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Summary. Using tools from convex analysis we reveal important matéral properties of inequality impact laws such as the
generalized Newton's impact law. A key issue is the idergtfan of the mathematical entities in which the relatiopsthetween these
properties become apparent. In this paper we show that tharihtontact velocity, being half the sum of the pre- and jpogact
contact velocity, is dual to the impact impulsive force. élex (set-valued) mapping between these dual variablesdslirced and we
prove that its maximal monotonicity is equivalent to the f@xpansivity of the impact map from pre- to post-impact eéles. Explicit
expressions of these mappings are given for the generdligedon’s impact law with global restitution coefficient.

Introduction

Various impact laws are used in multibody dynamics with hardateral constraints, such as the generalized Newton’s
impact law and generalized Poisson’s impact law. These diripws are usually formulated as inequality complemen-
tarities on local contact kinematic and kinetic quantiijies. relative contact velocities and impulsive contactés).

In [7] an extensive mathematical framework, which has beenedVvariational Analysis, has been presented that unifies
problems in optimization, mechanics, control and stabilieory. The aim of this paper is to gain a deep understanding
of impact laws through a variational analysis. A rigorougheanatical framework for impact laws is essential for the
development of new impact laws and forms a basis for furtgearch in nonlinear dynamics and control of mechanical
systems with unilateral constraints.

The results of this paper are of direct use in the accompgmaper [1], in which it is shown that the maximal monotonic-
ity property of the impact operat@¢ leads to a convergence property of a Lagrangian system wvitateral constraints
which can be used directly for the design of a synchronindiised observer.

Mechanical systems with unilateral constraints

Lagrangian systems such as multibody systems can be degayban equation of motion in the form

M(qat)q - h(qaqat) = Oa (1)

whereM (q, ) is the mass matrix anll contains the generalized forces with respect to the minimatdinategy € R/.
In addition, we may consider frictionless (scleronomichtaets between bodies of the system. &€yy), i = 1,...n,
denote signed contact distances between contacting partmeich we gather in the vectgr= {g;}. The addition of
contacts invokes contact forcas= {\;} on the right hand side of (1) such that

whereW = {w;} is the matrix of generalized force directions” = %—gq"' [2]. If the contacting bodies are considered
to be impenetrable, then this leads to hard unilateral caings in the form of inequalitieg(g) > 0. In this setting, the
generalized velocityy = ¢ (defined for almost alt) jumps at collision time instants from the pre-impact vélpe.~ to
the post-impact velocity . On collision time instants, the impulsive dynamics is disa by the impact equation

M(q,t)(u” —u”) = W(q)A 3)

together with an impact law which specifies the dependentieedfmpulsive contact forces on kinematic quantities.
We will assume that the constraint distangeare only a function of the generalized positiopend the constraint
velocities are therefore a linear function of the geneealizelocities,

~=WTu. (4)

A velocity jump due to a collision leads to the pre-impactte@hvelocityy~ = W Tu~ and post-impact contact velocity
~t = WTut. The impact equation (3) may be expressed in the contactitielas

Ny =Wt —u) = WM TIWA = GA, ()

whereG = WTM~'W is the Delassus matrix. Here, we will assume that the gemedaforce directionsw; are
linearly independent, and, therefore, that the mdi¥ixs of full rank which implies the positive definiteness@f

The impact equation is to be complemented by an impact lanoaedf the simplest impact laws for unilaterally con-
strained multibody systems is the generalized Newtontituéisn rule.
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Generalized Newton’s impact law
The classical Newton’s impact law for a closed geometritatigial constraint
Yo=—en;, =0, 0<g<1 (6)

relates the post-impact velocity" of unilateral constraint to the pre-impact velocity;” by a Newtonian coefficient of
restitutione;. The case; = 1 corresponds to a completely elastic impact, whetgas 0 corresponds to a completely
inelastic impact. The impact, which causes the sudden &angonstraint velocity, is accompanied by an constraint
impulseA; > 0 at unilateral constraint Suppose that, for any reason, the unilateral constraies cot participate

in the impact, i.e. that the value of the constraint impulsels zero, although the geometric unilateral constraint is
closed ¢; = 0). If v, < 0, then the occurrence of such a superfluous constraint orggdre for multi-constraint
situations. Following [3], for superfluous constraints vemgralize the classical Newton’s impact law by allowingtpos
impact constraint velocities higher than prescribed by téevg impact law in the case of a hon-vanishing impulse, i.e.
’yj' > —ey7y; - Summarizing, two cases can occur at a closed unilaterabicont; (i.e. g; = 0):

1. The unilateral constraint is actively participatingletimpact process, i.&; > 0 andy;" = —&;v;,
2. The unilateral constraint is superfluous, Ae.= 0 and~y;” > —¢;7; .
These two cases are combined in an inequality complemsnitapact law on velocity—impulse level:
Ai>0, 4 +em; 20, A(y +ein) =0, 7

whereas\; = 0if g; > 0. Using theUpr operator (see the Appendix) we write the generalized Newiorpact law as

_ Ai >0 Wh(—:‘ﬂ’)t+ = —&;7Y,
—N €eUpr(v +ev;) © i i 8
pr (v, +e€;) {Ai _0 whent > —ei, (8)
or in vector form as
—A € Upr (&), 9)

where¢ = 4T + Ev~ andE = diag(s;).

The generalized Newton’s impact law (8) is the simplest iradity impact law for hard unilateral constraints, as ityonl
uses a single inequality complementarity~Jf < 0 ande; > 0, then it holds that;” > —¢;7; > 0. The kinematic
consistency of the post-impact velocitigs > 0 of the generalized Newton’s impact law therefore followsnfrthe sign

of the pre-impact velocities; . This sign condition naturally holds for geometric unifaleconstraints as the bodies have
to approach each other in order to come into contact.

An impact law, such as the generalized Newton’s impact lawgsually expressed in the pre- and post-impact contact
velocities, i.ey~ and~*. In the following, we will propose a different kind of repeggtation which reflects the specific
properties of the impact law much better.

Variational analysis for impact laws

A variational analysis of impact laws requires the iderificn of dual variables which constitute the impact law. édey
we consider the kinetic energy dissipated in the impactgssc

1 1 1 1
TH—-T" = §u+TMuJr — iu*TMu* =3 (uJr + u*)T M (u+ — u*) =3 ('y+ + ’y*)T A, (20)
in which we identify the kinematic quantity
S _
Y=50"+77). (11)

The kinematic variabléy and kinetic variableA are therefore dual variables in the sense thgltA is the virtual work
of the impulsive constraint force. The key idea of this papéo reveal the mathematical structure of the impact law by
formulating the impact law as a set-valued relationship

—A € H() (12)

between the dual variableg and A, where? : R™ = R™ is (in general) a set-valued operator. We first recall the
definition of (cyclic) maximal monotonicity of a set-valu&dhction [7].
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convex |.s.c. dissipation function ®(5)

3
Siym =t —~A cH() Z:u —ut
non-expansive inG~! <=  maximal monotone <=  non-expansive in M
7 =i ller < lf = 72ller (A= A)" (3 =%2) 20 [uf —ufm < [luf —uy|lm

Figure 1: Implications of a maximal monotone impact law.

Definition 1 (Maximal monotonicity of a set-valued function)
The set-valued functiof is called monotone if its graph is monotone in the sense that

(y1 —y2) (1 —@2) > 0 (13)

for all (x1,y1) and(x2, y2) such thaty; € F(x1) andys € F(x2). FurthermoreF is called maximal monotone if it is
monotone and if there exists no other monotone set-valugetitn whose graph strictly contains the graphFof

Definition 2 (Cyclic maximal monotonicity of a set-valued function)
The set-valued functio# is called cyclically monotone if for any choice of points, x+, . .., x,, (for arbitrarym > 0)
andy; € F(x;) one has

Yo (21 — o) +yi (T2 — 1) + - + Yy (@0 — @) <O, (14)
FurthermoreF is called maximal cyclically monotone if its graph cannoimarged without destroying this property.

Cyclic maximal monotonicity ofF is a stronger condition than maximal monotonicity. Furthere, if 7 is cyclically
maximal monotone, then it can be considered to be the sebeliffial of a convex proper lower semicontinuous function
f:R" = RU{oo},i.e. F(x) = df(x) [7]. Consequently, if the impact maj enjoys the cyclic maximal monatonicity
property, then there exists a convex proper lower semicoatis dissipation functiof, such that

—A € 09(7) = H(F). (15)
The dissipation function is not to be confused with the imipeark D(7) given by
D) =—(T"=T7)=—4"A, (16)

and, if # is cyclically maximal monotone, theh exists and we may writ®(5) = ¥T0®(5). Typically, an impact law
fulfills that vanishing pre-impact velocitieg~ = 0 do not lead to impulsive forces, and therefore vanishing-popact

velocitiesy™ = 4~ = 0. This implies the natural conditiam € #(0) for the impact mag{. The maximal monotonicity
of H together with this condition yields (A — 0)T (4 — 0) > 0 and therefore the dissipativi#(5) > 0 of the impact
law. Maximal monotonicity of the impact law is therefore eosiger condition than dissipativity.

Other ways to express an impact law is by a map@rfgom pre-impact to post-impact constraint velocities

vr=8(7), (17)
or by a mappind” from pre-impact to post-impact generalized velocities
ut =Z(u"). (18)

The mappings$ andZ are single-valued wheredsis generally set-valued. The introduction of the mappikgs and
Z as expressions for the impact law allows us to reveal impbgeoperties which we gather in the following theorem
and are illustrated in Figure 1.

Theorem 1
The following properties of the impact law are equivalent

1. The set-valued impact m&p is maximal monotone, i.e.
—(71 —¥2) (A1 — Ag) >0, where — A; € H(%i), i = 1,2,
and no other point can be added to the grapH afithout destroying the monotonicity property.
2. The impact mays in local contact velocities is maximal non-expansive inrhetricG 1, i.e.
I =%l <l —legr,  G=W'MT'W,

wherevy;” = S(v; ) and the domain of isR".
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3. The impact magx in generalized velocities is maximal non-expansive in thegrim M, i.e.
[y — w3 llar < [luy —uyllar,
whereu! = Z(u; ) and the domain of isR/.
Proof: Using (11) and (5), the monotonicity condition&fcan be rewritten as

0>2(71 —42) " (A1 — As)
=+ = )G - )
= )G )~ )G %)
=7 =% lg- = i =7 -

from which follows the non-expansivity ¢f in the metricG ! and vice versa. Furthermore, using (4) together with (11)
and (3), the monotonicity condition { can be rewritten as

0>2(%1 —42)" (A1 — Az)
=(uf +u; —ujy —uy)"W(A — Ap)
=(uf +uy —uy —uy) T M(uy —up —uy +uy)
=[lu —ug far = lur —uz 3

which is the non-expansivity of in the metricM.

The equivalence of the maximality remains to be proven. téetese (11) and (5) to arrive gt = 4 — éGA from which
followsy~ € ¥+ LGH(¥) = (I + 1GH) (%), wherel denotes the identity. Moreover, it holds that = 25 — v~ and
therefore

S =2(I+ %G;'-L)—1 I (19)

The equivalence of the maximality follows from the Minty paretrization of a set-valued graph (see Theorem 12.15
in [7]): if F is maximal monotone, the(¥ + F)~! is single valued and defined @&m. Therefore, ifH is maximal
monotone, then so i1§GH andS must have th&™ as its domain. Lastly, using (3) we deduce that

Z=I+M'WG ' (SoW" —-WwT). (20)
Therefore, ifS is single-valued with domaiR™, then alsaZ is single-valued with domaiR”. O

For a cyclically maximal monotone impact mapwhich is positively homogeneous we are able to prove thevaiig:

Theorem 2
If ® exists and is positively homogeneous of degree 2, thendisithatd () = 1 D(¥).

Proof: If & is positively homogeneous of degree 2 then it holds that
d(a7) = a*®(5) Yo > 0. (21)

Differentiation with respect ter gives the Euler identit§® (o)1 = 2a® (7). Settinge = 1yields D(7) = 2®(7). O

Impact mappings for Newton’s impact law with global restitution coefficient

As an example, we show the mappirds Z and S for the generalized Newton’s impact law with a global resiin
coefficientzs, i.e. all restitution coefficients; are identical.
Using (11) and (5), we expreg§sas

_1+e

_ — &
E=7"+ey =

5 (’7++7’)+¥(7+*7’):(1+6)‘7+1 GA. (22)

Newton’s impact law—A € Upr(&) can be inverted te-¢ € Upr(A). Together with the positive homogeneityGbr
the latter yields

5 72(11155) GA € Upr(A). (23)
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Figure 2: Maximal monotonicity of the generalized Newtangpact law.

The equivalence (37), shown the the Appendix, allows usparsgey from A

1-— 13 - G 1
mA = pI'OXRSr (*G ")/) (24)
Hence, we arrive at
2(1+¢) G 1=
— <
A EHRF) = | proxR[T( G 'q) 0<e<l, (25)

Upr () e=1,

Herein,prox]%(-) denotes the proximal point to the &% in the metricG. For the generalized Newton’s impact law,
0

‘H is a single-valued proximal point mapping fox 1 which degenerates in a set-valued unilateral primitivecfer 1.
Similarly, we can derive the mappingsandZ as

vF=8(y7) = (1 +2)Gproxg (-G7y7T) + 7, (26)
u"=Zu)=(1+¢) prox% (u™)—eu, whereTo = {u|/W™tu > 0}. (27)
Furthermore, we can prove thatA € H(¥) = 0®(%) with the dissipation function
_ 1+4+¢ 1 14+€e/,_ . 1
(7) = Tl prox€ (G~ )% = T (I311% — dist& (-G 7'5)?). (28)

Indeed, using(3 distc(x)?) = & — prox(x), see [7], we can check th@t(y) = 9®(¥). Hence, the generalized
Newton’s impact law with a global restitution coefficientshan impact mag{ which is cyclically maximal monotone
and, correspondingly, a convex dissipation functloheing positively homogeneous of degree 2.

Maximal monotonicity of Newton’s impact law with different restitution coefficients

The more general case of different restitution coefficiesmtslers the problem more complex and the maximal monotonic-
ity of H is not fulfilled for all values of) < ¢; < 1. However, a sufficient condition can be given.

Theorem 3
A sufficient condition for the maximal monotonicity of theenatorH () of Newton’s impact law with different restitution
coefficients, is thak is diagonal and thaA G is positive semi-definite, whel& := (I + E)~'(I — E).

Proof: Using¢ = T + E~~ and (5) we can express the contact velocities as

P =I+E)'(¢+EGA), ~ =I+E)'({-GA), (29)
and the mean contact velocity as
1 1
= 5(~y+ +y ) )=T+E) '€~ FAGA. (30)

Evaluation of the monotonicity expressiof, — A1)T (42 — 41) leads to

(A=A F =) = —(As—A)TT+E) (& — &) + %(Az —A)TAG(A; — Ay) (31)
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The first term on the right-hand side can be written as
—(A— AT+ E) (& — &) =— Z(l + &) " (A2 — Ari) (i — 1), (32)
=1
where—¢;; € Upr(Aq;), —&; € Upr(Ag;). This term is non-negative because of the maximal monatgri€ the
Upr-operator. The second term is maximal monotone if the m&\@ is positive semi-definite. Hence, the right-hand
side is non-negative proving that the operdtois maximal monotone. O

We are able to distinguish two special cases. On the one Band:=1I (a global restitution coefficient) and on the other
handG = diag{G};}, which implies that the contacts are uncoupled. Figure@tithtes Theorem 3 for

1 09
G= (0.9 1 ) ' (33)

The mappingH is maximal monotone for values ande, which are not too far apart.
Conclusions and Outlook

In this paper, the kinematic quantify being dual to the impulsive contact forde has been identified as a fundamental
mathematical object for a variational analysis of impaeatdaA key result is the equivalence of the maximal monotonic-
ity of # and the maximal non-expansivity 6f : v~ — ~T andZ : v~ — wu*. The existence of a convex lower
semi-continuous dissipation functidnis sufficient for the maximal monotonicity ¢{. Explicit expressions for the dis-
sipation function and the impact maps have been derivedhéogéneralized Newton’s impact law with global restitution
coefficient. Furthermore, we have shown that he generalimaon’s impact law with non-identical restitution coeffi-
cients is maximal monotone if the produki’s is positive semi-definite. Further research will investige generalized
Poisson’s impact law [4].
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Appendix

We make use of the so-called unilateral primitive [2] defibgd

0 x>0,
Upr(z) = gy = q (—00,0] = =0, (34)
0 x <0,

which is the subdifferential of the indicator functidrkj on the seR}". With the unilateral primitivéJpr the inequality
complementarity is expressed, i-ey € Upr(z) is identical tox > 0,y > 0, zy = 0[2,5], or, if x, y € R™,

—yeUpr(z) <= 0<zly>0. (35)
The proximal point function to the closed non-empty conwe(sin the metricG is defined as
1
prox§(z) = argmin ||z — z||g = argmin = ||z — 2|5 + Vo (x). (36)
xzecC T 2

The right-hand side attains its minimum when its subdiffiéied vanishes, i.eG(x — z) + 0¥ (x) > 0, from which we
deduce the equivalence

G(z—x) € No(x) < x=prox§G(z). (37)
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