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Abstract

The classical form of Hamilton’s principle holds for
conservative systems with perfect bilateral constraints.
In this paper we derive Hamilton’s principle for per-
fect unilateral constraints (involving impulsive motion)
using weak variations. The resulting principle has the
form of a variational inequality in Hilbert space.
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1 Introduction
Classical Analytical Mechanics is concerned with me-
chanical systems with perfect bilateral (mostly holo-

nomic) constraints (Papastavridis, 2002) and is closely

related with the calculus of variations as many princi-
ples of statics and dynamics are formulated in terms of
variational problems, e.g. the principle of virtual work

and Hamilton’s principle (see for instance (Lanczos,
1962)). Unilateral constraints, which are basically in-
equality constraints, are completely ignored in classi-
cal Analytical Mechanics because inequalities are not

discussed by the classical calculus of variations and,
also, because unilateral constraints in dynamics lead to

shocks with discontinuities in the velocity. The math-
ematical tools to handle unilateral problems in stat-
ics, and later also in dynamics, have only been devel-
oped since the last four decades. The field of Non-
smooth Dynamics is now rapidly developing. We re-
fer the reader to the textbooks (Leine and Nijmei-
jer, 2004; Glocker, 2001; Brogliato, 1999).

Variational problems involving convex inequality
constraints are described by variational inequali-
ties and where first introduced by Hartman and
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ity of the theory has since been expanded to in-
clude problems from mechanics, finance, optimisa-
tion and game theory. References on variational
inequalities can be found in the standard refer-
ence (Kinderlehrer and Stampacchia, 1980) or in
the more recent books (Goelevest al, 2003;
Goelevenet al, 2003). Variational problems with
non-convex inequality constraints are described by
hemi-variational inequalities and are discussed in the
seminal work of Panagiotopoulos (Panagiotopoulos,
1993). Moreover, (hemi-)variational inequalities are
related to (non-)convex superpotentials through the
subderivative known from Nonsmooth Analysis, see
the work of Moreau (Moreau, 1968) and Panagiotopou-
los (Panagiotopoulos, 1981).

The extension of classical Analytical Mechanics to
perfect unilateral constraints asks for a reformula-
tion of the variational principles of mechanics in
terms of variational inequalities. The principle of
d’Alembert-Lagrange in inequality form has been dis-
cussed in (Panagiotopoulos and Glocker, 1998; Pana-
giotopoulos and Glocker, 2000; Goelevetal.,, 1997;
Goelevenet al, 1999; May, 1984; May, 1984%).
Various forms of the principle of Hamilton as vari-
ational inequality form can be derived from the
principle of d’Alembert-Lagrange as variational in-
equality (Panagiotopoulos and Glocker, 1998; Pana-
giotopoulos and Glocker, 2000).

The current paper puts one existing form of the prin-
ciple of Hamilton as variational inequality, which has
already been derived in (Panagiotopoulos and Glocker,
1998; Panagiotopoulos and Glocker, 2000), within the
context of weak and strong extrema (Cesar, 1984,
Troutman, 1996). It therefore becomes much more
clear how these different forms of Hamilton’s princi-
ple have to be understood. Furthermore, the weak form

Stampacchia (Hartman and Stampacchia, 1966) todoes notimpose any requirements on the energy dissi-

study partial differential equations. The applicabil-

pation (or conservation).



2 Principle of d'Alembert-Lagrange as varia-
tional inequality

In this section we discuss the principle of d’Alembert-
Lagrange in inequality form (Goelevest al, 1997;
Panagiotopoulos and Glocker, 1998). Consider a point-
massm with positionr € R3 which is subjected to a
constraint forceR and an external forcg'. The princi-
ple of virtual work states that the virtual work vanishes
for all virtual displacementér, i.e.

/NK(T)

Figure 1. Point mass in contact with a bilateral constraint.
W =(mi —F—-R)Tér=0 Yor. (1)

with respect to the unilateral constraintif € 7x (r),
The virtual displacement® = r* — r are infinitely where 7k () is now the tangentone We define a
small differences of arbitraryirtual positionsr* and unilateral constraint aperfectif the constraint force
the actual positiom, such that time is kept constant. satisfies the normality condition (3)

We first consider the case where the constraint is a
bilateral holonomic scleronomic constraigtr) = 0
with g € C1(R?,R), in other words the position of the
point-mass is constrained to the manifdid = {r €
R3 | g(r) = 0} (see Figure 1). Virtual displace- whereNk (r) is the normal cone to the convex J&t
mentsdr are admissible with respect to the constraint The tangent confx (r) and normal conéVx (r) are
if they belong to the tangent spagg (r) = {z € R? | polar in the sense that for alt anddr satisfying
%z = 0}. If the virtual work of the constraint force
vanishes for all virtual displacements which are admis-

—R € Nk (r), (5)

sible with respect to the constraint, i.e. —ReNk(r), oreTx(r) (©)
R™Sr =0 Vor € Tic(r), (2  'tholdsthat
T

then we speak of perfectbilateral constraint. A per- —R7r <0. ™
fect constraint force is therefore normal to the con-

straint manifold in the sense that Hence, for perfect unilateral constraints it holds that the

virtual work of the constraint force is nonnegative for
“R e Ng(r) 3) admissible virtual displacements, i.e.
T
whereN (r) is the set of all vectors which are normal R*or >0 Vor € Tg(r). (8)

to the tangent spacgx (r). Equations (2) and (3) are

equivalent if K" is a manifold. Instead of taking (2) Combining (2) and (1) gives the variational inequality
as definition of a perfect constraint, we therefore could

also have chosen to take the normality condition (2) of B T

the constraint force as definition. The assumption of (mit = F)"6r >0 Vér € Ti(r), )
perfect bilateral constraints in classical mechanics, and

therefore the normality of the constraint force to the \yhich we will refer to as the principle of d’Alembert-
constraint manifold, excludes phenomena as friction. | aggrange in inequality form.

Combining (2) and (1) gives the variational equality

3 The Principle of Hamilton for Non-Impulsive
Motion

Consider a systeny of which we can address each
which is usually referred to as the classical principle of mass-elementsel by its position vecto€ € R3. The
d’Alembert-Lagrange. mass-elementid is subjected to external and internal
We now replace the bilateral constraint by unilat- forces dF', which consist of elastic forces, gravitational
eral holonomic (geometric) scleronomic constraints forces and bilateral holonomic scleronomic constraint
gi(r) > 0,4 = 1...m, see Figure 2. The position forces. Furthermore, the mass-elementid subjected
of the point-mass is in this case constrained to the setto unilateral constraint forcesRl which impose the
K={reR|g(r)>0,i=1...m}. Inthe fol- unilateral holonomic scleronomic constraigt > 0.
lowing, we will confine ourselves to the case tliats The gap functiory depends on the state of the system
a convex set. Virtual displacements are admissible .S and therefore on the position vectgre R3 of all

(m# — F)Yor =0 Vér € Tx(r), 4)



The virtual work of the inertia forces can be rewritten
as

/ o€ €dm = d ( / 55Tg'dm) - / o€TEdm,
s di \Js s

(14)
or, by using the generalised coordinatess

/ 5 €dm = % (6g"p) — 6T (15)
S

: . . : : : where
Figure 2. Point mass in contact with a unilateral constraint.

T
p=[ (5;) én (16)
mass-elements of. The unilateral constraing > 0 s \0q
therefore constrains each mass-element addressgd by
to a setk¢. The principle of virtual work states that if ~is the generalised momentum a¥illis the variation of
the virtual work the kinetic energy

} i, o 1. .
SW = /S 0¢T (édm — dF — dR) (10) T= /S QéTde = iqTM (g, (A7)

vanishes for all virtual variation&, i.e. with the mass matrix

SW =0 V¢, (11) M(q)L(g§>Tdm <g§>. (18)

then the system is in dynamic equilibrium. The contact Moreover, we introduce
forces dR are assumed to be perfect and it therefore

holds that T
olas tha f=/ (%) dF (19)
S

oq
dRTHE > 0 Vo€ € Tie (£), (12)
as the generalised force. Substitution of (15) and (19)

in the principle of d’Alembert-L 13) gi
wheres€ € Tk, (&) denotes a virtual displacement§f In the principie 0 embert-Lagrange (13) gives

which is admissible with respect to the unilateral con-
straintg > 0. The principle of d’Alembert-Lagrange  — (5¢"p) — 6T — 6q"f > 0 Véq € Tx(q), (20)
in inequality form (9) for the systerfi therefore reads dt

as
which is the inequality form of the well known La-

grange central equation (Hamel, 1912; Papastavridis,
/5£T(§"dm —dF) >0 V&€ Tk, (§). (13) 2002). The Lagrange central equation (20) holds at
S each non-impulsive time instan¢dor which the gen-
eralised velocitiegy exist. Hence, we can integrate
We now choose a set of generalised coordingtes ~ the central equation (20) over a non-impulsive time-
R" which uniquely describes the state of the system intervall = [to, 7] which gives
and which is a minimal set of coordinates with respect

to all bilateral constraints. Each particle coordinate T 1t T
£(q) is therefore completely determined hyAn arbi- [da’p],, - /IéT +0g fdt >0 Voq € Tx(q).
trary variationdg causes a variatiofg = g—gdq which (22)

is admissible with respect to all bilateral constraints. Moreover, we assume the generalised fofct be a
The unilateral constraing > 0 constrains the gener- potential force—f = VV(q) whereV(q) is the po-
alised coordinateg to a setk’ = {q € R" | ¢ > 0} tential energy andV = —dq" f. Hence, by defining
which we assume to be convex. A virtual displacement the Lagrange functioh = 7' — V we arrive at

oq € TK(q)agnduces a virtual displacement of the par-

ticle 66 = 520q € Tk, (&) which is admissible with

respect to t%qe unilaterél(cganstraywtz 0. [0q"p] Z - /1 oLdt >0 Viq <€ Tk(q).  (22)



If the boundary conditions are fixed, then the variation
dq(t) vanishes at = t, and¢ = t; and we are allowed
to interchanging the order of integration and variation
such that

) / Ldt >0 Voq € Tx(q), (23)
I

with the boundary conditiong(to) = qo. q(ts) = qy,
which is the principle of Hamilton in inequality form
for a non-impulsive time-interval = [to,t¢]. From
the principle of Hamilton we can derive the Euler-
Lagrange equations in inequality form by evaluating

the variation in (23) as
) dqdt >0 Viq € Tk (q).

A »

Hence, for each time-instan¢e= I the variational in-
equality

should hold, which can be cast into the differential in-
clusion

oL _dor
0q dt dq

oL doL

el >
-3 aq)éq_o Viq e Ti(q) (25)

M(q)G—h(q,q)—fr=0, —fr<€Nk(q), (26)
where the mass matri¥ (q) is defined by (17) and the
vector

d or ov\"'
=— (=M |+ — — — 27
h (dt <q>)q+(3q aq) (27)
contains all smooth forces.

4 A Weak Principle of Hamilton

In this section we derive a weak principle of Hamil-
ton in inequality form for impulsive motion by directly
incorporating the impulsive dynamics in the principle
of virtual work. Concepts of measure and integration
theory appear to be very useful in this respect.

We assume that the positidgiit) is an absolutely con-
tinuous function in time and that the velociby(¢) of
the mass element is a function of locally bounded varia-
tion without singular terms (which is sometimes called
a function of ‘special bounded variation’). This implies
the following:

1. At each time-instanceé we can define a left and
right velocity

v (t) = lim ST 60

710 T 28)
v~ (t) = lim €t +7) - é(t)

770 T

2. The differential measuregdof the position&(t)
contains only a density with respect to the
Lebesgue measure d

d¢ = vt (29)

For almost allt we can define a velocity (t) =
£(t).

. The differential measurerdof the velocity v (t)
contains a density with respect to the Lebesgue
measure tdand with respect to the atomic measure
dn, i.e.

dv = vdt 4+ (vt —v7)dn. (30)

Let as before & be the unilateral contact force, as-
sociated with a unilateral holonomic scleronomic con-
straint, and & be the external force on a mass element
dm with position¢. The non-impulsive dynamics of
this mass element is therefore described by the equa-
tion of motion

dmé —dF —dR = 0. (31)

The impulsive dynamics is described by the impact
equation

dn(vt —v7)—dP =0, (32)

where dP is the unilateral impulsive force on the mass
element dn. The introduction of the differential mea-

sure ds allows us to combine the equation of mo-
tion (31) and the impact equation (32) in a single for-
mula

dmdv — dFdt — dRdt —dPdyp =0,  (33)

which is an equality of measures and which should be
understood in the sense of integration. The measure
dv, which has a density with respect to the atomic
measure, is by definition a mapping on the space of
continuous functions, i.ef, fTdv only makes sense

if £ € C°I,R3). The equality of measures immedi-
ately leads to a principle of virtual work in differential
measures

/ 6T (dmdv — dF dt — dRdt — dP dy) = 0 (34)
S

for all 6¢ € D(I,R3). The classD!(Q,R) = {y €
AC(Q,R), v € BV(Q,R)} comprises all functions
on the domairn2 which are absolutely continuous and
piecewiseC! as well as absolutely continuous func-
tions with an accumulation point. We pgte,t) =



£(t) + ew(t) with w € D(I,R?). Often, we will sup-  variation 57" therefore reduces to thea@aux deriva-
press the explicit notation of the time-dependence andtive dT'(v; dv) = VT év. Similar as before, we choose
simply write £(¢) = & + cw. For this family of test  generalised coordinategt) which form a minimal set
functions it holds thafi¢ = £.(0)de = wée is contin- of coordinates with respect to the bilateral constraints
uous in time wheradrv = wde is not. Moreover, note  and with which we can uniquely describe the position
that () converges for — 0 to £ in the weak norm  £(q) of each mass elementrd Moreover, we intro-
|- 1l1, with duce generalised velocitiegt), which are assumed to
be of locally bounded variation, and which are such
, that dg = wdt. The kinetic energyl” is a function
Iyl = ?gé‘y(x” + esjesélpw (@) (39) of v(q,u) and we can therefore writg as a function
T(qg,u). Hence, it holds thafT = T, dq + T, 0u. The
variationsdq and éu are not totally arbitrary as they
are of the formdq(t) = q(t) + cw(t) anddu(t) =
u(t) + ew(t), wherew = 0€/0q w. Using the gener-
alised momentum

We now make the assumption that both the contact
force dR and the contact impulseFd are perfect uni-
lateral constraint forces/impulses, i.e.

vam
S

The virtual work of the contact forceRl and the con-
tact impulse @ is therefore non-negative for admissi-

ble virtual displacements and the generalised force (19) we transform the princi-

ple of d’Alembert-Lagrange into

TdR > Tdp > 7 ) 7
5¢TdR >0, 0€TdP >0 Vo¢ € Tk, (€). (37) d(5q™p)—oTdi—5q" fdt > 0 iq — woe € T (q),

(43)
This bring us to the principle of d’Alembert-Lagrange which is the Lagrange central equation in differential
in inequality form for differential measures measures. As before, we integrate over a time-interval

I = [to,ts] and consider the generalised forfe=

—VV(q) to be a potential force, which yields
/ SET(dmdy —dFdt) >0 V€ = wée € Tk, (€)
s

(38) ¢
in which we explicitly write that the virtual displace- 94" P],| — /5Ldt >0 Véq=wie € Tk(q),
mentsd¢ are of the formwde. A mass element has a ! (44)

constant maSSTd. Ta.k|ng the diffel’ential measure-in- wherel = T — V. Fina”y’ tak|ng fixed boundary
time of the termSﬁTdm v and applylng the chain rule conditions at andtf we obtain
gives

5 [ Ldt >0 Véq=wé: e Tic(q). (45
d((SETdmu):5qum%(V++V—)dt+5£Tdmdu, /, = ¢ =wocTkle. (49

(39)
in which we used the equality() = X dwie = As mentioned before, the variatiog are not totally
wdtde = dv dt. Moreover, becausel(t) =Wt (t)+ arbitrary and the variatiodis of the action in (45) re-
v~ (t)) for almost allt, it holds that; (v + v7)dt = duces to the Gteaux derivativels(g; dg). Conse-
vdt for_ L(_abesgue mtegranon. We therefore arrive at quently, we arrive at a weak form of the principle of
the variational inequality Hamilton in inequality form
d ( / 6¢Tdm 1/) - / ovTdm vdi— / 6¢TdFdt > 0 —ds(q;0q) >0 Viq=woe € T (q),  (46)

S S S
(40)

Vo€ = wie € Tk, (§). We recognise the second term  with the action integral

0T = / svldmu, T :/ 1IJTdml/ (41) s(q) = /Ldt. (47)
s 52 I
as being the variation of the kinetic energly How- This form of the principle of Hamilton is the condition
ever, the variation®v are not arbitrary ag(t) = of a weak local extremal of the actiorig) with the

v(t) + ov(t) is of the formi(t) = v (t) + ew(t). The weak norm|| - ||;.



5 Conclusions

In this paper we derived a weak form of Hamilton’s
principle as a variational inequality. There are two
interesting things to remark at this derivation. First
of all, by making use of differential measures we are
able to treat the impulsive and non-impulsive dynam-

Hamel, G. (1912)Elementare MechanikB.G. Teub-
ner. Stuttgart.

Hartman, P. and G. Stampacchia (1966). On some non-
linear elliptic differential equationsActa Mathemat-
ica1151), 153-188.

Kinderlehrer, D. and G. Stampacchia (1988 In-

ics simultaneously. This means that we do not need to troduction to Variational Inequalities and their Ap-
use the usual Weierstrass-Erdmann corner conditions Plications Pure and Applied Mathematics. Academic

for broken extremals (see (Troutman, 1996)) to treat

Press. New York.

an impact as has been done in (Panagiotopoulos and-anczos, C. (1962)The Variational Principles of Me-

Glocker, 1998; Panagiotopoulos and Glocker, 2000).
Secondly, as we want to use the principle of virtual
work for differential measures (34) we are forced to
consider test functiong(e, t) = £(t) +ew(t) of which

the variationd¢ = wde is time-continuous. A test
function of this form can have kinks (and therefore im-

chanics University of Toronto Press. Toronto.

Leine, R. I. and H. Nijmeijer (2004)Dynamics and
Bifurcations of Non-Smooth Mechanical Systems
Vol. 18 of Lecture Notes in Applied and Computa-
tional MechanicsSpringer Verlag. Berlin.

May, H. O. (1984). Generalized variational principles

pacts), but this class of test functions does not include and nondifferentiable potentials in analytical mechan-

a family of curves which only varies the impact time,
i.e. it isweak Accordingly, for this weak form of the
principle of Hamilton we only have to satisfy the first

ics.Journal of Mathematical Physi@5(3), 491-493.
May, H. O. (1984). Hamilton’s principle as substa-
tionarity principle. Acta Mechanica52(3-4), 177—

Weierstrass-Erdmann corner condition. Hence, we are 187.

able to prove the validity of (46) by only assuming that
the unilateral holonomic constraint is perfect which is

Moreau, J. J. (1968). La notion de superpotentiel et les
liaisons unilagrales erelastostatiqueComptes Ren-

expressed by (36). The assumption of energy conser- dus de 'Academie des Sciencesgri€s A167, 954—

vation during the impact, i.€l'* = T, is therefore
not a necessary condition for the validity of (46).

References

Brogliato, B. (1999).Nonsmooth Mechanic® ed..
Springer. London.

Cesar, M. O. (1984). Necessary conditions and suf-
ficient conditions of weak minimum for solutions
with corner pointsBoletin da Sociedade Brasileira
de Matenatica15(1-2), 109-135.

Glocker, Ch (2001)Set-Valued Force Laws, Dynamics
of Non-Smooth Systemgol. 1 of Lecture Notes in
Applied MechanicsSpringer-Verlag. Berlin.

Goeleven, D., D. Motreanu, Y. Dumont and M. Rochdi
(2003). Variational and Hemivariational Inequal-
ities: Theory, Methods and Applications, Volume
I: Unilateral Analysis and Unilateral Mechanics
Vol. 69 of Nonconvex Optimization and its Applica-
tions Kluwer Academic Publishers. Dordrecht.

Goeleven, D., D. Motreanu, Y. Dumont and M. Rochdi
(2003). Variational and Hemivariational Inequali-
ties: Theory, Methods and Applications, Volume II:
Unilateral ProblemsVol. 70 of Nonconvex Optimiza-
tion and its ApplicationsKluwer Academic Publish-
ers. Dordrecht.

Goeleven, D., M. Miettinen and P. D. Panagiotopou-
los (1999). Dynamic hemivariational inequalities and
their applications.Journal of Optimization Theory
and Applicationsl03(3), 567—601.

Goeleven, D., P. D. Panagiotopoulos, C. Lebau
and G. Plotnikova (1997). Inequality forms of
d’alembert’s principle in mechanics of systems with
holonomic unilateral constraintZeitschrift fir ange-
wandte Mathematik und Mechanii(7), 483-501.

957.

Panagiotopoulos, P. D. (1981). Non-convex superpo-
tentials in the sense of F.H. Clarke and applications.
Mechanics Research Communicati@{g), 335—340.

Panagiotopoulos, P. D. (1993Hemivariational In-
equalities: Applications in Mechanics and Engineer-
ing. Springer. Berlin.

Panagiotopoulos, P. D. and Ch Glocker (1998). Analyt-
ical mechanics: Addendum I. Inequality constraints
with elastic impacts. The convex casgeitschrift fir
angewandte Mathematik und Mechari&4), 219—
229.

Panagiotopoulos, P. D. and Ch Glocker (2000). In-
equality constraints with elastic impacts in de-
formable bodies. The convex cagechive of Applied
Mechanicsr0, 349-365.

Papastavridis, J. G. (2002\nalytical Mechanics: A
Comprehensive Treatise on the Dynamics of Con-
strained Systems: for Engineers, Physicists and
MathematiciansOxford University Press. New York.

Troutman, J. L. (1996)Variational Calculus and Opti-
mal Control: Optimization with Elementary Convex-
ity. Springer Verlag. New York.



