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Variational analysis of inequality impact laws
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Summary. Using tools from convex analysis we reveal important mathematical properties of inequality impact laws such as the
generalized Newton’s impact law. A key issue is the identification of the mathematical entities in which the relationships between these
properties become apparent. In this paper we show that the ‘mean’ contact velocity, being half the sum of the pre- and post-impact
contact velocity, is dual to the impact impulsive force. Here, a (set-valued) mapping between these dual variables is introduced and we
prove that its maximal monotonicity is equivalent to the non-expansivity of the impact map from pre- to post-impact velocities. Explicit
expressions of these mappings are given for the generalizedNewton’s impact law with global restitution coefficient.

Introduction

Various impact laws are used in multibody dynamics with hardunilateral constraints, such as the generalized Newton’s
impact law and generalized Poisson’s impact law. These impact laws are usually formulated as inequality complemen-
tarities on local contact kinematic and kinetic quantities(i.e. relative contact velocities and impulsive contact forces).
In [7] an extensive mathematical framework, which has been namedVariational Analysis, has been presented that unifies
problems in optimization, mechanics, control and stability theory. The aim of this paper is to gain a deep understanding
of impact laws through a variational analysis. A rigorous mathematical framework for impact laws is essential for the
development of new impact laws and forms a basis for further research in nonlinear dynamics and control of mechanical
systems with unilateral constraints.
The results of this paper are of direct use in the accompanying paper [1], in which it is shown that the maximal monotonic-
ity property of the impact operatorH leads to a convergence property of a Lagrangian system with unilateral constraints
which can be used directly for the design of a synchronization based observer.

Mechanical systems with unilateral constraints

Lagrangian systems such as multibody systems can be described by an equation of motion in the form

M(q, t)q̈ − h(q, q̇, t) = 0, (1)

whereM(q, t) is the mass matrix andh contains the generalized forces with respect to the minimalcoordinatesq ∈ R
f .

In addition, we may consider frictionless (scleronomic) contacts between bodies of the system. Letgi(q), i = 1, . . . n,
denote signed contact distances between contacting partners, which we gather in the vectorg = {gi}. The addition of
contacts invokes contact forcesλ = {λi} on the right hand side of (1) such that

M(q, t)q̈ − h(q, q̇, t) = W (q)λ, (2)

whereW = {wi} is the matrix of generalized force directionswT
i = ∂gi

∂q
[2]. If the contacting bodies are considered

to be impenetrable, then this leads to hard unilateral constraints in the form of inequalitiesg(q) ≥ 0. In this setting, the
generalized velocityu = q̇ (defined for almost allt) jumps at collision time instants from the pre-impact velocity u− to
the post-impact velocityu+. On collision time instants, the impulsive dynamics is described by the impact equation

M(q, t)(u+ − u−) = W (q)Λ (3)

together with an impact law which specifies the dependence ofthe impulsive contact forcesΛ on kinematic quantities.
We will assume that the constraint distancesg are only a function of the generalized positionsq and the constraint
velocities are therefore a linear function of the generalized velocities,

γ = WTu. (4)

A velocity jump due to a collision leads to the pre-impact contact velocityγ− = WTu− and post-impact contact velocity
γ+ = WTu+. The impact equation (3) may be expressed in the contact velocities as

γ+ − γ− = WT(u+ − u−) = WTM−1WΛ = GΛ, (5)

whereG = WTM−1W is the Delassus matrix. Here, we will assume that the generalized force directionswi are
linearly independent, and, therefore, that the matrixW is of full rank which implies the positive definiteness ofG.
The impact equation is to be complemented by an impact law andone of the simplest impact laws for unilaterally con-
strained multibody systems is the generalized Newton’s restitution rule.
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Generalized Newton’s impact law

The classical Newton’s impact law for a closed geometric unilateral constrainti

γ+

i = −εiγ
−

i , gi = 0, 0 ≤ εi ≤ 1 (6)

relates the post-impact velocityγ+

i of unilateral constrainti to the pre-impact velocityγ−

i by a Newtonian coefficient of
restitutionεi. The caseεi = 1 corresponds to a completely elastic impact, whereasεi = 0 corresponds to a completely
inelastic impact. The impact, which causes the sudden change in constraint velocity, is accompanied by an constraint
impulseΛi > 0 at unilateral constrainti. Suppose that, for any reason, the unilateral constraint does not participate
in the impact, i.e. that the value of the constraint impulseΛi is zero, although the geometric unilateral constraint is
closed (gi = 0). If γ−

i < 0, then the occurrence of such a superfluous constraint only happens for multi-constraint
situations. Following [3], for superfluous constraints we generalize the classical Newton’s impact law by allowing post-
impact constraint velocities higher than prescribed by Newton’s impact law in the case of a non-vanishing impulse, i.e.
γ+

i ≥ −εiγ
−

i . Summarizing, two cases can occur at a closed unilateral constrainti (i.e.gi = 0):

1. The unilateral constraint is actively participating in the impact process, i.e.Λi > 0 andγ+

i = −εiγ
−

i ,

2. The unilateral constraint is superfluous, i.e.Λi = 0 andγ+

i ≥ −εiγ
−

i .

These two cases are combined in an inequality complementarity impact law on velocity–impulse level:

Λi ≥ 0, γ+

i + εiγ
−

i ≥ 0, Λi(γ
+

i + εiγ
−

i ) = 0, (7)

whereasΛi = 0 if gi > 0. Using theUpr operator (see the Appendix) we write the generalized Newton’s impact law as

−Λi ∈ Upr (γ+

i + εiγ
−

i ) ⇔

{

Λi > 0 whenγ+

i = −εiγ
−

i ,

Λi = 0 whenγ+

i ≥ −εiγ
−

i ,
(8)

or in vector form as

−Λ ∈ Upr (ξ), (9)

whereξ = γ+ +Eγ− andE = diag(εi).
The generalized Newton’s impact law (8) is the simplest inequality impact law for hard unilateral constraints, as it only
uses a single inequality complementarity. Ifγ−

i ≤ 0 andεi ≥ 0, then it holds thatγ+

i ≥ −εiγ
−

i ≥ 0. The kinematic
consistency of the post-impact velocitiesγ+

i ≥ 0 of the generalized Newton’s impact law therefore follows from the sign
of the pre-impact velocitiesγ−

i . This sign condition naturally holds for geometric unilateral constraints as the bodies have
to approach each other in order to come into contact.
An impact law, such as the generalized Newton’s impact law, is usually expressed in the pre- and post-impact contact
velocities, i.e.γ− andγ+. In the following, we will propose a different kind of representation which reflects the specific
properties of the impact law much better.

Variational analysis for impact laws

A variational analysis of impact laws requires the identification of dual variables which constitute the impact law. Hereto,
we consider the kinetic energy dissipated in the impact process

T+ − T− =
1

2
u+T

Mu+ −
1

2
u−T

Mu− =
1

2

(

u+ + u−
)T

M
(

u+ − u−
)

=
1

2

(

γ+ + γ−
)T

Λ, (10)

in which we identify the kinematic quantity

γ̄ =
1

2

(

γ+ + γ−
)

. (11)

The kinematic variablēγ and kinetic variableΛ are therefore dual variables in the sense thatδγ̄T
Λ is the virtual work

of the impulsive constraint force. The key idea of this paperis to reveal the mathematical structure of the impact law by
formulating the impact law as a set-valued relationship

−Λ ∈ H(γ̄) (12)

between the dual variables̄γ andΛ, whereH : R
n ⇉ R

n is (in general) a set-valued operator. We first recall the
definition of (cyclic) maximal monotonicity of a set-valuedfunction [7].
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Figure 1: Implications of a maximal monotone impact law.

Definition 1 (Maximal monotonicity of a set-valued function)
The set-valued functionF is called monotone if its graph is monotone in the sense that

(y1 − y2)
T(x1 − x2) ≥ 0 (13)

for all (x1,y1) and(x2,y2) such thaty1 ∈ F(x1) andy2 ∈ F(x2). Furthermore,F is called maximal monotone if it is
monotone and if there exists no other monotone set-valued function whose graph strictly contains the graph ofF .

Definition 2 (Cyclic maximal monotonicity of a set-valued function)
The set-valued functionF is called cyclically monotone if for any choice of pointsx0, x1, . . . , xm (for arbitrarym > 0)
andyi ∈ F(xi) one has

yT
0 (x1 − x0) + yT

1 (x2 − x1) + · · ·+ yT
m(x0 − xm) ≤ 0. (14)

Furthermore,F is called maximal cyclically monotone if its graph cannot beenlarged without destroying this property.

Cyclic maximal monotonicity ofF is a stronger condition than maximal monotonicity. Furthermore, ifF is cyclically
maximal monotone, then it can be considered to be the subdifferential of a convex proper lower semicontinuous function
f : Rn 7→ R∪ {∞}, i.e.F(x) = ∂f(x) [7]. Consequently, if the impact mapH enjoys the cyclic maximal monotonicity
property, then there exists a convex proper lower semicontinuous dissipation functionΦ, such that

−Λ ∈ ∂Φ(γ̄) = H(γ̄). (15)

The dissipation function is not to be confused with the impact workD(γ̄) given by

D(γ̄) = −(T+ − T−) = −γ̄T
Λ, (16)

and, ifH is cyclically maximal monotone, thenΦ exists and we may writeD(γ̄) = γ̄T∂Φ(γ̄). Typically, an impact law
fulfills that vanishing pre-impact velocitiesγ− = 0 do not lead to impulsive forces, and therefore vanishing post-impact
velocitiesγ+ = γ− = 0. This implies the natural condition0 ∈ H(0) for the impact mapH. The maximal monotonicity
of H together with this condition yields−(Λ− 0)T(γ̄ − 0) ≥ 0 and therefore the dissipativityD(γ̄) ≥ 0 of the impact
law. Maximal monotonicity of the impact law is therefore a stronger condition than dissipativity.
Other ways to express an impact law is by a mappingS from pre-impact to post-impact constraint velocities

γ+ = S(γ−), (17)

or by a mappingZ from pre-impact to post-impact generalized velocities

u+ = Z(u−). (18)

The mappingsS andZ are single-valued whereasH is generally set-valued. The introduction of the mappingsH, S and
Z as expressions for the impact law allows us to reveal important properties which we gather in the following theorem
and are illustrated in Figure 1.

Theorem 1
The following properties of the impact law are equivalent

1. The set-valued impact mapH is maximal monotone, i.e.

−(γ̄1 − γ̄2)
T(Λ1 −Λ2) ≥ 0, where−Λi ∈ H(γ̄i), i = 1, 2,

and no other point can be added to the graph ofH without destroying the monotonicity property.

2. The impact mapS in local contact velocities is maximal non-expansive in themetricG−1, i.e.

‖γ+

1 − γ+

2 ‖G−1 ≤ ‖γ−

1 − γ−

2 ‖G−1 , G = WTM−1W ,

whereγ+

i = S(γ−

i ) and the domain ofS isRn.
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3. The impact mapZ in generalized velocities is maximal non-expansive in the metricM , i.e.

‖u+
1 − u+

2 ‖M ≤ ‖u−
1 − u−

2 ‖M ,

whereu+

i = Z(u−

i ) and the domain ofZ is R
f .

Proof: Using (11) and (5), the monotonicity condition ofH can be rewritten as

0 ≥2(γ̄1 − γ̄2)
T(Λ1 −Λ2)

=(γ+
1 + γ−

1 − γ+
2 − γ−

2 )TG−1(γ+
1 − γ−

1 − γ+
2 + γ−

2 )

=(γ+
1 − γ+

2 )TG−1(γ+
1 − γ+

2 )− (γ−
1 − γ−

2 )TG−1(γ−
1 − γ−

2 )

=‖γ+
1 − γ+

2 ‖2G−1 − ‖γ−
1 − γ−

2 ‖2G−1

from which follows the non-expansivity ofS in the metricG−1 and vice versa. Furthermore, using (4) together with (11)
and (3), the monotonicity condition ofH can be rewritten as

0 ≥2(γ̄1 − γ̄2)
T(Λ1 −Λ2)

=(u+

1 + u−

1 − u+

2 − u−

2 )
TW (Λ1 −Λ2)

=(u+

1 + u−

1 − u+

2 − u−

2 )
TM(u+

1 − u−

1 − u+

2 + u−

2 )

=‖u+

1 − u+

2 ‖
2
M − ‖u−

1 − u−

2 ‖
2
M

which is the non-expansivity ofZ in the metricM .
The equivalence of the maximality remains to be proven. Hereto, use (11) and (5) to arrive atγ− = γ̄− 1

2
GΛ from which

followsγ− ∈ γ̄ + 1

2
GH(γ̄) = (I + 1

2
GH)(γ̄), whereI denotes the identity. Moreover, it holds thatγ+ = 2γ̄−γ− and

therefore

S = 2(I +
1

2
GH)−1 − I. (19)

The equivalence of the maximality follows from the Minty parametrization of a set-valued graph (see Theorem 12.15
in [7]): if F is maximal monotone, then(I + F)−1 is single valued and defined onRn. Therefore, ifH is maximal
monotone, then so is1

2
GH andS must have theRn as its domain. Lastly, using (3) we deduce that

Z = I +M−1WG−1(S ◦WT −WT). (20)

Therefore, ifS is single-valued with domainRn, then alsoZ is single-valued with domainRf . �

For a cyclically maximal monotone impact mapH which is positively homogeneous we are able to prove the following:

Theorem 2
If Φ exists and is positively homogeneous of degree 2, then it holds thatΦ(γ̄) = 1

2
D(γ̄).

Proof: If Φ is positively homogeneous of degree 2 then it holds that

Φ(αγ̄) = α2Φ(γ̄) ∀α > 0. (21)

Differentiation with respect toα gives the Euler identity∂Φ(αγ̄)Tγ̄ = 2αΦ(γ̄). Settingα = 1 yieldsD(γ̄) = 2Φ(γ̄). �

Impact mappings for Newton’s impact law with global restitution coefficient

As an example, we show the mappingsH, Z andS for the generalized Newton’s impact law with a global restitution
coefficientε, i.e. all restitution coefficientsεi are identical.
Using (11) and (5), we expressξ as

ξ = γ+ + εγ− =
1 + ε

2
(γ+ + γ−) +

1− ε

2
(γ+ − γ−) = (1 + ε)γ̄ +

1− ε

2
GΛ. (22)

Newton’s impact law−Λ ∈ Upr(ξ) can be inverted to−ξ ∈ Upr(Λ). Together with the positive homogeneity ofUpr
the latter yields

−γ̄ −
1− ε

2(1 + ε)
GΛ ∈ Upr(Λ). (23)
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Figure 2: Maximal monotonicity of the generalized Newton’simpact law.

The equivalence (37), shown the the Appendix, allows us to separateγ̄ fromΛ

1− ε

2(1 + ε)
Λ = proxG

R
+

0

(−G−1γ̄). (24)

Hence, we arrive at

−Λ ∈ H(γ̄) =







2(1 + ε)

ε− 1
proxG

R
+

0

(−G−1γ̄) 0 ≤ ε < 1,

Upr(γ̄) ε = 1,
(25)

Herein,proxG
R

+

0

(·) denotes the proximal point to the setR
+
0 in the metricG. For the generalized Newton’s impact law,

H is a single-valued proximal point mapping forε < 1 which degenerates in a set-valued unilateral primitive forε = 1.
Similarly, we can derive the mappingsS andZ as

γ+ = S(γ−) = (1 + ε)G proxG
R

+

0

(−G−1γ−) + γ−, (26)

u+ = Z(u−) = (1 + ε) proxMTC
(u−)− εu−, whereTC = {u|WTu ≥ 0}. (27)

Furthermore, we can prove that−Λ ∈ H(γ̄) = ∂Φ(γ̄) with the dissipation function

Φ(γ̄) =
1 + ε

1− ε
‖ proxG

R
+

0

(−G−1γ̄)‖2G =
1 + ε

1− ε

(

‖γ̄‖2G − distG
R

+

0

(−G−1γ̄)2
)

. (28)

Indeed, using∂(1
2
distC(x)

2) = x − proxC(x), see [7], we can check thatH(γ̄) = ∂Φ(γ̄). Hence, the generalized
Newton’s impact law with a global restitution coefficient has an impact mapH which is cyclically maximal monotone
and, correspondingly, a convex dissipation functionΦ being positively homogeneous of degree 2.

Maximal monotonicity of Newton’s impact law with different restitution coefficients

The more general case of different restitution coefficientsrenders the problem more complex and the maximal monotonic-
ity of H is not fulfilled for all values of0 ≤ εi < 1. However, a sufficient condition can be given.

Theorem 3
A sufficient condition for the maximal monotonicity of the operatorH(γ̄) of Newton’s impact law with different restitution
coefficients, is thatE is diagonal and that∆G is positive semi-definite, where∆ := (I +E)−1(I −E).

Proof: Usingξ = γ+ +Eγ− and (5) we can express the contact velocities as

γ+ = (I +E)−1(ξ +EGΛ), γ− = (I +E)−1(ξ −GΛ), (29)

and the mean contact velocity as

γ̄ =
1

2
(γ+ + γ−) = (I +E)−1ξ −

1

2
∆GΛ. (30)

Evaluation of the monotonicity expression(Λ2 −Λ1)
T(γ̄2 − γ̄1) leads to

−(Λ2 −Λ1)
T(γ̄2 − γ̄1) = −(Λ2 −Λ1)

T(I +E)−1(ξ2 − ξ1) +
1

2
(Λ2 −Λ1)

T
∆G(Λ2 −Λ1) (31)
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The first term on the right-hand side can be written as

−(Λ2 −Λ1)
T(I +E)−1(ξ2 − ξ1) = −

n
∑

i=1

(1 + εi)
−1(Λ2i − Λ1i)(ξ2i − ξ1i), (32)

where−ξ1i ∈ Upr(Λ1i), −ξ2i ∈ Upr(Λ2i). This term is non-negative because of the maximal monotonicity of the
Upr-operator. The second term is maximal monotone if the matrix∆G is positive semi-definite. Hence, the right-hand
side is non-negative proving that the operatorH is maximal monotone. �

We are able to distinguish two special cases. On the one handE = εI (a global restitution coefficient) and on the other
handG = diag{Gii}, which implies that the contacts are uncoupled. Figure 2 illustrates Theorem 3 for

G =

(

1 0.9
0.9 1

)

. (33)

The mappingH is maximal monotone for valuesε1 andε2 which are not too far apart.

Conclusions and Outlook

In this paper, the kinematic quantitȳγ, being dual to the impulsive contact forceΛ, has been identified as a fundamental
mathematical object for a variational analysis of impact laws. A key result is the equivalence of the maximal monotonic-
ity of H and the maximal non-expansivity ofS : γ− 7→ γ+ andZ : u− 7→ u+. The existence of a convex lower
semi-continuous dissipation functionΦ is sufficient for the maximal monotonicity ofH. Explicit expressions for the dis-
sipation function and the impact maps have been derived for the generalized Newton’s impact law with global restitution
coefficient. Furthermore, we have shown that he generalizedNewton’s impact law with non-identical restitution coeffi-
cients is maximal monotone if the product∆G is positive semi-definite. Further research will investigate the generalized
Poisson’s impact law [4].
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Appendix

We make use of the so-called unilateral primitive [2] definedby

Upr(x) = ∂Ψ
R

+

0

=











0 x > 0,

(−∞, 0] x = 0,

∅ x < 0,

(34)

which is the subdifferential of the indicator functionΨ
R

+

0

on the setR+

0 . With the unilateral primitiveUpr the inequality
complementarity is expressed, i.e.−y ∈ Upr(x) is identical tox ≥ 0, y ≥ 0, xy = 0 [2,5], or, if x,y ∈ R

n,

−y ∈ Upr(x) ⇐⇒ 0 ≤ x ⊥ y ≥ 0. (35)

The proximal point function to the closed non-empty convex setC in the metricG is defined as

proxGC (z) = argmin
x∈C

‖x− z‖G = argmin
x

1

2
‖x− z‖2G +ΨC(x). (36)

The right-hand side attains its minimum when its subdifferential vanishes, i.e.G(x− z) + ∂ΨC(x) ∋ 0, from which we
deduce the equivalence

G(z − x) ∈ NC(x) ⇔ x = proxGC (z). (37)
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