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Abstract. This paper is concerned with the dominant dissipation meisharor a rolling
disk in the final stage of its motion. The aim of this paper ipresent the various dissipation
mechanisms for a rolling disk which are used in the literatara unified framework. Further-
more, new experiments on the ‘Euler disk’ using a high-spgeeb camera and a novel image
analysis technique are presented. The combined expeitbebretical approach of this pa-
per sheds some more light on the dominant dissipation mésinamn the time-scale of several
seconds.



R. I. Leine

1 INTRODUCTION

If a coin is spun on a table, then we observe a peculiar kindaifan. After a brief initial
phase, the coin wobbles/spins while remaining on more & tles same spot. Very slowly
the coin loses height. This motion is accompanied by a ropgioise of which the frequency
is rapidly increasing and tends to infinity before the moteord sound abruptly stop. This
phenomenon is exemplified by the ‘Euler disk’, a scientific¢onsisting of a heavy metal disk
on a slightly concave mirror.

The abrupt halt of a spinning disk is often called the ‘firtitee singularity’ in literature (see
for instance [17, 7]). There exists a tremendous amount@faliure on the dynamics of the
rolling disk. Here, we will only give an overview of the ligglure on dissipation mechanisms
which explain the finite-time singularity and of the litareg¢ reporting measurements of this
phenomenon.

In a brief article ofNature Moffatt [17] proposed a dissipation mechanism due to uisco
drag of the layer of air between the disk and the table. Mb#hbwed that, according to
this dissipation model, the inclinatigt{t) and precession rateg(t) of the disk vary with time
according to the power-law

0(t) o (t; —t)", o< (ty — 1) 2", (1)

with the exponent. = % The viscous air drag model of Moffatt was extended by Bild$s2 to
account for boundary layer effects which are expected tardiwe larger values of the inclina-
tion angle. The derivations of Bildsten reveal an exponent sf g Observations of spinning
coins in vacuum led van den Engh al. [22] to suppose that air viscosity is not the dominant
dissipation mechanism during the final stage of motion. &tb{fL8] replies that air viscosity is
rather insensitive to the pressure and, therefore, thaetblkservations are inconclusive. More-
over, he points out that air drag has a smaller value #ian other dissipation mechanisms
and will therefore finally dominate. The article of Moffaéd to an increased interest in the
finite-time singularity of the rolling disk and opened thésttific discussion on the responsible
dissipation mechanism.

McDonald and McDonald [16] present a dissipation mechamimolling friction for which
n = % Furthermore, the precession rate of a rolling disk is deiteed experimentally using
a flashlight and a phototransistor (5 kS/s) during 10 s. Tihpeemental results of [16] agree
well with n = 1.

Stanislavsky and Weron [21] recorded the sound of a rollisg end analysed the change
in the spectrum of the sound between the various stages admdto definite conclusions can
be drawn from these measurements.

Kessler and O’Reilly [10] study the dynamics of a rolling diskder the influence of sliding,
rolling and pivoting dissipation. The sliding friction meldn [10] has a static and a dynamic
friction coefficient which leads to stick-slip behaviour.hd numerical simulations show an
asymptotic energy decrease, i.e. the disk does not stopta tiime.

Easwaret al.[7] report measurements of the precession rate with a Ipgleesvideo camera
but do not discuss the details of their measurement technigjbie experimental results of [7]
agree well withn = % which the authors attribute to rolling friction.

Petrieet al. [20] conducted measurements of the ‘Euler disk’ using a mbmdeo camera
(30 fps) during 140 s. A strip with markers was glued on tophef disk and the top view of
the motion of the disk was recorded. The precession rate rgular velocity around the axis
of symmetry were retrieved from image analysis. The intiomaangled was determined from
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the variation of the apparent length of the strip, which lteslin a large experimental error for
the inclination anglé. In [20] it is concluded that the disk rolls without slip dog the first
90 s. The measurements are inconclusive for the last 50 sibecéhthe low frame rate.

Capset al. [5] present a rather detailed experimental study of variollsng disks using a
high-speed video camera (125-500 fps) and a laser beamgdaipiout 10 s. The inclination
angle, precession rate and angular velocity around thead>dgmmetry of the disk are each
measured with a different experimental setup during a iifferun and, therefore, have not
been obtained simultaneously. The experimental resuteeagith values of: between% and
2. Measurements on a torus are believed in [5] to confirm th@asifion of van den Engh
et al.[22] that air drag is only of minor importance.

In Le Sauxet al[12] and Leineet al. [14], being previous papers of the author, a detailed
numerical study has been carried out of a rolling disk unkeinfluence of combined sliding,
rolling and pivoting friction. The presented modellinghac@ue includes impact and stick-slip
transitions and is able to numerically simulate the tramsiof the disk from motion to rest and
onwards, i.e. the finite-time singularity is within the silaion time-interval.

From the above literature overview we can draw a number oflasions. Apparently, the
general opinion in the scientific community is tending taded that rolling friction is the dom-
inant dissipation mechanism during the final stage of motién this point we have to ask
ourselves on which time-scale the final stage of motion isic@med. The viscous air drag dis-
sipation might (for highly polished surfaces) be dominaurimg the last milliseconds, whereas
rolling friction can be dominant if we consider the final stagf motion on the time-scale of
seconds. The current state-of-the-art experimentaltsesti[5] are only partially satisfactory.
The inclination angle, precession rate and angular vgl@citund the axis of symmetry of the
disk are measured, but not simultaneously. Some analyticed exists on the exponentfor
various dissipation models, but the results are scatteredtbe literature and are presented in
different notation.

The aim of this paper is twofold. Firstly, the various exigtidissipation mechanisms are
discussed in a unified framework. This allows for a better ganson of the dissipation mech-
anisms. Secondly, new experiments on the ‘Euler disk’ agegmted in this paper. The experi-
ments have been conducted with a high-speed video cameif {6) during 10 s. An image
analysis technique is presented with which the inclinatogled and precession rai& are
obtained simultaneously. The combined experimentalftieal approach of this paper gives
more insight into the dominant dissipation mechanism oriithe-scale of several seconds.

The paper is organised as follows. The equations of motica rafling disk are reviewed
in Section 2. A theoretical analysis of the dissipatiorefdynamics of the disk is given in
Section 3 and it is shown that the dissipation-free dynatméssa manifold of stationary states
for which the inclination remains constant. The stabilifytteese stationary states is analysed
using the method of Lyapunov functions by exploiting theegrable structure of the system.
Subsequently, all dissipation mechanisms for the rollirstg,dvhich are used in the literature,
are discussed in Section 4. The effect of these dissipatEchanisms on the dynamics of the
rolling disk is discussed in Section 5. The exponent of thegydaw (1) is determined for
each dissipation mechanism and an overview of the energgydec the various dissipation
mechanisms is given. The experimental setup and experinesults are presented in Sec-
tion 6. Finally, conclusions are given in Section 7 and aulison of the results of this paper
in comparison to the results of the existing literature \&gi
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(b)

Figure 1: Rolling disk model: (a) parameterisation, (b) eirsions.

2 ROLLING DISK MODEL

In this section we give a model for a thick rolling disk undee assumption of pure rolling,
i.e. rolling without slip, see also [2, 19, 21]. The rigidedyokinematics of a rolling disk are
presented in Section 2.1 and the equations of motion arthysiated in Section 2.2.

2.1 Kinematics

The kinematical model, presented here, describes the mieahaystem under considera-
tion as a thick disk submitted to a bilateral geometric c@mst at the contact point' (see
Figure 1(a)).

An absolute coordinate frame= (O, el el e!) is attached to the table. We introduce the

) €T y7 z

frame R = (O, el*, ef e®) which is obtained by rotating the frandeover an anglex around

Y ) y? z

el,i.e.ell = cosae, +sinae], el = —sinael + cosae, andel’ = el. Furthermore, we
introduce the framéX = (B, e eX ) which is obtained by rotating the franie over an
angle aroundel, i.e.el = ell, e;" = cos e}’ +sinfell andel = —sinfel’ + cosFel.

Note that framek is not body-fixed, but moves along with the disk such th’fatis the axis of
revolution and the:’ -axis remains parallel to the table. The components of avedn frame
I are expressed as.

We consider a disk with an (outer) radiug and height2h, see Figure 1(b). The disk’s
bottom surface, with which the disk is in contact with thel¢éalhas a rounded edge. The
contact point”' between the disk and the table therefore runs for smallnatbn on a tread
with constant radiug being slightly smaller tham,. The geometrical centre of the bottom
surface is denoted witB. The centre of masS is located on the," axis at a distancé from
B. The disk has mass and the principal moments of inertia = I, = imr% + 1—12mh2 and
I; = $mr with respect to the centre of maSs The inertia tensor in framé’ therefore reads
as x®s = diag(l,, I3, I;). The gravitational acceleration jsin the negatives! direction. We
define a parametrisation of the digk, y, «, (3, ), as illustrated in Figure 1(a), which is a
minimal set of coordinates with respect to the geometricstramt at the contact poirdt. In
this section, we derive the equations of motion using thedinates(z, y, «, (3, ) and the
angular velocity vectog 2 = [sz KWy KwZ]T expressed in fram&’. We will write the
componentsw,, xw, andxw, asw,, w, andw, and omit the subscripk’.

First, we derive the angular velocityQ2 and relate it to the derivatives of the rotational
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coordinatega, 3, 7):
. s
kQ=d el + 3 xell +9 ke, = |asinf+7]| . (2)
a cos (3

Equating the components @2 gives the expression$ = w,, & = w, sec 3 andy = Wy —
w, tan . The rotational velocity of framé&” with respect to the inertial framecan therefore be
expressed in fram& as jwi = & el + B xelX. Similarly, we obtain the rotational velocity
of frame R with respect to framé expressed in fram& as pw;r = & rel! = w, sec 3 el

The pointA is a body-fixed point which is momentarily located at the eshpointC' and,
therefore, momentarily has the coordinatess = rroc = [x Y O}T. The velocity of the
body-fixed point4, denoted bw 4, momentarily vanishes if pure rolling is assumed. However,
the vanishing of the velocity, = 0 does not imply a vanishing of the acceleration of point
A. The pointA is therefore not a fixed point with respect to the inertiahfeal. Using the
distance vectorras = [O h T}T, the position of the centre of masscan be found to be
KTos = KToa+ kTas = [t h+ycosf r—ysin B]T. We calculate the velocity of the
centre of mass using Euler’s differentiation rule:

T — w, sec B(y + hcos B — rsin ()
RUs = RTOs + rRWIR X RTOs = | — hw,sin f — rw, cos B + w, sec Bz | . (3)
hw, cos 8 — rw, sin 3

Subsequently, we calculate the velocity of the polrby using the rigid-body equation, =
vg + Q2 x rg4. The velocity of the poin# has the formv, = 7, eff + 71, ef with

e = — w200 By — 750 B) — oy, @
Yry =Y +w,secfx, ©)

being the relative sliding velocities of the contact poimef’ ande,ff‘ direction respectively. The
pure rolling condition leads to the two velocity constrait, = 0 and~yp, = 0.

The velocity of the contact poirt' over the table equalgve: = r7oc + rWir X RTOC =
r(w, — w, tan 3) gelfl. The velocity of the poinC over the rim of the disk equals (under the
assumption of pure rolling) the velocity &ff direction of the point” over the table, i.e.

Yeont = T(wy — w, tan 3). (6)

2.2 Equations of motion

From the balance of linear and angular momentum we obtagethquations of motion for
the three components of the angular velocity vegtOr

(k1+1+€") b (ka+1+€ tan B) wyw.+((k1+€) tan f+¢) w? = g(sin S cos B)+ [, (7)
(kg -+ 1)wy — sz + (1 + etan ﬁ)wmwz = f;iss’ (8)

(ky 4 ), — €Wy — ((k:l + %) tan 3 + e) Waw; + kowywy, = fzdiss, (9)
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with the constants

L I3 h . g
kl - mT27 = mrQ: 62;7 92;7 (10)
and the generalised forces
diss 1 diss diss 1 diss diss 1 diss

These equations agree for the dissipation-free cB#és = 0) with those of [1, 2] and for an
infinitely thin disk € = 0) with those of [19, 21].
The kinetic energy in the system is given by

1
mK'Ug:K'US + §KQTK@SKQ

(m(rwy — hw,)? +m(r* + h*)w? + Lw) + Lw, + L1w?) (12)

=
=}

=N =D =

mr? ((wy — ew.)? + (1 + )w? + kiw? + kow? + k1w?) .
The potential energy of the system is only due to gravity:

Eyor = mg(hsin 3+ rcos 3 — h) = mr?g(esin 8 + cos 3 — e). (13)
In the absence of dissipation it holds that= Ey;, + £, = const.

3 THEORETICAL ANALYSIS FOR THE DISSIPATION-FREE CASE

The dynamics of the disk in the absence of dissipation is niyt af importance in its own
right, but also largely determines the dynamics when theighs$ion is small. The three equa-
tions of motion (7)-(9) withM s — 0 form together with3 = w, a four-dimensional au-
tonomous set of differential equations:

B3 = ws, (14)
(k1+1+4€%) W, — (ke +1+etan f) wyw, + ((k1+€°) tan f+€) w? = g(sin f—ecos 3), (15)
(k2 + 1w, — ew, + (1 + etan f)w,w, = 0, (16)
(ky 4 %), — €wy — ((k:l + %) tan 3 + e) Wew; + kawgwy = 0. (a7)

The equilibria of these differential equations are studre&ection 3.1 and their stability is
addressed in Section 3.2.

3.1 Circular rolling motion

In this section we analyse a particular type of rolling motio the absence of dissipation.
We consider the type of motiofx(t), yo(t), ao(t), So(t), 70(t)) for whichzy = 0 and 5y =
const. intimg0 < G, < §). Itfollows thatw,, = 0 and from (16) and (17) that,, = const. and
w0 = const. Furthermore, the sticking constrajn}, = 0 with (5) yieldsg, + w.o sec By zo = 0
from which follows withx, = 0 thaty, = 0 and therefore);, = R = const. Similarly, the
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Figure 2: Circular rolling motion.

constraintyr, = 0 with (4) givesi, — w.sec B(yo — 7sin By) — wyer = 0, or, usingiy = 0
andy, = R,

Wyo = Wy sec By (Sin Bo — E) ) (18)
r

Equation (18) is the condition for pure rolling, which medhat, for a given time-interval of
motion, the arc lengths covered by the contact pOinn both the perimeter of the circl®, R)

and the perimeter of the disk are equal. During such a moti@ijnclination of the diskj,
with respect to the vertical! and the height of the centre of mass are constant in time. és th
contact point”' moves on the contour of the disk, it describes on the tablecalar trajectory
(O, R) of radiusR around the origirQ of the inertial frame (see Figure 2). In the following we
refer to such a type of motion agcular rolling motion A kind of gyroscopic balancing occurs
during circular rolling motion. Substitution af,, = 0 in (15) gives

— (k2 + 1 4 etan By) wyow.o + ((k‘l + %) tan 3y + e) w2, = g(sin By — ecos B), (19)
or by using (18)

9 g(sin By — € cos fBy)
wzo — . R\? (20)
(k1 + €?) tan By + € — (ko + 1 + etan 3y) sec Gy (sin Gy — &)

which is the balance between the gyroscopic moment and thatgtional moment. We see
from (20) that gyroscopic balancing can only occur if theatemator in (19) is positive and if
€= ? < tan (. Furthermore, the friction forces;, andAr, have to fulfill the Coulomb stick-

ing condition, /A%, + A%, < pAy. The friction forces for circular rolling motion arer, = 0

andA\r, = mrw,o(wyo — €ws0)/ cos? By. The four-dimensional system (14)-(17) has embedded
in its four-dimensional state-space a two-dimensionalifokhg = (5, w,, w,,w.) € M with
boundary, where

(ka+14etan f) wyw, + §(sin B—ecos 3)
(k1 4+ €2)tan G + €

M = {q|w$:(),w§: 7|)‘Ty| <,umg}. (21)

Each point(5y, w.o, wyo, ws0) € M is, in the absence of dissipation, an equilibrium of the four
dimensional system (14)-(17) and is what we named a circalling motion. AsM consists
of equilibria, it is (in the absence of dissipation) an inaat manifold.

7
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Subsequently, we study a particular type of circular rgllimotion for which, as the disk is
rolling on the table, the centre of maSsemains on the axi€), e!) and is therefore immobile
with respect to the inertial frame. We call this type of matssationary rolling motion being
characterised bycvg = 0, i.e.rw,y — hw,o = 0 which givesw,, = ew,o. The gyroscopic
balance equation (20) can be written for stationary rollimgfion as

9 g(sin By — € cos ()
— ) 22
wz(] k?l tan ﬁo — €k2 ( )

The velocity of the contact point.... = (w0 — w0 tan Fy), given by (6), yields for stationary
rolling motion yeon, = (e — tan fy)w.o. In the limit of 3, 1 % it holds thatw?, — 0 and
v2 .« — oo. The contact poin€' therefore moves infinitely fast on the cirgl@, R) with radius
R — r, and moves infinitely fast on the contour of the disk, while tlisk does practically not
rotate. Stationary rolling motion is a one-dimensionahiant sub-manifold c M:

g(sin 8 — e cos 3)
ki tan 8 — eksy } ) (23)

5= {(ﬁ7wx7wy7w2) e R* ’ we = 0, wy :€Wz7w,§ =

The friction forces\r, and\p, vanish for stationary rolling motion because the centre a$sn
S does not accelerate for this kind of motian;(= as = 0).

3.2 Lyapunov stability analysis of circular rolling motion

The four-dimensional state space, described by (14)—{188,a integrable structure. The
integrability of the equations of motion of a disk rollingtiwut slip on a rough horizontal sur-
face (no dissipation) was first studied by Chaplygin [6], Apd and Korteweg [11], see [19]
for a short overview. The closed form solutions for a rolloigk without dissipation has been
used by [19, 2, 4] to study the bifurcations of the stationagtions. Here, we will use the
integrability result to study the stability of the statiopanotions of the disk using a Lyapunov
function.

We will use the notatior{-)’ = d(-)/d5. The prime derivatives are related to the time-
derivatives through

, Qwy  w, p O, W

wy_dﬁ—wm7 wz_dﬁ—wr'

(24)

Following [19], the differential equations (16) and (17¢ ativided byw, and yield a set of
differential equations i for w, andw.:

(k2 + 1w, — ew 4 (1 + etan B)w, = 0, (25)
(kp + w!, — ew, — ((kl + %) tan 3 + e) W, + kaw, = 0. (26)
Equations (25) and (26) can be combined in a second-orderetitial equation fow, (/3):

1 ko(1 + e tan [3)
. = 0. 27
cos? 3 * ki(ko + 1) + ko€? w (27)

w! — tan fuw, — (
The parameters, () andw,(t,) define the initial conditions, (5(t,)) andw,(5(t)) and the
values ofw, andw, are therefore completely determined by the valug.oConsequently, we

can writew, = w, () andw, = w,(f) as they are functions gf. The four-dimensional state

8
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space therefore reduces to a two-parameter family of seoatet systems fofi(z) (see [19])
and the equation of motion (15) far, = ( yields

(ki+1+¢€) B— (ky+1+4€tan §) wyw, + ((k1+€*) tan B+¢€) w? = g(sin B —ecos 3), (28)
with w, = w,(f) andw, = w,(F). We rewrite this autonomous second-order differential
equation for3 as

. OU
2 _— =
(k1+1+e)ﬁ+aﬁ 0, (29)
using the potential function
1
Up) = 3 ((wy — €w.)? + kaw? + k1w?) + g(esin 3 4 cos 3 — ). (30)

The second-order system (28) has equilibria 3, which have to fulfilllU’ (5,) = 0U /00| s=p, =
0, and which are circular rolling motions of the four-dimearsal system (14)-(17). The stability
of these equilibria can be studied with a Lyapunov function

VBB =L (kb +1+€) B+ UG+ B)— UlGh), 31

with 3 = 3 — 3, being the difference betweghand the equilibrium positiof,. The Lyapunov
functionV equals the scaled total enerfy= Exi, + E,ot, given by (12) and (13), shifted with
the constant valu&'(j3,), i.e. V = — E—U(/%). Hence, the value df does not change along
solution curves of the system becaiise- 0. The potential/ (5, + 3) allows for a Taylor series
expansion around,

UG + ) = U(Bo) + U (50)3 + 50" (50) 5 + O(F), 32)

in which the first-order term vanishes due to the equilibriconditionU’(3,) = 0. The Lya-
punov functionV can therefore be approximated around the origin by

V= % (ki +1+€) 5 + %U "(Bo) 3 + O(3%). (33)

Hence, the Lyapunov functiow is locally positive definite itU/”(5,) > 0 and the equilibrium
position 3, is therefore Lyapunov stableif”(5,) > 0 is fulfilled. For smallg it holds that

(ki +1+€%) B+ U"(B0)3 =0, (34)
from which we see that the disk swings for small amplitudes winutational frequency
U//(ﬁo)
2

= 35
Whutation kl 4 1 4 62 ( )

The second derivative of the potentdl can tediously be obtained by solving andw,
from (25) and (26). The derivation greatly simplifies tor 0, i.e. if the disk is infinitely thin,
and under the assumption of stationary rolling motian = 0) and the result is

ki

which is positive ( < 5 < w/2). Consequently, stationary rolling motion is stable for an
infinitely thin disk and has a nutational frequency (35) gty
) (3ky tan? By + 1) g cos By

.= ) 37
wnutatlon kl(kl + 1) ( )

U”(ﬁo) = (k;1<1 + 3 tan? ﬁo) + 1) w?o — gcos By = (3 tan? By + i) g cos [y, (36)
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4 DISSIPATION MECHANISMS

In this section we discuss a number of dissipation mechanama rolling disk. First, we
discuss two types of rolling friction and pivoting frictigqdrilling friction). Subsequently, we
pay some attention to sliding friction of the disk over thieléa Finally, viscous air drag models
are addressed. For the formulation of dry friction laws as/atied force-laws (i.e. inclusions)
we refer to [8, 15].

4.1 Classical rolling friction

Bodies in contact can experience a resistance againsigyolier each other. At this point we
have to ask ourselves what we exactly mean when we say thigsdoall’ over each other [15].
We may call ‘rolling’ the movement of the contact point ovie tsurface of one of the bodies
(here already lies some ambiguity). A resistance agaimst atlype of movement will be called
contour friction and is discussed in Section 4.2. Usuahg term rolling is associated with
resistance against a difference in angular velocity coraptsof the contacting bodies which
are tangential to the contact plane (see for instance [H)s Will be called classical rolling
friction. Contour friction and classical rolling friction &y be identical to each other or be
essentially different, depending on the type of system. ikgtance, if a planar wheel rolling
over a flat table is considered, then the two types of rollingtibn yield the same kind of
dissipation mechanism, because the velocity of the coptziot over the contour of the wheel
is directly proportional to the angular velocity of the whedowever, the two types of rolling
friction are essentially different if we consider a thraeénsional disk rolling on a table.

The classical rolling friction law, applied to the rollingsét, describes a frictional moment
in the horizontal plane of the table as a function of the mogm of the angular velocity on
the horizontal plane. The angular veloct®y of the disk has the components,, = w, and
rwy = wy cos 1 — w, sin § around thee[ ande’ axes. For the motion of a rolling disk we can
assume that the frictional moment is much smaller around frexis than around the| axis.

A dry classical rolling friction law (for the:f axis) therefore reads as

Mroll S _Mroll)\NT Sign<wroll)u (38)

with the friction coefficientu,,; and the rolling angular velocity,,; = €2 - ef = pwy =
wy cos 3 — w, sin 3. Similarly, we can consider a viscous classical rollingtfan model, de-
scribed byM, .1 = —cronwron- The classical rolling friction momerit/,,,;, induces a generalised
momentM ¥ = M,e]f in the equations of motion (7)-(9).

4.2 Contour friction

Contour friction is a resisting moment against the movemétiteocontact point over the
rim of the disk [12, 15]. We prefer to consider a contour aaguklocitywe,, = 1. A dry
contour friction law therefore reads as

Mcont S _,ucont)\Nr Sign(wcont)a (39)

wherep...,: IS a dimensionless friction coefficient. Similarly, we camsider a viscous contour
friction model, described by

Mcont = —CcontWcont - (40)

The contour friction moment/,,,; induces a virtual powetw ont Meont = (dwy—dw, tan 5) Mot
which equals the virtual powétu, x M3 + 0w, M1 + dw. x M of the generalised forces.

10
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Considering arbitrary variationgo,, dw, anddw, we conclude that the generalised moment
due to contour friction reads @& > = Moe) — Meon: tan Selt.

4.3 Pivoting friction

Pivoting friction [13] is a frictional moment which resisaspivoting angular velocitywpyot
of the disk around the contact poiit Pivoting friction for the rolling disk has been studied
in [12]. If the pivoting angular velocity is large, then a @dag with sliding friction can ex-
ist. This coupling is modelled by the Coulomb-Contensou ifsitiaw [15], which is not of
importance in this context and will not be considered herdrypivoting friction law reads as

Mpivot € — Mpivot >\NT Slgﬂ (wpivot)a (41)

with the pivoting velocitywpivot = jw. = sinfw, + cos fw.. Similarly, we can consider a
viscous pivoting friction modeM ot = —CpivotWpivot- 1 N€ Pivoting friction momentV/ ;i ot
induces a generalised momeVik™s = M;,oiel = Myivor sin G e} + Myivor cos f el

4.4 Sliding friction

The equations of motion (7)-(9) have been derived undergberaption that the disk purely
rolls over the tablev;, = yr, = 0), i.e. there is no sliding in thel! ande]’ direction of the
contact point. The dissipation due to a resistance agdidsig of the contact point over the
table, which is called radial slippage in [16], can therefapt be studied with the equations
of motion (7)-(9). A detailed numerical model of a rollingslliwhich also includes sliding
friction has been presented in [12]. In order to study theafof sliding friction analytically
one would have to consider the equations of motion of a i®jdlisk’, as have been discussed
in [19], together with friction forces\;, and A, (see [2]) and a Coulomb or viscous friction
law. However, the friction forces;, and\, vanish for stationary rolling motion. Itis therefore
concluded in [16] that sliding friction is not able to disaip energy if the disk is in a state of
stationary rolling motion.

4.5 Viscous air drag

Moffatt [17] proposes a dissipation mechanism due to visavag of the layer of air between
the disk and the table. During the final stage of motion thériaton 6(t) = n/2 — ((¢) is
very small and the air is squeezed between the almost dasalfaces of the disk and table.
The maximal gap between the disk and the table has a heigig peoportional tasin 6§ ~ 6.
Moffatt assumes that the horizontal velocity of the ajr is proportional to the precession
speedy. Furthermore, assuming a no-slip condition for the layeaiobn the table and disk,
he deduces that the layer of air has a shear proportior%g’it@c &/0. Hence, assuming linear
viscosity of the air, the disk experiences a momefat,, = —caragr/6 around thee! axis. The
coefficientcy,, depends on the viscosity of the air and the radius of the dible. viscous air
drag model induces a generalised mom&fit's = Mg, el

The viscous air drag model of Moffatt has been extended bysiild [3] to account for
boundary layer effects which occur for larger values of theination angle. Bildsten [3]
argues that the viscous dissipation does not extend ovewtiode gap for larger values of
the inclinationd but only occurs in boundary layers on the disk and table. Tidthwof
these boundary layers is proportionalftox &~2 and the shear is therefore proportional to

dug . .3
Mgrag X 5 o /6 oc a2,
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E,

n>1

(b)
Figure 3: Energy decay for (&) < 1 and (b)n > 1.

5 The finite-time singularity

The dissipation mechanisms presented in Section 4 lead tmatonous decay of the energy
and therefore ultimately to a decay of the inclination arfijle. The question of interest now
is: which of these dissipation mechanisms predicts a fimte-singularity, or, in other words,
an abrupt halt of the motion in a finite time? Furthermore, wril like to know how the
time-history off(t) looks like for each of these dissipation mechanisms, egptwer-law
relationship (1) with a certain exponentIn this section we give analytical approximations for
the energy decay of a rolling disk for the dissipation medran presented in Section 4. The
energy decay is studied during the final stage of motion winiokivates the following standing
assumptions for the type of motion

A.1 The centre of mass is assumed to be almost immobile tagosary rolling motion holds
andw, = ew,.

A.2 We assume that the kinetic energy associated witis small compared to the potential
energy, i.ed(1 + ky)w? < go.

A.3 We assumé = /2 — 3 to be close to 0 and neglect terms of ord&p?) with respect to
terms of ordeO(1).

A.4 We neglect terms of orde?(e?) andO(ef) with respect to terms of ordé?(1).

Once an approximation for the energy decay is found, one dvabeck whether the above
assumptions are met. Using the assumptions A.1-A.4, weogjppate the total energy =
Exin + Epot, se€ (12) and (13), by the expression

1
E = imﬂ (k1w? +2g0) , (42)
in which only the major terms have been taken into accounindJhe assumptions A.1, A.2
and A.4 we approximate, with the gyroscopic balance equation (22) and only retaadiley
terms

5 g(sinf —ecospf) g(1 — ) g
= ~ ~ =0, 43
Vi T Thitan B —eky | k0 —eky Ky (43)

The assumption of gyroscopic balancing for quasi-statipmaotion is called the ‘adiabatic
approximation’ in [17]. By substitution of (43) in (42), thetal energy of the system can be

12
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approximated with

E= %mﬁé@, (44)

from which we see that the energyis proportional to the inclinatiof. In the following, we

express for the various kinds of dissipation mechanismsligsipative power as a function

of energy, i.e.E = f(E) for E > 0. The power—energy relation gives a scalar differential

equation which approximates the time-evolution of theeystluring the final stage of motion.
If we choose a dry contour friction law, as introduced in 8ett.2, then the dissipation rate

reads as

E - _Ncont)\NT|wcont|' (45)

The assumptions A.2 and A.3 allow us to approximate the nlocordact force with\, = mg.
We now have to express...; as a function of. Using (6), (43) and (44) it holds that

1\? g1 3mr?g*1
Weon = (wy — w; tan B)° ~ (6 - 5) w; ~ k0 ~ % E (46)
The dissipation raté for dry contour friction, see (45), can therefore be exprdss
E=—"2 witha= 1 (ﬁ)é (mrQQ)% 47)
\/Ev cont 2]’61 .

For an arbitrary initial conditior¥(t,) = E, > 0, the differential equation (47) obeys the
solution

3 %
E(t) = (Eg — ga(t —t0)> forty <t <ty, (48)

which shows a decrease to zero in afinite tine ¢, = 2E0%/(3a) similar to Figure 3(a). From
the energyF(t) we can calculaté(t) using (44) which gives

6@) - (90% - \/kzlﬂcont(t - tO)) : (49)

Now that the solutior(¢) is known, we can check the validity of the assumption A.2. l&va
ation of the conditior%(l + k1)w? < g0 by substitution of (49) gives the conditian — ¢ =
7 > 1. With the critical inverse time..

2 g*l Mcont%
.= =(k1+1 kit — . 50
=Gt (42 e

If we consider‘a viscous contour friction modél.,; = —ceontweont (40), then the dissipa-
tion rate reads aB = —c w2, Using the approximation (46), similar to the above analysi
we deduce that

. ) 3 ~2,..2
E = —%, with a = i%ccont. (51)
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friction type diff. equation| energy profile exponent
contour friction:
) 3 2

dry E=—aE 3% | B(t) = (Eg — 3q(t — t0)> “ln=2

viscous E=—aE" | B(t) = (E2—2a(t—t)))* |n=1
class. rolling friction:

dry E=—aEr | E(t)=(VE - 2(t—t0)" | n=2

viscous E = —aFE E(t) = Eyet—t) n =00

pivoting friction:

dry E=—aB: | B(t)=(VE —%t—1t)) |n=2

viscous E = —aFE E(t) = Ege~alt—t) n =00
sliding friction: E=0 E(t) = Ey n=1
viscous air drag:

Moffatt E=—aBE? | E(t) = (B —3a(t—15))° |n=1

Bildsten E=—aB~% | E(t) = (E§ — %t — t0)>% n=4

Table 1: Power—energy relations for various friction medel

For an arbitrary initial conditio(t,) = Ey, the differential equation (51) obeys the solution

B(t) = (B2 —2a(t —t))? forty <t <ty (52)

which shows a decrease to zero in a finite time- t, = E3/(2a).

The power—energy relations can be deduced for all otheipdissn mechanisms presented
in Section 4: dry/viscous classical rolling friction, dvigcous pivoting friction, sliding friction
and the viscous air drag models of Moffatt [17] and Bildstej [Bhe results are summarised
in Table 1 and the exponentis given in the last column. A sketch of the energy profiles
depending om are shown in Figure 3. Viscous classical rolling frictiordanscous pivoting
friction have an exponent = oo as can be seen from the property= lim,,_..(1+ %)" of the
exponential function. In Section 4.4 we concluded thatirsjdriction is not able to dissipate
energy if the disk is in a state of stationary rolling motiardat therefore holds thak = 0
under assumption A.1. The dissipation for sliding frictican be put in the fornt = —aE°
with ¢ = 0 and sliding friction therefore has a (theoretical) expdnes- 1.

We conclude that viscous classical rolling friction andceiss pivoting friction predict an
asymptotic behaviour of the energy profile whereas slidimagién predicts no energy dissipa-
tion at all. All other dissipation mechanisms, discusse® Head to a decrease of the energy in
finite time. However, dry classical rolling friction and dpyoting friction predict a parabolic
decay of the energy:(= 2) and therefore not an abrupt halt of the motion. The viscaudrag
model of Moffatt predicts the smallest value of the exponent

14
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1=
glass plate \céﬁfgm =

Figure 4: Experimental setup.

6 EXPERIMENTAL ANALYSIS

Experiments have been conducted on the ‘Euler disk’ (a 8tieetoy of Tangent Toy) using
a high-speed video camera. The experimental setup and reeasut technique are presented
in Section 6.1. The experimental results are discussedatid®es.2 and a comparison is given
with the theoretical results of the previous sections. Téengetric data and inertia properties
of the ‘Euler disk’ areDy = 2r¢ = 75.5 mm, D = 2r = 70.0 mm, H = 2h = 13 mm,
m = 0.4499 kg, I} = tmrl + 5mh?, I3 = smrf andg = 9.81 m/s’.
6.1 Experimental setup and measurement method

The experimental setup (Figure 4) consists the disk whislpis on a glass (or aluminium)
base-plate being fixed to the supporting table. A high-speadera is positioned such that
it records the side-view of the spinning disk. Two lamps véttitboxes provide diffuse light
in order to avoid shadows. The top and side of the disk have paeted white for better
reflection. The high-speed video camera (NAC, Hi-Dcam 1) been used at a framerate of
1000 fps with a shutter time of 1/1000 s and a resolution(o x 348 pixels. The disk is
put in motion by hand and the measurement is stopped manuléy the motion of the disk
has ceased. The last 10000 frames, which corresponds tceet0rsling time, are stored on the
computer board.

The data is analysed frame-by-frame in a post-processiagephsing a dedicated AL AB
program written by the author. First, the frame is convetted black-and-white image using
an edge-detection algorithm (Image Processing Toolbdx@.riim of the top surface of the disk
is in this image visible as an ellipse if the surface is in viginthe camera, or as the upper
segment of an ellipse if the surface is not in view of the camdfigures 5 shows a frame
before and after post-processing. In a second step, a nwhpemts on the rim of the disk are
located. An ellipse is fitted on these points, which is a lifeast-square problem. This leads
to a first estimate for the semi-major and semi-minor axeheftop surface of the disk and
for the position of its geometric centre. This first estimatfor the parameters of the ellipse
is already very good if the top surface in view of the camerd tfwe whole ellipse is visible.
However, if the top surface is not in view of the camera, thely the upper part of the rim
is visible and the fitted ellipse can be cumbersome. The sesjor axis should be equal to
the diameter of the disk of which the size in pixels is knowrfeaehand. A second fitting
procedure is carried out with a pre-specified semi-majos.aXhis leads to a nonlinear least-
square problem, which is solved using the first estimatianitial guess. This final estimation
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(b)

Figure 5: Frame before processing (a) and after procesik)ng (

of the ellipse is satisfactory for all frames. The paransetdithe ellipse provide two pieces of
information: the inclination anglé of the disk and the precession angleNo information is
obtained about the angle

Figure 5(b) shows the post-processed frame. Eighteengpntdicated with small circles)
have been found on the rim of the top surface. The fitted ellipshown with a larger line-
thickness. The described post-processing technique ofrthges which fits an ellipse on the
top surface has the advantage that it gives a reasonablyedecasult even if the contour of the
disk is blurred, because the method uses a number of poihishweverages out uncertainties.
The blurring in the images prohibits techniques which singdtermine the inclination angle
by finding the highest point of the disk.

6.2 Experimental results

A number of measurements have been done with both glass amihaim flat base-plates.
The results were always qualitatively similar, with thetidistion that the spinning times on
an aluminum plate were much smaller. Here, we discuss ordgynogasurement with a glass
base-plate.

Figure 6(a) shows the time-history of the measured indbinaangled(¢). We observe that
the disk comes to an abrupt halttat= ¢, = 9.61 s after whichd(¢) = 0, i.e. the disk lies flat
on the base-plate. We also see that the motion of the disksterd a ‘slow motion’ with a
superimposed high-frequency oscillation. The slow motbthe inclinationd shows a kind
of ‘'square-root’ behaviour, i.e. the slope tends to mindimity just before the motion ceases.
This is often called the ‘finite-time singularity’ in liteare.

Figure 6(b) showsog(#) as a function otog(7), wherer = ¢; — ¢ is the inverse time and
log(z) denotes the natural logarithm of The ‘finite-time singularity’ occurs for = 0 s. The
slope of the curve in Figure 6(b) varies fro§ﬁor large to % for small . We therefore read
from Figure 6(b) that for different time-intervals it holtsat

O(r) o 1", (53)

with n = 2 orn = 3. Furthermore, the curve in Figure 6(b) crosses the verdigiallog 7 = 0
at the value—3.5 and it therefore approximately holds th#t-) = 0.0302 - 7. Assuming
dry contour friction and using (49) and (50), we obtain théneste (1., = 1.7 - 10~* for the
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Figure 6: Measured inclination angle

contour friction coefficient and. = 4.2-10~* s for the critical time. Similarly, assuming viscous
contour friction, we obtain the estimatg,, = 1.1 - 107 Nms andr, = 1.5 - 10~2 s. Hence,
according to the theoretical analysis of Section 5, therapsion of gyroscopic balancing can
no longer be expected to hold during the last millisecondsrbehe end of motion.

The angular velocityo, = ¢ cos 3 is obtained from3(t) = 5 — 6(t) and numerical dif-
ferentiation ofa(t) with a low-pass filtering (50 Hz cut-off frequency). Furtheare, a semi-
analytical theoretical prediction af, is obtained using equation (22) and the measured values
of 3(t). Equation (22) assumes that the disk is in a state of statiailing motion. Fig-
ure 7(a) shows the ‘measured’ angular velocityas a solid line and the theoretical prediction
with equation (22) by small circles. We see that the two esioms ofw, agree very well.

The high-frequency content of the sigréét) is analysed using a moving-window discrete
fast Fourier transform. At each discrete time-instant adwm of 2000 samples is taken (2 sec-
onds), centred around that time-instant. Each window i¢yaad by a2'? point FFT and the
frequency corresponding to the highest peak in the spadradity curve is determined. This
frequency, which is shown in Figure 7(b) by a solid line, is easured estimate for the nuta-
tional frequencyv,iation. The described method has a resolutiogof1000/2'? = 1.53 rad/s,
which explains the stairs of the solid line in Figure 7(b). IYOthe first 5 seconds have been
shown because the measured estimatesfgt..;.. becomes unreliable when the slopedéf)
is too large and varies too much during 2 seconds. A semiscall theoretical prediction of
whutation 1S ODtaiNed using equation (35) together with (25), (26)¢) = ew.(t) and the mea-
sured values ofi(t) andw,(t). The theoretical prediction @, .tion(t) @ssumes that the disk
in a state of stationary rolling motion. The theoreticaldicdon of wyyation(t) IS Shown in
Figure 7(b) as small circles. The two estimatesQf...i.n(t) agree reasonably well.

From this experiment we can draw a number of conclusionstaheunotion and dissipation
mechanism during the final stage of motion of a rolling diske st discuss the conclusions
about the type of motion and then discuss the dissipatiorharesm.

The good agreement between experimentally obtained védnes andw,.tion With the-
oretically estimates under the assumption of stationdtygomotion indicates that the disk is
approximately in a state of stationary rolling motion. Tlsato say, the disk is during the final
stage of motion in the neighbourhood of a quasi-equilibratate for which the centre of mass
is almost immobile. The dissipation in the system causesgtiasi-equilibrium state to slowly
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Figure 7: Measured angular velocity and nutation frequgeolid lines) and semi-analytical theoretical predic-
tions (c symbols).

change over time. Apparently, the state of the disk slidewat along the one-dimensional
sub-manifoldS of stationary rolling motion equilibrium states given by3§2 The motion of
the disk consists of the superposition of the slowly varygogsi-equilibrium state and a high
frequency nutational oscillation.

We now come to conclusions about the energy decay and thengbte dissipation mech-
anism. The theoretical results in Section 5 have been dktimeer the standing assumptions
A.1-A.4. The discussion in the previous paragraph inditadt assumption A.1 is fulfilled.
The measured decay of the inclination an@lever time shown in Figure 6 indicates that the
inclination is proportional to the fractional power of thevérse timer. Assumption A.2 is
therefore not fulfilled for very smatt, i.e. fort close tot;, becauses, = —@ tends to infinity.
However, if we do not consider the last fraction of a secorfdrieghe finite-time singularity and
consider the final stage of motion of the disk on a time-scbéeoonds, then we can reasonable
say that assumption A.2 is fulfilled. Clearly, also assunm#i&.3 and A.4 are fulfilled, because
e = 0.1875 andf < 0.12 rad. Hence, under the validity of these assumptions, enué4i4)
expresses the proportionality between the total enéignd the inclinatiort), which in turns
leads to the proportionality

E(r) o< ", (54)
with n = 2 for larger andn = £ for small~.

7 CONCLUSIONS

A literature overview of experiments on the rolling disk hm@esen given in Section 1. The
publications which give an experimental value for the exgran are listed in Table 2. It can be
seen that all publications, including the results of Sec@preport the exponents= % and/or
n = 2.

Vgrious dissipation mechanisms for the rolling disk haverbéiscussed in Section 5 and the
corresponding energy profiles and exponents are listedale Ta The dry contour friction dis-
sipation mechanism leads to the exponest % whereas a viscous contour friction dissipation
mechanism has the exponent % It is therefore tempting to make the quick conclusion that

dry contour friction prevails at the beginning of the statioy rolling phase and that viscous
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McDonald and McDonald [16] n = %
Easwaret al.[7] n=2
Capset al.[5] n=12
this paper n=1 2

Table 2: Experimental results on the exponent

contour friction prevails during the last one or two secobefore the motion stops. The con-
tour velocity~..,; tends to infinity ifr approaches zero, which can explain why viscous contour
friction prevails for smallr (large contour velocity) and dry contour friction prevdibs large

7 (small contour velocity). However, we should be carefulhwdefinite statements about the
nature of the dissipation mechanism. All we can really sahas a dissipation mechanism of
dry and viscous contour friction can well explain the obsérexperimental results, but other
dissipation mechanisms might exist which lead to the sanperentn in the energy decay
relationship.

In Section 1 it was mentioned that the considered time-gsakEimportance when speaking
aboutthe dominant dissipation mechanism for the rolling disk. Mtffa8] suggests that vis-
cous air drag has to prevail at the very end of the motion aagkeciated exponent is smaller
than, for instance, the exponent of contour or classicéihgpfriction. However, the exponent
for the various dissipation mechanisms, including visaiudrag, have been derived under the
assumption of gyroscopic balancing. This puts a lower boyrwh the inverse time in the
order of milliseconds, i.e. at the very end of the motion. &twer, the effect of the surface
roughness and contamination may play a role when the iri@dimangle and gap between disk
and table become very small. It is therefore questionablether viscous air drag will finally
become dominant if the surfaces are not highly polishedtheumore, the experimental results
do not have a sufficient resolution to reveal the dynamicstaemely small inclination angles
(# < 0.01 rad). The question of the dominant dissipation mechanisnmgihe last fraction of
a second, which is perhaps of less practical interest, fibrereemains unanswered.

Consequently, the experimental evidence and theoretiedysia presented in this paper do
not prove but strongly suggest that dry and viscous contairdn are the dominant dissipation
mechanisms for the finite-time singularity of the ‘Eulerdisn a time-scale of several seconds,
i.e. the time-scale on which the measurements have bearped with a reasonable accuracy.
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