the attractivity is symptotic in Propositi@n

Proposition 1 (Global uniform attractive stability)
Let the bouncing ball system (9) satisfy the bounds (63@hand (5) ore(t) with g + amin > 0. If it holds that

o g + Gmax )

o= <1, (15)
g+ Gmin

then the equilibriunx* = 0 of the bouncing ball system is globally uniformly attraety stable.

Proof: Consider the Lyapunov candidate function

0 gNEIC,

(16)
oo else

Viz)= %553 + 071 + V(1) = %712\7 + 09~ + Pic(gn),  with ¥ic(gn) = {
where¥x (g ) is the indicator function on the admissible &&t= R andg > 0 is (for the moment) an arbitrary positive
number. The functiorV is an energy-like Lyapunov function in terms of the relatbaordinatesyy and~y. More
specifically, if we take) = g, it is the total mechanical energy per unit mass of the edgivdorced system depicted in
Figure 1(b). The indicator functiodix(gx) plays the role of a potential for the contact force and is ssag/ to make
V' a positive definite function. The bouncing ball system issistent in the sense that solutions remain in the admissible
set.A for admissible initial conditions. It therefore holds that(z1(¢)) = 0 for all ¢ > ¢, along solution curves of the
system. With some abuse of notation we defif{¢) = V' (z(¢)) to be the Lyapunov candidate function evaluated along a
solution curver(t). The differential measure 6f(t) is given by &/ = Vdt+ (V+ — V) dn, becausé’ (¢) is a function
of special locally bounded variation because of its depeogenx. (¢). The functionV/ (¢) is discontinuous at collision
timest,, when the gap functiony (t,,) vanishes withyy (¢,) < 0. The jump height follows from the impact law (4), i.e.
VH(tn) = V(1) = 575 (00)? = 550 (t)? = =3 (1= <(ta)?) v (60)? < -
where the inequalities follow from the bound (5). This ingglithatl” decreases over impacts. The time derivative of
V(t),i.e.V = ynin + 0yv = —ywé + v (3 — g), depends explicitly on time and can be negative or positiahs
that the Lyapunov function may decrease or increase in legtwellisions. The maximal time derivati¥éis obtained if
é(t) = amin Whenyy > 0 andé(t) = amax Whenvyy < 0, see (6), which yields the conservative estimate

(1—2%) yy(tn)?* <0, (17)

N~

+0- 9> - (18)

: —Umin g-— Z 07 y max — Umin max min
v < Comin Q) A N
(_amax + g- g) N IN < Oa 2 2

We now choos@ such that the last term in (18) vanishes. This choiocg stfll satisfiesy > 0, i.e.

g=g+ o T tmn s (19)
Define the step functioV (¢) along solution curves:(t) = ¢(t,to, o) of the system as in (10). The value of

W (t1) = supse(yy,1,) V(2™ (t)) is the maximum oV (zo) andsup,¢ 4, .,y V (¢), where

t1

V(t):V+(t0)+/tV(t)dt§V*(to)—i—/ V(t)|dt, te(to,t1). (20)

t() tO
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Using VT (ty) < V™ (to) = V(xo), together with (18), (19) and (20), we can give an upper-ddan¥ (¢, ):
ty
Gmax — Gmin
W(t) < Viao) + 20 [ o) e 1)
to
The mtegraf |y (t)|dt is the total variation of the absolutely continuous funea; (¢) on the time-interval, ¢1]. On
each non- |mpuIS|ve|ntervayN(t) is concave, because it holds tljat(t) = 4w (t) = —g—é(¢) < 0 due to the inequality
—0 — Gmax S 'YN(t) S —0 — Gmin < 0. (22)
The total variation ofjn (¢) on[to, t1] has therefore the upper-bound
ty
/ [y (8)|dt < 2 [Itnatx] gn(t). (23)
to 0,t1

The gap functiogy (¢) is smooth or{tg, t1) and can be written as a Taylor seriegawith Lagrange form of the remainder
term asyn (t) = g (to) +va(to) (t — to) + 3w () (¢t — to)* for somei € (to, t). Using (22) we obtain the upper-bound

1
g (t) < gn(to) + v (to) (t = to) — 5 (9+ amin) (t = to)”. (24)
The functiongy (t) on [to, t1] is therefore bounded from above by
1§ (te)* _ 1 1

a t) < to) + < -V +
maxgn(t) < gnlto) + 5577 < GV(@o) + o —

Using (21), (23) and (25), the vali¥ (¢,) is upper-bounded by the following claks,, function with respect td (x):

g g + Gmin

The step functioV/ (¢) is a left-continuous piecewise constant function with diguities at the collision time-instants

t =t,. The step height i¥V (¢,+1) — W (t,) =V~ (t») — V~ (tn—1), which can be interpreted as the cumulative change
of V over one impact at the time-instant , and the subsequent non-impulsive interf¢gal 1, ¢,,), i.e.

W(tl) S <1 + Omax — Gmin + Omax — amin) V(CE()) (26)

tn
W(tni1) — W(tn) = / dV =V*t(t,—1) =V (tn-1) + Vdt. (27)
[tn 1, n)

tn—1

Using (18) and (19), we can give an upper-bound for the last te (27)

o Amax — Qmi .
Ve < et [ (o) (28)

t7171 2 t7171

Wheref:i1 |y (t)|dt is, again, the total variation @fy (¢) on[t,—1,t,]. The steps in equations (22) to (25), which have

been derived for the time-intervi, ¢1], are now repeated for the time-interyal_1, ¢,,] usinggn (t,—1) = 0:

/ " ®ld =2 max gy () < Dl o Eantao)? (29)

tn—1 [tn—1.ts] g+amin - g+amin

With the conservative estimates (17) and (29) the step h&gh of W (¢) is bounded from above by

W(t ) _ W(t ) < _l (1 _ 52) + Amax — Amin 52 _(t )2 (30)
n+1 n) = 2 2 g+ amin Yn\tn—-1)"-

We now recall the definition of from (15) and note thai < « < 1 under the conditions of (15). Substitution@fand
W(tn) =V~ (ty—1) = % (7&(75,1_1))2 in (30) gives an upper-bound for the discrete Mg, ) — W (t,1)

W(tn+l) S aW(tn)a (31)
which is a contraction map becauysé < 1 andW (¢) > 0V¢. This implieslim;_,;_ W (¢) = 0 as required in Theorem 1.

Lastly, we prove that the step functi(W(( ) forms an upper-bound for the Lyapunov functibiit). Without loss of
generality we considerec (t,_1,t,). Itholdsthai¥ (t) = V~ (t,—1) andV (t) = V‘(ltn,lﬂ—f[mH + dV and therefore

W)= V(t) =~ (VT (tn-1) =V (ts-1)) — / Vdt > %(1 —a)yy(ta-1)?. (32)

The inequality in (32) follows from using the same conseveag¢stimate as in (28) and we note ﬂfé:f,l |y (t)]dt <

ft |7N )|dt for which we have the upper-bound (29). Hence, the diffeedfic— V' can, using the definition af, be
bounded from below as stated in (32) which is non-negatigenoondition (15) meaning th&t (¢) — V' (¢) > 0Vt. All
the conditions of Theorem 1 are therefore satisfied whickiggthat the equilibriume* = 0 of the bouncing ball system
is globally uniformly attractively stable under conditi¢tb). O
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In the case 0é(t) = —Asin (Qt) it holds thatamax = —amin = AQ2. The condition (15) can be expressed in terms of
the relative acceleration = 42 asx < 1 iT=z = Kkauas. This is a sufficient condition for globally uniform attrae
stability of the equilibriume* = 0. In contrast to the classical direct method of Lyapunov,metike Lyapunov function

V is required to be non-increasing, the functibnmay decrease and increase on the intef¥al,, ¢, ), but cumula-
tively, it decreases on the intervals between two conseeirtipacts which is guaranteed by the conditiorR. kguas.
ThereforeV can be regarded as a Lyapunov function in a generalized.sense

We might be tempted to think that the functitiii can be looked upon as a discrete-time Lyapunov function.sérdte-
time Lyapunov function would be a (locally) positive defenfunction on the discrete state of the system at the impact
time, which decreases under iterations of the impact mage,Nmwever, that the functiol is constructed from the
time-evolution ofV along solution curves and is therefore not a function of tiserdte state. For this reason, it cannot
be regarded as a discrete-time Lyapunov function, althdwsghrely is related to a discrete-time Lyapunov functio mhef
impact map. But there is a more fundamental difference: aelis-time Lyapunov function only gives information on the
state at discrete time-instants and does not check whéthaotution converges to zero in-between impacts. In csftra
the step functiodV is an upper-bound fov” on thewholetime-domain.

Proposition 2 (Symptotic attractive stability)
If the conditions of Proposition 1 are met, then the equiilibrz* = 0 of (9) is globally symptotically attractive.

Proof: The proposition uses the same conditions as Propositiod tvarcan therefore make use of the results of the proof
of Proposition 1. Evaluation of (24) fer= ¢, with g (¢1) = 0 gives an inequality of the forith < f(¢; —¢t) for the time
lapset, — to > 0, wheref(¢; — to) is a concave quadratic function wit; (tg) > 0. The time lapse; — ¢ is therefore
bounded from above by the positive rootfdf, —to) = 0, see first termin (35). Similarly, evaluation of the inediyg24)

for the non-impulsive time-intervat,,, t,+1) with gn (t,) = gn (tnt1) = 0 andyy (t,) = —e(tn) vy (tn) gives
—2e(tn)yn (tn) _ 28\/2W (t,
tnat —tn < (tn) vy (tn) < € ( Jrl)7 (33)
g + @min g + @min

which is an upper-bound for the time lapse between two cartiseccollisions. The time-instamt,, is therefore bounded
from above by the suy, —¢1 = >~ (tn41 —t,) and (33). Recursive usage of (31) gives the upper-b®uifit, 1) <
a™W(t1) Vn > 1, where0 < « < 1 due to (15). The sum is therefore bounded from above by thenggi@ series

too — 11 < 2\/—8 Z VW (tht1) < ————V/W(t1) Z\/_ \/_ ——/W(t) o T (34)

g + Amin n—1 amln 1 — (2

The upper-bound for the time lapse between the initial tignend the accumulatlon point, is therefore given by

+ + 2 1
Y (to) + 1/ 7n(t0)* +2(9 + amin)gn (to) — 24/2¢ 2
too —tp < — Vi R\ C N (35)
0+ Amin g+ Qmin 1—az
with W (t;) bounded by (26) andhy(to)| < |yx(to)|. Hence, for any bounded initial conditiar, the solution
e(t, to, zo) converges in a finite time,, — ¢, to the equilibriumz* = 0. O

Propositions 1 and 2 consider the same system with idemtssalmptions. We can therefore summarize that if the condi-
tions of Proposition 1 are met, then the equilibriwrn= 0 of (9) is globally uniformly symptotically attractivelyale.

The numerical simulations in Figure 2 illustrate the théioed results fors < kquas. The trajectory of the ball shows
that the solution is attracted to the equilibrium in finitad through an infinite number of impacts. The Lyapunov furcti

V, evaluated along the solution curve, is oscillating butdarded from above by the decreasing step fundig).

Conclusions

The proposed Lyapunov technique for non-smooth dynamysaéms can be regarded as an extension of Lyapunov’s di-
rect method to Lyapunov functions which may also temporamitrease along solution curves. The merit of the proposed
Lyapunov-like method is that it allows to choose more ndtuyapunov candidate functions, e.g. energy-like funcsion
or other functions with a clear physical meaning. A suffitieondition for the global uniform symptotic attractive sta
bility of the equilibrium of the bouncing ball system with arbitrary motion of the table and a time-varying restitatio
coefficient is proved by using the presented Lyapunov-likérad.
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