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ABSTRACT
In this paper we present a mixed shooting – harmonic balance method for large linear mechan-
ical systems with local nonlinearities. The standard harmonic balance method (HBM), which
approximates the periodic solution in frequency domain, is very popular as it is well suited for
large systems with many states. However, it suffers from the fact that local nonlinearities cannot
be evaluated directly in the frequency domain. The standard HBM performs an inverse Fourier
transform, then calculates the nonlinear force in time domain and subsequently the Fourier co-
efficients of the nonlinear force. The disadvantage of the HBM is, that strong nonlinearities are
poorly represented by a truncated Fourier series. In contrast, the shooting method operates in
time-domain and relies on numerical time-simulation. Set-valued force laws such as dry friction
or other strong nonlinearities can be dealt with if an appropriate numerical integrator is available.
The shooting method, however, becomes infeasible if the system has many states. The proposed
mixed shooting–HBM approach combines the best of both worlds.
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1 INTRODUCTION
Finding periodic solutions of mechanical systems is an important task in the design process of ma-
chines and mechanical devices. For instance, knowledge of the response of the system to harmonic
excitation is essential to obtain information about high cycle fatigue behaviour. In engineering sys-
tems local nonlinearities are present due to contact or coupling elements. These local nonlinearities
can have a strong impact on the global system behaviour. Therefore, the nonlinearities have to be
considered in the design process and must be modeled accurately as well as in a computationally
efficient way.
The most popular methods to find periodic steady-state responses of nonlinear differential equa-
tions are the Harmonic Balance Method (HBM) [5] [6] and the Shooting Method [7]. The stan-
dard HBM approximates the periodic solution in frequency domain and is very popular as it is
well suited for large systems with many states. Local nonlinearities cannot be evaluated directly
in the frequency domain. The standard HBM performs an inverse Fourier transformation, and
then calculates the nonlinear force in time domain and subsequently the Fourier coefficients of
the nonlinear force. This procedure is often denoted as the Alternating Frequency Time Method
(AFT) [4]. The disadvantage of the HBM is that strong nonlinearities are poorly represented by a
truncated Fourier series. In contrast, the shooting method operates in time-domain and relies on
numerical time-simulation. Set-valued force laws such as dry friction or other strong nonlinear-
ities can be dealt with if an appropriate numerical integrator is available. The shooting method,
however, becomes infeasible if the system has many states. The proposed mixed shooting-HBM
approach combines the efficiency of HBM and the accuracy of the shooting method and has there-
fore many advantages.
In this paper the mixed shooting-HBM approach is introduced as a novel method to calculate peri-
odic solutions of forced mechanical systems. Two different variants of the mixed shooting-HBM
approach, which are called Method 1 and Method 2 in the following, are presented. Depending on
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Figure 1: Three DOF oscillator with dry friction and unilateral constraint.

the position of the local nonlinearities within the mechanical system, the one or the other is better
suitable. The more general Method 2 is tested on a multi-mass oscillator at the end of the paper
and is compared to the full HBM and full shooting method. As local nonlinearities, dry friction as
well as a hard unilateral constraint are investigated.

2 Mixed shooting-HBM approach
The mixed shooting-HBM approach uses the local character of the nonlinearities to find periodic
solutions of mechanical systems efficiently. Therefore the system must be divided into linear and
nonlinear subsystems. This can be done in two different ways which are defined in this paper as
Method 1 and Method 2. First the system description is given and subsequently both methods are
discussed.

2.1 System description
We consider a Lagrangian system of the form

MMMq̈qq(t)+CCCq̇qq(t)+KKKqqq(t) = fff ex(t)+ fff nl(qqq(t), q̇qq(t)), (1)

where fff nl contains the nonlinear forces and fff ex(t) = fff ex(t+T ) is the periodic forcing. We assume
that the system consists of three subsystems with the generalized coordinates

qqq =




qqq1
qqq2
qqq3


 , (2)

that the nonlinear forces only act on Subsystem 1, and that the system matrices MMM, CCC and KKK have
the following structure

MMM =




MMM11 MMM12 MMM13
MMM21 MMM22 MMM23
MMM31 MMM32 MMM33


 , fff nl(qqq, q̇qq) =




fff nl1(qqq1, q̇qq1)
000
000


 . (3)

Subsystem 1 is subjected to nonlinear forces, which only depend on its own positions and veloc-
ities, and is connected to Subsystem 3 through Subsystem 2, e.g. the three DOF oscillator shown
in Figure 1.

2.2 Method 1
This first approach can only be applied to systems which satisfy the condition

MMM31 = MMM13 = KKK31 = KKK13 =CCC31 =CCC13 = 000 (4)

and is suitable for the following relation of the dimensions of the subsystems:

dim(qqq3)� dim(qqq1)> dim(qqq2) (5)
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For Subsystem 2 and 3 we use a harmonic balance approach and impose (as a numerical approxi-
mation) perfect constraints on the system which force the response to be harmonic of the form

qqq2(t) = q̂qq0
2 +

nH

∑
k=1

q̂qqc,k
2 coskωt + q̂qqs,k

2 sinkωt =VVV +(t)
Tq̂qq2, (6)

qqq3(t) =VVV +(t)
Tq̂qq3, (7)

with

VVV+(t) =
(
III cos(ωt)III sin(ωt)III . . . cos(nHωt)III sin(nHωt)III

)
. (8)

The Fourier coefficients of the generalized coordinates qqqi(t) with i = 1,2,3 are obtained from

q̂qqi =
2
T

∫ T

0
VVV−(t)qqqi(t)dt, VVV−(t) =




1
2 III

cos(ωt)III
sin(ωt)III

...
cos(nHωt)III
sin(nHωt)III



, (9)

with ω = 2π
T and nH denoting the number of considered harmonics. The identity matrix III has

here the dimension dim(qqqi). The motion qqq1(t) of Subsystem 1 is described in time domain and is
not constrained to be harmonic. The equations of motion of Subsystem 2 and 3 can therefore be
expressed in frequency domain as

HHH21q̂qq1 +HHH22q̂qq2 +HHH23q̂qq3 = f̂ff ex2,

HHH32q̂qq2 +HHH33q̂qq3 = f̂ff ex3,
(10)

where HHHi j are the dynamic stiffness matrices

HHHi j = diag(JJJi j,0,JJJi j,1, . . .JJJi j,nH ) (11)

with

JJJi j,k =

(
−MMMi j(kω)2 +KKKi j CCCi jkω

−CCCi jkω −MMMi j(kω)2 +KKKi j

)
. (12)

Using (10) the Fourier coefficients q̂qq3 can be expressed in q̂qq2 as

q̂qq3 = HHH−1
33 ( f̂ff ex3 −HHH32q̂qq2) (13)

and can therefore be eliminated from the equations of motion in frequency domain, i.e.

HHH21q̂qq1 +(HHH22 −HHH23HHH−1
33 HHH32)q̂qq2 = f̂ff ex2 −HHH23HHH−1

33 f̂ff ex3. (14)

The equations of motion of Subsystem 1 are nonlinear and are simulated in time-domain. For
known q̂qq2 one can calculate its time-domain representation qqq2(t) and its derivatives and solve the
differential equation for qqq1(t)

MMM11q̈qq1(t)+CCC11q̇qq1(t)+KKK11qqq1(t) =−(MMM12q̈qq2(t)

+CCC12q̇qq2(t)+KKK12qqq2(t))+ fff ex1(t)+ fff nl1(qqq1(t), q̇qq1(t))
(15)

using numerical integration techniques. In particular, if the nonlinear force fff nl1 is a dry fric-
tion force or, more generally, described by a set-valued force law, then dedicated time-integration
schemes such as timestepping methods [1] [3] have to be used. Here it should be noted, that the
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system (1) and consequently (15) turns into a differential inclusion if a set-valued force law is
considered.

A periodic solution of the system can be represented by the trajectory qqq1(t) on the interval 0 ≤ t ≤ T
and by the Fourier coefficients q̂qq2, as q̂qq3 is expressed by (13). The initial condition qqq1(0) and q̇qq1(0)
together with qqq2(t) =VVV+(t)

Tq̂qq2 allow to construct qqq1(t) over one period. The vector of unknowns

xxx =




q̂qq2
qqq1(0)
q̇qq1(0)


 (16)

therefore fully represents a periodic solution of the system. Similar to a shooting method, we
require for Subsystem 1 the periodicity conditions qqq1(T )− qqq1(0) = 000 and q̇qq1(T )− q̇qq1(0) = 000,
where the state at t = T is obtained through numerical time-integration of (15). The periodicity
conditions of Subsystems 2 and 3 are given in frequency domain by (14) and (13). Hence, we seek
a periodic solution by finding a zero of the nonlinear function

fff R(xxx)=




HHH21q̂qq1+(HHH22−HHH23HHH−1
33 HHH32)q̂qq2 − f̂ff ex2 +HHH23HHH−1

33 f̂ff ex3
qqq1(T )−qqq1(0)
q̇qq1(T )− q̇qq1(0)


 . (17)

The zeros of fff R(xxx) can be solved with a Newton-type method by iterating

xxxi+1 = xxxi −
(

∂ fff R

∂xxx

)−1

fff R(xxx
i). (18)

2.3 Method 2
Alternatively, we can divide the system only into two parts, a linear and a nonlinear subsystem,
where

qqqL =

(
qqq2
qqq3

)
, qqqN = qqq1. (19)

The system matrices MMM, CCC, KKK and the nonlinear forces have then the following structure

MMM =

(
MMMNN MMMNL

MMMLN MMMLL

)
, fff nl(qqqN , q̇qqN) =

(
fff nlN
000

)
. (20)

This approach is more general than Method 1. Subsystem 1 and 3 do not have to be uncoupled
since the system is not restricted to condition (4). The use of Method 2 can reduce the computa-
tional effort for systems for which the relationship dim(qqqL)� dim(qqqN) between the dimensions
of the subsystems holds. Similar to Method 1, the motion of the linear subsystem is approximated
by a truncated Fourier series

qqqL(t) = q̂qq0
L +

nH

∑
k=1

q̂qqc,k
L cos(kωt)+ q̂qqs,k

L sin(kωt) =VVV +(t)
T q̂qqL. (21)

Substituting this approximation into (1), the Fourier coefficients q̂qqL of the linear subsystem can be
expressed in the Fourier coefficients q̂qqN of the nonlinear subsystem

q̂qqL = HHH−1
LL ( f̂ff ex,L −HHHLNq̂qqN). (22)

The equation of motion of the linear subsystem is therefore completely described by (22) and only
the equation of motion of the nonlinear subsystem has to be described in the time domain. Using
(22) together with (21), the time-evolution qqqL(t) and its derivatives are given by q̂qqN . Hence, a
differential equation with a reduced dimension

MMMNNq̈qqN +CCCNNq̇qqN +KKKNNqqqN = MMMNLq̈qqL +CCCNLq̇qqL +KKKNLqqqL − fff ex,N + fff fric (23)
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has to be solved for qqqN(t) using numerical time integration.

With (22) and (23) it is possible to represent a periodic solution of the full system in the unknowns

xxx =




q̂qqN
qqqN(0)
q̇qqN(0)


 , (24)

where xxx is a zero of the residuum

fff R(xxx) =




q̂qqN −FFT(qqqN(t))
qqqN(T )−qqqN(0)
q̇qqN(T )− q̇qqN(0)


 . (25)

Note that FFT(qqqN(t)) is the Fourier transformation (9) of the solution of the differential equation
(23) and q̂qqN are the Fourier coefficients which represent the dynamical behaviour of the linear
subsystem through (22). If q̂qqN −FFT(qqqN(t)) = 000 holds, then the linear subsystem is oscillating in
correspondence to the movement of the nonlinear subsystem.

The iteration scheme of the mixed shooting-HBM approach (Method 2) with a Newton-type
method is depicted in Figure 2. Note that, if dim(qqqL) = 0, then the method reduces to the standard
shooting approach.

3 Numerical examples
The three DOF-oscillator (Figure 1) is used as a numerical benchmark to compare the mixed
shooting-HBM approach (Method 2) with the full shooting method and the full HBM, in both
computation effort as well as accuracy.
Since the full and the mixed shooting-HBM approach solve the nonlinear subsystem as a nonlin-
ear differential inclusion, modern time-stepping methods with a set-valued force law are used for
both methods. In contrast to the full and mixed shooting-HBM, the standard HBM with alternat-
ing frequency time approach only calculates the nonlinear force in time domain which makes it
impossible to use the same contact model. Two types of contacts are considered separately in this
work to compare the different methods for a system which is subject to friction or to a completely
elastic unilateral constraint.

3.1 System with friction
First, the different methods are investigated for a system under influence of dry friction. Using
the mixed shooting-HBM or the shooting approach a set-valued force law can be used within the
concept of (measure) differential inclusions. The friction force is expressed by the set-valued
relationship

−λT ∈




µFN , γT > 0,[
−1,1

]
µFN , γT = 0,

−µFN , γT < 0.
(26)

The parameters µ and FN are the friction coefficient and normal load, respectively. This friction
model cannot be used for the HBM because the problem is not solved in time domain. To compare
the methods in a most suitable way, the friction force for the HBM is approximated using an
arctangent function

−λ smooth
T = µFN

2
π

arctan(κγT ), (27)

being a smoothed approximation of (26). The approximation (27) tends to the set-valued force law
(26) for large values of the smoothing parameter κ , see Figure 3.
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Figure 2: Calculation scheme of mixed shooting-HBM (Method 2).

In Figure 4 the displacements of the system calculated with all three methods for the period
T = 10s are shown. During this period the first mass shows a pronounced stick-slip behaviour.
Though for the Harmonic Balance Method 20 harmonics and for the mixed shooting-HBM only
3 harmonics are considered, the mixed method approximates much better the results of the full
shooting method. The smoothing parameter is chosen preferably high (κ = 800). The mixed and
full shooting method employ the set-valued description (26) of the friction law and can therefore
describe stiction precisely. The HBM, however, not only uses the smoothed friction law (27)
but also uses harmonic shape functions to approximate the friction force which leads to a poor
description of this force. In contrast, the mixed shooting-HBM describes the whole nonlinear
subsystem in time domain and approximates only the coupling between both subsystems with
harmonic shape functions.

The mixed shooting-HBM approach becomes more advantageous than the full shooting method
if the dimension of the linear subsystem is much larger than that of the nonlinear subsystem. To
demonstrate this, the linear subsystem is extended with additional masses. This expanded model
is used to compare the full HBM, the full shooting and the mixed approach. The excitation force
is chosen as fexi = 0 for i = 1 . . .n− 1 and fexn = 5cos(ωt). The methods are compared for one
excitation frequency in computation effort and accuracy. To start the calculation for a specific ex-
citation frequency, a starting guess for the first iteration is needed. However, the methods iterate in
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Figure 3: Set-valued friction force and approximated friction force for different values of the
smoothing parameter κ .
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Figure 4: Displacement and friction force for a periodic solution with period time T = 10s of the
three DOF oscillator with dry friction.
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Figure 5: Work-precision-diagram of the HBM and the mixed shooting-HBM approach in relation
to full shooting for a system of n = 30 masses with friction and different numbers of considered
harmonics (nH = 1,3, . . . ,25).

different unknowns and the same starting guess can therefore not be given. To provide comparable
starting guesses, solutions for an excitation frequency close to the actual frequency are used as
starting vectors for the iterative loops of the respective approximation methods.

In Figure 5 the relative error of the amplitude of the first and nth mass and the calculation effort is
shown for different numbers of considered harmonics nH . Both ratios are with respect to the full
shooting method, which is chosen as reference as it is almost exact.
The results show that the computation effort for a moderate accuracy can be reduced drastically
by using the mixed shooting-HBM approach. Compared to the HBM, the mixed approach shows
for all values of nH more accurate results. The horizontal plateau of the relative error of the mixed
method can be explained by the limited resolution of the used Fourier transformation and the
integration schemes. Therefore, the increasing number of considered harmonics reduces the error
only to a specific value.

The used parameters for the calculations in this chapter are summarized in Table 1.

Table 1: Selected parameters for the system with friction.

parameter mi ki ci µ ω fex,30

value 1 1 0 0.8 1
5 π 5cos(ωt)

3.2 System with unilateral constraint
In the second example, the friction force in the first mass is replaced by a unilateral constraint.
The unilateral constraint is modeled within the concept of measure differential inclusions using
the hard contact law

0 ≤ gN ⊥ λN ≥ 0, (28)

where gN is the gap (gN = gN,0 −q1) and λN represents the contact force. The Newtonian impact
law is expressed through the inequality complementarity

0 ≤ γ+N + eNγ−N ⊥ ΛN ≥ 0 with 0 ≤ eN ≤ 1, (29)
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with the post-and pre-impact relative velocities γ+N and γ−N , the contact impulse ΛN and the restitu-
tion coefficient eN . For a more detailed description of the contact law and impact law see e.g. [3].
The concept of measure differential inclusions with set-valued contact and impact law can only
be used for the mixed shooting-HBM and full shooting method. As discussed in Section 3.1, the
HBM only allows a smoothed contact law. Therefore, the contact for the HBM is modeled using a
one-sided spring-damper element

−λ smoothed
N =

{
kcgN +dcγN gN ≤ 0

0 gN > 0.
(30)

The equivalent restitution coefficient eN for a specific one-sided spring-damper element can be
calculated following Brogliato [2]. Since, only a non-dissipative, elastic contact (eN = 1) is used
in this work dc is defined as zero and the model tends to the hard contact if limkc→∞.
In Figure 6, the displacements of a five DOF oscillator with a gap (gN,0 = 0.1) at the first mass
for the HBM, mixed shooting HBM and the full shooting method are depicted. Figure 7 shows
the velocity of the first mass. The used parameters are summarized in Table 2. Like before for
the system with dry friction, the HBM has difficulties to approximate the jump in the velocity of
the first mass at the collision time-instant (t = 0.55), although the contact stiffness kc is chosen
relatively high. The mixed and full shooting method show a true velocity jump whereas the HBM
only gives a rough approximation of this phenomenon.

Table 2: Selected parameters for the system with impact.

parameter m1 m2−5 ki ci kc eN ω fex,5

value 10 1 1 0.3 8000 1 1
5 π 5cos(ωt)
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Figure 6: Displacements of a five DOF oscillator with impact calculated with the different meth-
ods.

4 Concluding Remarks
The presented mixed shooting-HBM approach shows good characteristics in accuracy as well as
in calculation effort, at least for the investigated benchmark system. Depending on the system
size and the nonlinear characteristics the method can be a good alternative to the commonly used
methods like HBM and shooting. It should be noted, that the numerical efficiency of the methods
are hard to compare and that there exist alternative HBM methods to compute periodic solutions of
systems with dry friction and impact. Further research will focus on providing a better comparison
of the mixed shooting-HBM method with the existing methods.
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