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ABSTRACT
This paper reports and investigates paradoxical simula-

tion results of the bouncing ball system. Chaos-like motion of
the bouncing ball system with intermittent chattering (Zeno be-
haviour) is observed in simulations if the relative acceleration of
the table exceeds a critical value. However, one can show that
this is theoretically impossible. A detailed analysis is given by
looking at the backward and forward dynamics of grazing solu-
tions. It is shown in detail that a self-similar structure appears if
the relative acceleration of the table exceeds the critical value.

INTRODUCTION
The one-dimensional harmonically excited bouncing ball

system (see Fig. 1) has an appealing simplicity allowing for
closed form analysis and has an extremely rich dynamic be-
haviour despite this simplicity, explaining the huge interest in
literature for this intriguing problem, e.g. see [1–4] and also [6]
in which a high-bounce approximation is made. In previous
work [5] on stability properties of the bouncing ball problem,
a strange curiosity was encountered. The bouncing ball sys-
tem was simulated using a standard integration scheme for non-
smooth systems (Moreau’s timestepping scheme). An erratic os-
cillatory motion was obtained, which to all appearances looks as
a chaotic attractor, Fig. 2. The motion irregularly visits an accu-
mulation point (chattering) after which the ball is in contact with
the table for a while and then lifts off again. Two such accumu-
lation points can be seen in Fig. 2. However, such trajectories

∗Address all correspondence to this author.

cannot actually exist. Namely, if the ball comes to rest on the os-
cillating table after a chattering phase, then it remains in contact
with the table up to the next time instant allowing for detachment.
The time instant of detachment (or its phase with respect to the
excitation period), however, is uniquely defined: it is exactly that
time instant for which the table accelerates downward with an
acceleration equal to gravity causing the contact force between
ball and table to vanish. Hence, at the time instant of detachment
the position and velocity of the ball, being those of the table, are
known and also the phase of excitation is known, which implies
that there is a unique solution after lift-off. The motion evolving
from any phase of persistent contact must therefore be identical,
irrespectively of how the ball came to rest on the table. As a con-
sequence, if the trajectory after an accumulation point encounters
a new accumulation point, this procedure must repeat endlessly,
implying that the resulting motion is periodic.

This work, which is based on the MSc. thesis [7], gives an
explanation for the contradiction between theory and simulation
of the bouncing ball system.

THE IMPACT MAPS OF THE BOUNCING BALL SYSTEM
We consider the one-dimensional bouncing ball system (see

Fig. 1) consisting of a rigid ball of mass m bouncing on a ver-
tically moving flat table under the influence of a constant grav-
itational field g. We denote by q(t) the absolute height of the
ball, and by e(t) the absolute vertical position of the kinematic
excitation of the table, which is assumed to be harmonic

e(t) =−Asin(Ωt). (1)
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FIGURE 1. The Bouncing Ball System.

The acceleration ratio between the maximum absolute table ac-
celeration and the gravitational acceleration is abbreviated with
the dimensionless parameter

κ :=
AΩ2

g
≥ 0. (2)

The distance between ball and table will be addressed by
x(t) and is non-negative due to the unilateral constraint, i.e.

x(t) = q(t)− e(t)≥ 0. (3)

Accordingly, between impact events, the relative velocity of the
ball with respect to the table is v(t) = ẋ(t) = q̇(t)− ė(t).

The impact process itself is modelled by a strictly dissipative
Newton-type impact law with restitution coefficient r,

x(tn) = 0 : v+(tn) =−r v−(tn), (4)

where tn is an impact time instant and v+(tn) = limt↓tn v(t) and
v−(tn) = limt↑tn v(t) are the post- and pre-impact velocity, respec-
tively. We consider values of the restitution coefficient 0 < r < 1.
In the following, we will show that the system is completely de-
scribed by the two parameters κ and r.

We will need to distinguish between four sets of time
instants describing different phases of the excitation period,
namely

lift-off: Lt :=
{

t ∈ R | ë(t)<−g
}
, (5)

sticking: St :=
{

t ∈ R | ë(t)>−g
}
, (6)

detachment: Dt :=
{

t ∈ R | ë(t) =−g ∧ ...e (t)< 0
}
, (7)

attachment: At :=
{

t ∈ R | ë(t) =−g ∧ ...e (t)≥ 0
}
. (8)

In absence of any contact force, the ball will move under the
sole influence of gravity, mq̈(t) =−mg. The equations of motion
for contact-free time intervals TCF can therefore be expressed in
the states x and v as

ẋ(t) = v(t)
v̇(t) =−g−AΩ2 sin(Ωt)

}
∀ t ∈TCF . (9)
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FIGURE 2. Excerpt of a simulation using the timestepping scheme.

In presence of persistent contact (contact during a time
lapse), a finite contact force λ (t)≥ 0 is added to the equation of
motion mq̈(t) =−mg+λ (t). Throughout the persistent contact,
the contact force λ (t) takes precisely the value required to main-
tain contact between ball and table, λ (t) = mg+mAΩ2 sin(Ωt).

Let vn := v+(tn) denote the post-impact velocity at the n-th
impact time instant tn. Integration of the equations of motion (9)
together with x(tn+1) = x(tn) = 0 yields

0 =− 1
2

g(tn+1− tn)2 +(vn−AΩcos(Ωtn))(tn+1− tn)

+A(sin(Ωtn+1)− sin(Ωtn)),
(10)

vn+1 = rg(tn+1− tn)−rAΩ(cos(Ωtn+1)−cos(Ωtn))−rvn. (11)

Given the pair (tn,vn), these are two nonlinear implicit equations
for the unknowns (tn+1,vn+1).

If vn = 0, then a phase of persistent contact starts, which
ends if the contact force λ vanishes. The time tD, denoting the
end of persistent contact, is therefore the first time instant tD > tn
such that λ (tD) = mg+mAΩ2 sin(ΩtD) = 0.

In order to improve numerical stability and allow for a di-
mensionless analysis of the bouncing ball dynamics, we will in-
troduce a new dimensionless impact time instant τn given by

τn :=
Ω

2π
tn, (12)

such that the resulting dimensionless excitation period equals
unity. Furthermore, we introduce a dimensionless post-impact
velocity wn, and a new dimensionless relative distance ξ :

wn :=
Ω

πg
vn, ξ (t) :=

1
2

Ω2

π2g
x(t). (13)

The four sets of time instants describing the different phases of
the excitation period can also be translated into their dimension-
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less counterparts Lτ , Sτ , Dτ and Aτ .
The forward impact map P is the operation that maps a pair

of dimensionless impact states (τn,wn) to the next pair of dimen-
sionless impact states (τn+1,wn+1),

P(τn,wn) := (τn+1,wn+1), P : R×R+
0 → R×R+

0 . (14)

The k-th iterated forward impact map Pk is defined as

Pk(τn,wn) := P◦P◦ . . . ◦P(τn,wn)︸ ︷︷ ︸
P iterated k times

= (τn+k,wn+k). (15)

Forward impact map: Given any arbitrary pair of dimension-
less impact states (τn,wn) ∈ R×R+

0 , P(τn,wn) := (τn+1,wn+1)
can be computed as follows:

Flight: If wn > 0, or if wn = 0 ∧ τn ∈Lτ ∪Dτ .

1. Find the smallest value τn+1 > τn that fulfils the im-
plicit equation

0 =−(τn+1− τn)
2 +(wn−

κ

π
cos(2πτn))(τn+1− τn)

+
κ

2π2 (sin(2πτn+1)− sin(2πτn)).

(16)

2. Given τn, wn and τn+1, evaluate the expression

wn+1 =2r(τn+1− τn)

− r
κ

π
(cos(2πτn+1)− cos(2πτn))− rwn.

(17)

Stick: If wn = 0 ∧ τn ∈Sτ ∪Aτ .

1. Find the smallest element τD ∈Dτ such that τn < τD.
2. Then P(τn,wn) = P(τD,0).

The backward impact map P−1 is the operation that maps a
pair of dimensionless impact states (τn,wn) to the previous pair
of dimensionless impact states (τn−1,wn−1),

P−1(τn,wn) := (τn−1,wn−1). (18)

The k-th iterated backward impact map P−k is defined as

P−k(τn,wn) := P−1 ◦P−1 ◦ . . . ◦P−1(τn,wn)︸ ︷︷ ︸
P−1 iterated k times

= (τn−k,wn−k).

(19)

Backward impact map: Given any arbitrary pair of di-
mensionless impact states (τn,wn) ∈ R×R+

0 , P−1(τn,wn) :=
(τn−1,wn−1) can be computed as follows:

Flight: If wn > 0, or if wn = 0 ∧ τn ∈Lτ ∪Aτ .

1. Find the largest value τn−1 < τn that fulfills the implicit

equation

0 = (τn− τn−1)
2− (

1
r

wn +
κ

π
cos(2πτn))(τn− τn−1)

+
κ

2π2 (sin(2πτn)− sin(2πτn−1)).

(20)

2. Given τn, wn and τn−1, evaluate the expression

wn−1 =2(τn− τn−1)

− κ

π
(cos(2πτn)− cos(2πτn−1))−

1
r

wn.

(21)

Stick: If wn = 0 ∧ τn ∈Sτ ∪Dτ .

Due to non-uniqueness of trajectories in backward time,
it is not possible to find a meaningful backward impact
map for this case. For completeness, we arbitrarily de-
fine: P−1(τn,wn) = (τn,wn).

The forward impact map P : (τn,wn) 7→ (τn+1,wn+1) is dis-
continuous at grazing points, i.e. at (τn,wn) that are mapped
to (τn+1,0). With B1 := {(τn,wn) = P−1(τn+1,0),τn+1 ∈ R}
we denote the set of discontinuity points of P. Similarly, with
F1 := {(τn,wn) = P(τn−1,0),τn−1 ∈ R} we denote the set of
discontinuity points of the backward impact map P−1. Further-
more, the N-th iterated forward impact map PN is discontinuous
at Bk := {(τn,wn) = P−k(τn+k,0),τn+k ∈ R} for all k ≤ N. Sim-
ilarly, the N-th iterated backward impact map P−N is discontinu-
ous at Fk := {(τn,wn) = Pk(τn−k,0),τn−k ∈ R} for all k ≤ N.

ACCUMULATION BARRIER
Time intervals of persistent contact between ball and table

play a very special role in the dynamics of the bouncing ball
system. On the one hand, they are responsible for the loss of
uniqueness of trajectories in backward time. On the other hand,
in forward time, these phases of persistent contact have the very
special effect of gathering infinitely many trajectories prior to
releasing all of them at exactly the same detachment time instant
τD given by 1+κ sin(τD) = 0.

Besides the obvious case in which a trajectory starts within a
persistent contact phase due to corresponding initial conditions,
it is also possible for trajectories to dynamically fall into such
phases of persistent contact by means of accumulation points,
that is, the occurrence of an infinite number of impacts with ever
decreasing post-impact velocities happening within a finite time
interval before the ball eventually lies on the table, see Fig. 3.

If the forward impact map approaches an accumulation
point, it will not be able to go beyond, because, mapping a given
pair of impact states to the next pair and so forth, it will not be
able to overcome the infinite number of impact events leading to
that accumulation point.

3 Copyright c© 2018 by ASME



FIGURE 3. Illustration of an accumulation point.

BRUTE FORCE DIAGRAMS
A brute force diagram of the bouncing ball system with κ

as bifurcation parameter is shown in Fig. 4 for r = 0.8. At each
value of κ , the system is iterated n1=1000 times with the forward
impact map to allow for transient motion to decay. Subsequently
the following N = 10 iterations are plotted in the brute force di-
agram. This is repeated for different initial conditions to find co-
existing attractors. The brute force diagram has been constructed
again in Fig. 5 using n2 =10’000 transitive iterations of P.

Besides the dominant dark area in the lower right-hand cor-
ner of Fig. 4, the most prominent structures that can be identi-
fied in both figures are the five horizontal stripes at the height
of integer dimensionless flight times with the cascade of bifur-
cations at their right ends. These structures belong to periodic
solution with no intermediate impacts, that is, the period time of
such trajectories corresponds exactly to the flight time of the ball
between consecutive impacts. Fig. 6 illustrates an example of
a trajectory converging to such a periodic solution. In contrast,
periodic solutions with intermediate impacts give rise to groups
of curved horizontal stripes, where each stripe is at the height of
different, not necessarily integer dimensionless flight times. The
period time of such periodic solutions corresponds to the sum of
flight times between all impact events belonging to the respective
periodic solution, see Fig. 7.

The striking difference between Fig. 4 and Fig. 5 is the
almost disappearing dark region in the bottom right corner of
Fig. 4, suggesting the existence of a big chaotic attractor in the
system. According to Fig. 4, it looks as if chaotic motion is sud-
denly created as soon as the value of κ exceeds a precise thresh-
old κ̂ ≈ 1.225. However, this suggestion cannot be confirmed by
Fig. 5, where only very little of the dark region is left. A simi-
lar observation has been made in [5]. A possible interpretation
is that the big dark region of Fig. 4 is actually only a transient,

FIGURE 4. Brute force diagram for n1 = 1000 transitive iterations.

FIGURE 5. Brute force diagram for n2 =10’000 transitive iterations.

which disappears accordingly if the transient phase of the sim-
ulation is chosen long enough. The aim of the present paper is
to determine whether anything particular occurs at the moment
when κ reaches κ̂ , and based on those findings to give an alter-
native explanation for this particularity.

A horizontal line at (almost) zero flight time appears both
in Fig. 4 and Fig. 5. There are two types of dynamical behavior
that can give rise to such an object: either the equilibrium where
ball and table already start and then remain in persistent contact
for all future times (only possible for κ ≤ 1), or an accumulation
point, which the forward impact map cannot overcome, giving
rise to chattering (possible for all κ). Almost all points on this
line belong to the second category.
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FIGURE 6. A periodic solution without intermediate impacts.

FIGURE 7. A periodic solution with one intermediate impact.

ANALYSIS OF CHATTERING MOTION
From now on it will be convenient to consider the phase

of the impact events with respect to the excitation period rather
than the absolute time at which they occur. Accordingly, we de-
note the (unique) detachment phase by τD = τn mod 1 for any
τn ∈ Dτ and the (unique) attachment phase by τA = τn mod 1
for any τn ∈ Aτ . Our analysis of the chattering motion of the
bouncing ball system follows closely the procedure adopted by
Budd & Dux in [8] for the analysis of chattering phenomena in
impact oscillators. Consider λi ∈ R+, where λi <

2
3 . Then, for

any parabola parameterized by λi with minimum in (τD,0)

Pλi :=
{
(τn,wn) ∈ R×R+

0 |
wn =−2πκ cos(2πτD)λi (τD− τn)

2, τn < τD
}
,

(22)

FIGURE 8. Invariant manifold for r = 0.8 and κ = 1.1 < κ̂ .

FIGURE 9. Invariant ‘manifold’ for r = 0.8 and κ = 1.4 > κ̂ .

assuming τD−τn� 1 and 0 < wn� 1 to be sufficiently small, it
holds that

P(Pλi) = Pλi+1 , (23)

where the λi+1 is a function f : (0, 2
3 )→ R+ of λi:

λi+1 = f (λi) =−r
(

1− 1−λi

(1−Θ(λi))2

)
, (24)

Θ(λi) :=
3
2
−

√(
3
2

)2

−3λi. (25)

For small values of τD−τn and wn, the points of a given parabola
Pλi are mapped onto another parabola Pλi+1 such that λi+1 =
f (λi). Thus, close to (τD,0) the effect of the forward impact map
P can be analyzed by means of the one-dimensional map f (λ ),
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FIGURE 10. Invariant chattering region for r = 0.8, κ = 1.4 > κ̂ .

which has a unique fixed point λ∞ = f (λ∞) within the interval
(0, 2

3 ). The fixed point λ∞ corresponds to an invariant parabola
P∞, which is indeed invariant in the neighbourhood of (τD,0).

The invariant parabola P∞ forms the beginning of an in-
variant manifold starting at (τD,0). Using the tracking algorithm
described in [9], one can track this invariant manifold by means
of the backward impact map. Fig. 8 depicts the tracking result
for r = 0.8 and κ = 1.1 < κ̂ . Fig. 9 illustrates the result for the
case r = 0.8 and κ = 1.4 > κ̂ , which has been obtained with a
slightly extended algorithm tracking discontinuities. The track-
ing algorithm was stopped on purpose once the generated image
provided reasonable evidence of the invariant manifold’s struc-
ture. Two conclusions can be drawn from these figures:

1. For κ < κ̂ , the invariant manifold is a continuous open
curve. For κ ≥ κ̂ , the invariant ‘manifold’ is a non-
continuous, piecewise closed curve, which clearly divides
the impact space into separate regions.

2. For increasing values of κ , the transition between these two
topologies is characterized by the piece-wise closure and
disconnection of the manifold. Accordingly, in the opposite
direction the same transition is characterized by the aperture
and mutual connection of the ‘manifold’s pieces’.

For κ ≥ κ̂ , the invariant ‘manifold’ divides the impact space
into well-defined separate regions, and from this fact we can take
further advantage. Consider only κ ≥ κ̂ . Then, the invariant
chattering region (ICR) is defined as the set of all impact states
(τn,wn) enclosed by the zero velocity line and that part of the
invariant ‘manifold’ situated between (τD,0) and its first inter-
section (τC,0) with the zero velocity line, see Fig. 10. Any tra-
jectory evolving from the ICR directly experiences chattering in
its immediate future, i.e. within the same period of excitation.
This immediately follows from the fact that 0 < f (λ ) < λ for

FIGURE 11. First two backward iterates of the invariant chattering
region for r = 0.8, κ = 1.4 > κ̂ .

0 < λ < λ∞, which implies that f (λ )k→ 0 for k→ ∞.
Besides trajectories evolving directly from impact states

within the ICR, also trajectories evolving from impact states
within any pre-iterate of the ICR will experience chattering at
some point. An illustration of the ICR and its first two back-
ward iterates for the case r = 0.8 and κ = 1.4 is given in Fig. 11.
Notice in particular that the pre-iterates of the ICR correspond
exactly to the impact states enclosed by the various pieces of
the previously computed invariant ‘manifold’ in Fig. 9. Accord-
ingly, the invariant ‘manifold’ itself consists precisely of the sev-
eral pre-iterates of the invariant chattering region border, a fact
which facilitates their computation.

An important advantage of the invariant chattering region
consists in its applicability to determine the motion evolving af-
ter an accumulation point. The behaviour of trajectories evolving
from an accumulation point is completely described by the dy-
namics of the detachment point (τD,0). If the trajectory of the
detachment point is attracted towards a periodic or chaotic at-
tractor, then all chattering trajectories will be attracted as well.
Conversely, if the trajectory of the detachment point eventually
falls into an accumulation point, so will all chattering trajecto-
ries, which implies the existence of a periodic solution with ac-
cumulation points. Now, to determine whether the trajectory of
the detachment point experiences chattering, we can make use of
the previously defined invariant chattering region. If κ ≥ κ̂ and
P(τD,0) is in the ICR or some pre-iterate of the ICR, then all tra-
jectories that experience chattering once will, from then onwards,
experience chattering on a periodic basis. The period time of this
resulting periodic solution corresponds exactly to the number of
excitation periods the trajectory evolving from (τD,0) requires to
re-enter the ICR. We define the return number R as the number
of impacts experienced by the trajectory evolving from (τD,0)
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FIGURE 12. Return number R for κ ∈ [1.25,2].

prior to entering the ICR. Fig. 12 illustrates the return number for
r = 0.8 under variation of κ ≥ κ̂ up to a maximal return number
of 10’000. As can be seen, although there are major fluctuations,
a vast majority of κ-values yields finite return numbers R. This
indicates that for most values of κ the trajectory evolving from
an accumulation point returns to the invariant chattering region
after R impacts. In other words, for most values of the acceler-
ation ratio κ , accumulation points give rise to periodic solutions
with repeated chattering.

EXPLANATION OF SUDDEN CHAOS-LIKE BEHAVIOR
As observed in the previous sections, when κ exceeds the

threshold κ̂ the behavior of the bouncing ball system changes
suddenly. Considering the trajectories evolving from several ini-
tial conditions after a transient phase of 1000 impact events, it
appears as if the system behaves in a chaotic manner (see Fig. 4).
Considering the same trajectories after a longer transient phase
of 10’000 impact events, however, shows that most of this chaos-
like behavior has disappeared (see Fig. 5). In this section, give
an explanation for this conspicuous phenomenon by looking at
the global behavior of the discontinuity sets Bk and Fk. Unfortu-
nately, we will increasingly need to rely on numerical results and
be careful when drawing conclusions from them.

For κ = 1.2 < κ̂ and r = 0.8, Fig. 13 illustrates the nu-
merically computed discontinuity sets Fk (grey, emanating from
(τA,0)) and Bk (grey, emanating from (τD,0)) for k = 1,2, . . . ,10
together with an excerpt of the corresponding invariant manifold
(black) computed by means of the aforementioned tracking al-
gorithm. We observe that the two families of sets do not inter-
sect. This behavior can also be confirmed for increasing values
of k > 10, and the overall topology remains unaltered under vari-
ation of the parameter κ in the range 1 < κ < κ̂ . The k-times for-

FIGURE 13. Discontinuities of impact maps in the subcritical regime
(Fk and Bk for k = 1,2, . . . ,10 at κ = 1.2 < κ̂ and r = 0.8).

ward mapped detachment point Pk(τD,0) corresponds for each k
to the right end of the set Fk. Notice, moreover, that Fig. 13 illus-
trates how the detachment point trajectory experiences chattering
immediately after lift-off.

As the value of κ approaches the threshold κ̂ , the right ends
of the sets Fk approach the invariant manifold, which represents
the accumulation border of the sets Bk. Precisely at the threshold
κ = κ̂ , the right ends of Fk come to lie on the invariant manifold.
And once κ > κ̂ , the sets Fk intersect the invariant manifold,
and hence infinitely many sets Bk. An illustration of the latter
situation for κ = 1.25 > κ̂ and r = 0.8 is depicted in Fig. 14.

The intersections of Fk with Bk lead to important implica-
tions for the detachment point trajectory. As long as κ < κ̂ , the
trajectory evolving from the detachment point falls directly into
an accumulation point within the same period of excitation dur-
ing which it lifted off. Precisely at κ = κ̂ this is still the case,
however, the accumulation point is such that there is actually no
phase of persistent contact between ball and table any more. Be-
cause the forward iterates Pk(τD,0) of the detachment point lie
precisely on the invariant manifold emanating from the latter, the
time instant at which the infinite series of impact events termi-
nates corresponds exactly to the detachment time instant itself.
As a consequence, the motion starts over again without ball and
table having actually been in persistent contact during a non-zero
time lapse. Once κ > κ̂ , the detachment point trajectory becomes
more complicated. As can be seen from Fig. 14, if the value of
κ exceeds κ̂ , the series of forward iterates Pk(τD,0) escapes the
previously experienced accumulation, opening the possibility for
a completely different type of motion. In other words, the chat-
tering dynamics of the system is interrupted before the ball can
come to rest on the table. We know from the analysis of the
return number R that for most values of κ > κ̂ the detachment
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FIGURE 14. Discontinuities of impact maps in the supercritical
regime (Fk and Bk for k = 1,2, . . . ,10 at κ = 1.25 > κ̂ and r = 0.8).

point trajectory will eventually experience chattering again. Al-
ternatively, it could however also be attracted towards a periodic
solution or a chaotic attractor without chattering and therefore
having no finite return number R.

These insights confirm the previous observations. However,
they are insufficient for a sound explanation of the sudden chaos-
like behavior observed in Fig. 4 for κ > κ̂ . A better explana-
tion for the sudden apparently chaotic behavior of the bouncing
ball system can be found by an in-depth analysis of the topology
resulting from the infinitely many intersections between the dis-
continuity sets Fk and Bk in the supercritical case κ > κ̂ (Fig. 14).
We will argue that these intersections give rise to an infinitely fine
self-similar structure, which can potentially explain extreme sen-
sitivity on initial conditions in certain regions of the state space.

To start with, consider Fig. 15 illustrating the implication an
intersection point H1 between F1 and B1 has for the topological
structure of B2. The set B1 is the set of all impact states that will
be mapped to the zero velocity line by one application of the for-
ward impact map P. The trajectories evolving from impact states
in B1 are hence about to experience a grazing impact. The set F1

is the once forward mapped zero velocity line, that is, the set of
impact states directly succeeding grazing impacts. Moreover, be-
sides the discontinuity induced by non-uniqueness of solutions in
backward time, F1 is the only discontinuity set of the backward
impact map P−1.

The existence of an intersection point H1 between F1 and B1

implies two facts about the topology of B2 = P−1(B1):

1. The set B2 must contain a point X0 = P−1(H1) on the zero
velocity line.

2. The set B2 consists of two disconnected parts:

(a) One part connecting the detachment point D := (τD,0)

10

FIGURE 15. Topology of B1 and B2 for X1 above H1.

10

FIGURE 16. Topology of B1, B2, B3 and B4 for X1 above H1.

to the zero velocity line point X0.
(b) The other part beginning immediately above X1 :=

P−1(X0) ∈ B1 and ending at A2 := P−1(A1) ∈ B2,
where A1 := P−1(A0) ∈ B1 and A0 := (τA,0).

The first assertion stems from the fact that P−1(F1) corresponds
to the zero velocity line according to the definition of the set F1.
Hence, if a point of B1 is also a point of F1, then B2 = P−1(B1)
must contain a point X0 = P−1(H1) on the zero velocity line.

The second assertion is more complicated to see. From F1

being the discontinuity set of the backward impact map P−1, it
is clear that if F1 intersects B1, then B2 = P−1(B1) must be dis-
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FIGURE 17. Numerically obtained topology of B1, B2, B3 and B4 for
κ = 2 and r = 0.8. Colors have the same meaning as in Fig. 15 and 16.

connected at some point, and hence composed of two continuous
pieces. One of these pieces stems from the part of B1 between
D up to and including H1. The other one results from the part of
B1 between A1 up to but excluding H1. Considering the facts that
P−1(D) = D, P−1(H1) = X0 and P−1(A1) = A2, it is clear that
one of the two disconnected pieces of B2 must connect D and X0,
while the other one connects A2 with the backward map of the
point on B1 immediately above H1.

The only aspect that remains to be explained is why the
backward map of this point on B1 immediately above H1 lies
exactly above X1 = P−1(X0). Recall that F1 is the set of all im-
pact states that have just experienced a grazing impact. The im-
pact states immediately above F1, and in particular the point on
B1 immediately above H1, correspond hence to trajectories that
have just flown by because at the previous impact event they had
slightly too much post-impact velocity to still experience graz-
ing. The backward map of these points must therefore be the
set of impact states that are about to fly by because of too high
post-impact velocity. Recalling the fact that B1 represents the
set of all impact states giving rise to trajectories that are about
to graze, it is clear that the latter set must be situated immedi-
ately above B1. The fact that, among all possible impact states
immediately above B1, this second component of B2 begins pre-
cisely above X1 = P−1(X0) results from the continuity of B1 =
P(B2) = P(first part of B2)∪ P(second part of B2). Having the
second part of B2 beginning immediately above X1 = P−1(X0)
is precisely the condition required to guarantee this continuous
connection.

Fig. 16 depicts the topology of B3 and B4 in addition to the
topology shown in Fig. 15. Similarly to our consideration of the
different components of B1 when deriving the topological struc-
ture of B2, we now need to consider the different components of

B2 to infer the topological structure of B3 = P−1(B2). From a
backward impact map point of view, B2 consists of three contin-
uously mapped components. A first component from the detach-
ment point D up to and including the first intersection point H2
between B2 and F1. A second one beginning at, but excluding,
the intersection point H2 continuing up to and including the point
X0. And a third component beginning at, but excluding, the point
X1 continuing up to and including the point A2. Each of these
components of B2 gives rise to a different continuous component
of B3. In the same way, backward mapping the four components
of B3 results in the four components of B4. Iterating this back-
ward impact mapping mechanism thus gives rise to a self-similar
leaves-like structure, which becomes increasingly fine with every
additional set Bk as k→ ∞.

Although the self-similar topology was derived by means of
an example in which B1 and F1 intersect, the underlying reason-
ing remains valid for any supercritical value of κ . As illustrated
at the beginning of this section, as soon as κ > κ̂ , the right ends
of the sets Fk cross the invariant manifold, which is the accu-
mulation curve of the sets Bk, and infinitely many intersections
are created between these two set families. As a consequence, if
κ > κ̂ , there will always exist a finite N ∈N such that BN and FN

intersect. The assertions made about the topology of the discon-
tinuity sets B1, B2, B3 and B4 apply then directly to the sets BN ,
BN+1, BN+2 and BN+3 respectively, and the self-similar topology
for the supercritical case is valid without loss of generality.

Another aspect that has not been mentioned yet, but which is
important for the further argument, is the fact that the backward
iterates of the invariant chattering region (Fig. 11) constitute the
center of the discontinuity ‘leaves’. Notice for example that in
Fig. 16, the upper end A1 of B1 is enclosed by an outer ‘B3-
leaf’ (green) connecting Y1 with X1, and an inner ‘B4-leaf’ (red)
connecting Z1 with Y1. If we continued to backward iterate the
discontinuity sets, the upper end A1 of B1, but also the upper end
Ak of any other Bk, would become surrounded by an increasing
number of such ‘leaves’. As in the proximity of the detachment
point (τD,0), it turns out that these ‘leaves’, which are actually
parts of some discontinuity set Bk, accumulate towards the in-
variant manifold. Recall that in the supercritical case the invari-
ant manifold is composed of many piece-wise continuous closed
portions enclosing the pre-iterates of the invariant chattering re-
gion. Since A0 belongs to the invariant chattering region, it fol-
lows that the piece-wise closed portions of the invariant manifold
must enclose a finite region of the impact space around the points
Ak, and that these finite regions are hence pre-iterates of the in-
variant chattering region. In summary, every ‘leaf’ consists of
infinitely many discontinuity sets Bk surrounding the respective
Ak and accumulating towards a respective portion of the invari-
ant manifold enclosing a finite region of the impact space, which
hence constitutes the centre of the ‘leaf’. These finite regions of
the impact space are moreover precisely the backward iterates of
the invariant chattering region. It is clear that these assertions
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have no mathematical rigor. However, they capture what can be
observed from all numerical computations we conducted.

Having clarified the general validity of the self-similar
leaves-like structure and the fact that at the center of each leaf
there is a finite region of the impact space corresponding to a pre-
iterate of the invariant chattering region, it is clear that as soon
as κ exceeds κ̂ , the topological structure of the impact space be-
comes infinitely fine and interweaved. The for κ ≤ κ̂ well sepa-
rated discontinuity sets Bk form now an infinitely intricated self-
similar structure, which is in addition extremely stretched along
the impact space. As can be seen from B1, B2, B3 and B4 com-
puted for κ = 2 and r = 0.8 in Fig. 17, this gives rise to regions
of the impact space where very small perturbations can result in
substantially different trajectory evolutions.

Now, how can this insight be used to explain the occurrence
of apparently chaotic trajectories with repeated accumulation
points? Imagine that some parts of the trajectory correspond-
ing to a periodic solution with repeated accumulation points lie
within one of the regions of the impact space that are highly sen-
sitive to perturbations. When passing through these sensitive re-
gions, due to numerical integration errors, it is possible that the
actually periodic trajectory changes its course unexpectedly. For
instance, it might follow an adjacent chaotic orbit and return to
the periodic one some time later due to a new passage through
the same or another region of high sensitivity. If this hypothesis
proves correct, it would be a reasonable explanation for appar-
ently chaotic trajectories with repeated accumulation points.

The same reasoning can also explain the sudden chaos-like
behavior in Fig. 4 and its almost complete disappearance in
Fig. 5. As soon as κ exceeds κ̂ , due to the infinitely fine struc-
ture of the state space, trajectories do not necessarily converge to
their actual limit sets in a direct manner, but rather change back
and forth between the regions of attraction of different limit sets,
which can give the impression of chaotic behavior. Moreover,
the longer one waits, the more likely it becomes that an arbi-
trary trajectory incidentally enters the invariant chattering region
or one of its very thin and stretched pre-iterates. If this happens,
the corresponding trajectory will experience chattering and the
forward impact map will not be able to overcome the resulting
accumulation point. As a consequence, the originally erratic tra-
jectory will appear near the zero velocity line in the brute force
diagram, which is a reasonable explanation for the almost com-
plete disappearance of the chaos-like behavior in Fig. 5.

CONCLUSION
We have given an explanation both for the sudden chaos-

like behavior observed in brute force diagrams and for a series
of numerical simulation results indicating the existence of irreg-
ular trajectories with repeated chattering for κ > κ̂ . The latter
is a theoretically impossible occurrence as for any given κ > 1
the ball always lifts off at precisely the same position and with

precisely the same velocity, implying that any trajectory with re-
peated chattering should be periodic due to repeating identical
initial conditions. The backbone of our argument is an in-depth
analysis of the discontinuities induced by grazing impacts in both
the forward and backward impact maps of the bouncing ball sys-
tem. In particular, we were able to see that these discontinuities
intersect infinitely many times and create a self-similar, very in-
terweaved and extremely stretched topological structure as soon
as the value of κ exceeds the threshold κ̂ . To explain the two
above stated observations, one can imagine that small (finite) dis-
turbances may deviate the respective trajectory from its theoret-
ical evolution and make it dynamically switch between different
regions of attraction, resulting in chaos-like behavior or, for in-
stance, irregular motion with repeated chattering. It remains to be
investigated if these self-similar structures have a fractal dimen-
sion, which would imply fractal boundaries between the regions
of attraction of different limit sets.

The practical relevance of these findings consists in the fact
that perturbations, caused by numerical errors in simulations, are
equally present in the real physical system in form of model
inaccuracies and actual unavoidable disturbances. Finally, the
results of this paper are strong indications pointing towards a
fractalization-like dynamical mechanism interfering with the sta-
bility properties of several motions of the bouncing ball system.
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