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ABSTRACT
The aim of this paper is to develop a contact law for

combined spatial Coulomb friction and normal friction torque
(drilling friction) as a function of sliding velocity and spin. We
will call this extended contact law the Coulomb-Contensou fric-
tion law and derive it from a non-smooth velocity pseudo poten-
tial. A Runge-Kutta time-stepping method is briefly presented
for the numerical simulation of rigid bodies with Coulomb-
Contensou friction. The algebraic inclusion describing the con-
tact problem is solved with an Augmented Lagrangian approach.
The theory and numerical methods are applied to the Tippe-Top,
which illustrates the importance of Coulomb-Contensou friction
for the dynamics of systems with friction.

INTRODUCTION
Mechanical systems with frictional contact between hard

bodies can often well be modelled with a rigid multi-body ap-
proach, using set-valued force laws for the constitutive descrip-
tion of the contact. Many practical applications have been suc-
cessfully studied assuming a set-valued Coulomb friction law to-
gether with a restitution law (Glocker, 1995; Leine et al., 2003;
Pfeiffer and Glocker, 1996; Stiegelmeyr, 2001). Fastly spinning
spatial objects, however, require a more elaborate friction model
which will be studied in this paper.

The set-valued spatial Coulomb friction law describes the
friction force λλλT of a single contact point with two compo-
nents λλλT =

[

λT 1 λT 2
]T. The friction force λλλT lies within a disk

‖λλλT‖ ≤ µλN on the tangent plane of the contact point, where µ

is the friction coefficient and λN is the normal force. The con-
tacting bodies are assumed to be rigid and impenetrable within
a rigid multi-body framework and the contact is therefore ideal-
ized to be a point. The contact point can not transmit a friction
torque and the influence of spin and drilling friction on the slid-
ing friction λλλT is therefore usually neglected. In reality, the stiff
(but still deformable) bodies deform and touch each other on a
small contact surface, being more or less circular. The deforma-
tions of stiff bodies are negligible compared to their geometry
and the global rigid body motion, but lead to contacting areas
which can influence the dynamics of the system. A contact sur-
face can not only transmit a sliding force λλλT , but also a friction
torque τN normal to the contact surface. The effective radius
of the contact surface is influenced by the normal contact force
λN , the elasticity of the contacting bodies, the surface roughness
and the pressure distribution. The friction torque is in most ap-
plications neglected because the effective radius is very small in
practice. If, however, an object is spinning fastly, then the influ-
ence of spin and drilling friction on the dynamics becomes large
and can no longer be neglected.

Contensou (1963) realized that drilling friction and spin are
important for the dynamics of fastly spinning tops. A fastly spin-
ning top experiences very little resistance in sliding direction
and easily wanders over the floor. The same phenomenon oc-
curs in an electric polishing machine with turning brushes used
to clean floors (Magnus, 1971). The machine is hard to move
when the brushes are non-rotating but the machine can easily
be pushed over the floor with rotating brushes. Contensou cal-
culated the dependence of the sliding friction force on the slid-
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Figure 1. Coordinates at the contact surface.

ing velocity v and spin ω, and showed that the sliding friction
force vanishes when the ratio v

ωR tends to zero. Magnus (1971)
used Contensou’s friction law to study the stability of the Tippe-
Top. Contensou (1963) expressed the friction force in elliptic
integrals, which Zhuravlev (1998) transformed for a parabolic
pressure distribution into elementary functions using other coor-
dinates. The elliptic integrals can not be simplified to elementary
functions if a uniform pressure distribution is assumed.

We will formulate Contensou’s spatial friction law in the
framework of potential theory and subdifferentials, much like the
treatment of spatial Coulomb friction in (Glocker, 2001). The
friction force and friction torque, as a function of sliding veloc-
ity and spin, will be derived by taking the subdifferential of a ve-
locity pseudo potential. The dependence of the maximal friction
torque on the friction force (and vice versa) will be studied during
sticking (no sliding + no spin). A time-stepping method, based
on an Augmented Lagrangian approach, will be presented for the
numerical time-integration of systems with Coulomb-Contensou
friction. Finally, the theory and numerical methods are applied
to the Tippe-Top, which illustrates the importance of Coulomb-
Contensou friction for the dynamics of systems with friction.

UNIFORM PRESSURE DISTRIBUTION
Friction force and torque are influenced by the pressure dis-

tribution over the contact surface, which depends on the geome-
try and elasticity properties of the contacting bodies. Local de-
formations are not modelled within a rigid multi-body approach.
A pressure distribution has to be assumed or to be estimated with
analytical methods from the undeformed geometry of the con-
tacting bodies. The pressure distribution can often well be mod-
elled by a parabolic or a uniform distribution, depending on the
geometry of the contacting bodies. A set-valued contact law for
a uniform pressure distribution will be derived in this section and

Figure 2. The velocity potential Φ as function of v and ωR.

for a parabolic pressure distribution in the next section.
The contact surface (Figure 1) is assumed to be circular with

radius R. The relative sliding velocity of the contact is denoted by
γγγT and the spin by ωωω. We introduce an orthonormal coordinate
frame (eee1,eee2,eee3), of which eee1 and eee2 span the contact tangent
plane. Without loss of generality we assume that eee1 is located
such that γγγT = veee1. The sliding velocity is expressed by the scalar
value v. The spin ωωω is normal to the contact plane ωωω = ωeee3. A
surface element dA, with polar coordinates (ρ,ϕ), has a sliding
velocity of www = (v−ωρsinϕ)eee1 +(ωρcosϕ)eee2. A normal force
σdA is acting at the surface element. The normal contact force
between the contacting bodies is λN =

∫∫

σdA.
We will derive a velocity pseudo potential, which serves as

dissipation function. The velocity pseudo potential is dependent
on the normal contact force, which is in turn dependent on the
motion of the system and is therefore not a true potential. The
word ‘pseudo’ will be omitted for brevity. Coulomb’s law is
assumed to hold on an arbitrary surface element dA with slid-
ing velocity www. The magnitude of the friction force on dA is
dλλλT = µσdA www

‖www‖ yielding a velocity potential dΦ = wwwT dλλλT =

µσ‖www‖dA. The velocity potential for the total contact surface is
obtained by integrating over the contact surface

Φ(www,σ) =

∫∫

A

µσ‖www‖dA. (1)

Substituting the normal stress for a uniform pressure distribution
σ = λN

A in (1) and making use of the coordinate system (ρ,ϕ)
gives the double integral

Φ(v,ω,λN) =
µλN

πR2

∫ R

0

∫ 2π

0
ρ
√

v2 +(ωρ)2 −2ωρvsinϕdϕdρ.

(2)
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Figure 3. Friction disk; admissible forces for λτ = 0.

Figure 4. Friction plate; admissible force and torque.

The double integral (2) can be approximated with Taylor series
which results in the velocity potential Φ

Φ(v,ω,λN) =
{

µλN |ω|R( 2
3 + 1

2 u2 − 1
32 u4 − 1

384 u6 +O(u8)), u ≤ 1
µλN |ω|R(u+ 1

8
1
u + 1

192
1
u3 + 1

1024
1
u5 +O( 1

u7 )), u > 1

(3)

where u = |v|
|ω|R = R∗

R and R∗ = |v|
|ω| . Apparently, the velocity po-

tentials for the purely sliding and purely rotating case are

Φω=0 = µλN |v| = µλN‖γγγT‖, Φv=0 =
2
3

µλN |ω|R,

which are non-smooth convex potentials. The velocity potential
Φ forms a cone as function of v and ωR (Figure 2). The contour
lines of the cone are a form between an ellipse and a rectangle.

The tangential friction λλλT and the friction torque τN can be
derived from the velocity potential (3) (Glocker, 2001) via the
subdifferential

−λλλT ∈ ∂γγγT Φ, −τN ∈ ∂ωΦ, (4)

or, by the chain rule

−λλλT ∈ ∂γγγT ‖γγγT‖∇|v|Φ, −τN ∈ ∂ω|ω|∇|ω|Φ.

Figure 5. Friction ball BF .

Note that the velocity potential is a smooth function of |v| and
|ω|. The force laws are set-valued at (v,ωR) = 000.

The classical Coulomb’s friction law for spatial contact,
without spin and friction torque, states that the set of admissible
tangential contact forces is the convex set DT := {λλλT | ‖λλλT‖ ≤
µλN}, where DT (λN) is addressed as the friction disk and is a
function of the normal force λN (Figure 3). The tangential con-
tact law is for pure Coulomb friction given by

−γγγT ∈ NDT (λλλT ), (5)

where NDT (λλλT ) is the normal cone to DT at λλλT . The friction
torque τN is normalized to a force λτ = τN

R and the angular spin
velocity ω to a velocity γτ = ωR. We now extend the existing the-
ory for spatial Coulomb friction to spatial Coulomb-Contensou
friction taking into account a nonzero friction torque τN . The
force laws (4) give the values of λλλT and λτ as a function of γγγT
and γτ and implicitly define the set of admissible values of λλλT
and λτ. The admissible set of (‖λλλT‖,λτ) is called the friction
plate PF (Figure 4). The admissible set of tangential friction
forces and normal friction torque forms a squashed ball BF(λN)
in the (λT 1,λT 2,λτ) space. The friction ball BF (Figure 5), is ax-
isymmetric around the λτ axis. The intersection of BF with the
(λT 1,λT 2) plane is formed by the friction disk DT . Any intersec-
tion of BF orthogonal to DT will give the friction plate PF . The
contact law for spatial Coulomb-Contensou friction can now be
expressed by means of the friction ball BF

−γγγF ∈ NBF (λλλF), (6)

with γγγT
F =

[

γT 1 γT 2 γτ
]

and λλλT
F =

[

λT 1 λT 2 λτ
]

where NBF (λλλF)
is the normal cone to BF(λN) at λλλF .

The magnitudes of λλλT and λτ as a function of u and 1/u
are shown in Figures 6 and 7 (solid lines). The functions both
start at the origin and have an asymptote at ‖λλλT‖ = µλN and
|λτ| = 2

3 µλN respectively. The friction characteristic λλλT (v) for a
fixed value of γτ can be derived from (4) and is shown in Fig-
ure 8 for different fixed values of γτ. The curves for γτ > 0 are all
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Figure 6. Friction force as a function of u for a uniform pressure distribu-
tion (solid) and for a parabolic pressure distribution (dashed).

single-valued functions of v. Apparently, a superimposed spin
ω on a sliding velocity v causes a smoothing effect of the fric-
tion characteristic λλλT (v). The friction characteristic for γτ = 0
is (for λτ = 0) the classical set-valued friction characteristic of
Coulomb. Similarly, the dependence of λτ on γτ, for different
fixed values of v, is shown in Figure 9. The same smoothing
effect occurs in the λτ(γτ) relationship due to a superimposed
velocity v > 0. Again, a set-valued relationship is obtained for
v = 0. The boundaries ‖λλλT‖ = µλN and |λτ| = 2

3 µλN of the sets
for v = γτ = 0 are the extreme values of the friction ball BF(λN)
along its principal axes. For the classical set-valued friction char-
acteristic of Coulomb, the magnitude friction force ‖λλλT‖ rises up
to the value µλN when the contact changes from a sticking state
to sliding. This is in general not the case for Coulomb-Contensou
friction as soon as we have some rotation. The slip-criterion for
Coulomb-Contensou friction is given by (λλλT ,λτ)∈ bdryBF(λN).

PARABOLIC PRESSURE DISTRIBUTION
In the previous section we studied a contact with uniform

pressure distribution by means of Taylor series. The velocity po-
tential with a parabolic pressure distribution, however, can be
expressed in elementary functions (Zhuravlev, 1998) using po-
lar coordinates r and θ around the pole R∗eee2 (Figure 1). The
relation between the coordinates (r,θ) and (ρ,ϕ) is given by
ρcosϕ = r sinθ and ρsinϕ+ r cosθ = R∗ = | v

ω |. We will assume
a circular contact surface with radius R, which is for a Hertz con-
tact (Johnson, 1985) a function of the normal load λN . However,
the theoretical contact radius according to Hertz is for relatively
hard bodies extremely small. Instead, we will assume that the ra-
dius of the contact surface is determined by the surface roughness
and meso-scopic non-convexity of the contacting bodies, which
is for hard bodies more realistic. The contact radius is therefore
assumed to be constant. The Hertz pressure distribution is given

by the parabolic function σ = 3λN
2πR2

√

1− ρ2

R2 . The integral (1) can

Figure 7. Friction torque as a function of u for a uniform pressure distri-
bution (solid) and for a parabolic pressure distribution (dashed).

be evaluated in the coordinates (r,θ) and the velocity potential
for a parabolic pressure distribution can be obtained

Φ(v,ω,λN) =










3µλN
128 R|ω|π

(

−u4 +8u2 +8
)

, u ≤ 1,
3µλN

64 R|ω|
(

(−u4 +8u2 +8)arcsin 1
u+

(u2 +14)
√

u2 −1
)

, u > 1,

(7)

where u = u(v,ω) and R is constant.
The set-valued force laws for Coulomb-Contensou friction

with a parabolic pressure distribution can be derived from the ve-
locity potential (7) similar to the discussion of the uniform pres-
sure distribution. The magnitude of the friction force λλλT as a
function of u and λτ = τN

R as a function of 1/u for a parabolic
pressure distribution is shown in Figures 6 and 7 (dashed lines).
Similar to the discussion of the uniform pressure distribution,
one can express the contact law for spatial Coulomb-Contensou
friction with parabolic pressure distribution by means of the fric-
tion ball BF . The force laws for a parabolic pressure distribution
are qualitatively similar to the force laws for a uniform pressure
distribution and differ maximally about 20 percent in magnitude
(see Figures 6 and 7). The friction plate PF and friction ball BF
for a parabolic pressure distribution (not depicted) are therefore
very similar in shape to the sets shown in Figures 4 and 5.

MULTI-BODY FORMULATION OF SYSTEMS WITH
COULOMB-CONTENSOU FRICTION

The main rigid-body integration techniques for systems with
unilateral constraints are the event-driven integration method and
the time-stepping method (Anitescu and Potra, 1997; Brogliato,
1999; Glocker, 1995, 1998; Moreau, 1988; Pfeiffer and Glocker,
1996; Stiegelmeyr, 2001). Time-stepping methods are based on
using a time-discretization of generalized positions qqq and veloc-
ities uuu, usually with a fixed step-size. Integrals of forces over
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Figure 8. Dependence of friction force on γτ and v for a uniform pressure
distribution.

each time-step are used instead of the instantaneous values of the
forces. The time-stepping method makes no distinction between
impulsive forces (due to impacts) and finite forces. Only incre-
ments of the positions and velocities are computed. The acceler-
ation u̇uu is not computed by the algorithm, as it becomes infinite
for impulsive forces. The positions and velocities at the end of
the time-step are found by solving an algebraic inclusion which
describes the contact problem (for instance by formulating it as a
(Non)linear Complementarity Problem). Multiple events might
take place during one time-step, and the algorithm computes the
overall integral of the forces over this time-step, which is finite.
The time-stepping method is especially useful when one is inter-
ested in the global motion of systems with many contact points,
leading to a large number of events. Each individual event is
for those applications not of importance but the global motion is
determined by the sum of all events. The time-stepping method
was introduced by Moreau (1988) and has been subsequently de-
veloped in (Anitescu and Potra, 1997; Stiegelmeyr, 2001).

The time-stepping method and the event-driven integration
method have been applied to mechanical systems with Coulomb
friction. In this section we will describe the time-stepping
method of Moreau (1988) and combine it with the Augmented
Lagrangian Method (Alart and Curnier, 1991) in order to solve
the Coulomb-Contensou contact problem. Furthermore, we will
extend the time-stepping method of Moreau to a Runge-Kutta
time-stepping method. A brief discussion of the Augmented La-
grangian will be given first.

The dynamics of a multi-body system during an impact free
part of the motion can be expressed by the equation of motion on
acceleration level (Pfeiffer and Glocker, 1996)

MMM(t,qqq)u̇uu−hhh(t,qqq, q̇qq)−WWW N(t,qqq)λλλN −WWW F(t,qqq)λλλF = 000, (8)

with the set-valued force laws

−gggN ∈ NCN (λλλN), −γγγF ∈ NBF (λλλN )(λλλF), (9)

Figure 9. Dependence of normalized torque on γτ and v for a uniform
pressure distribution.

where MMM is the symmetric mass matrix, qqq the vector with gener-
alized coordinates, uuu = q̇qq is the vector with generalized velocities
and hhh is the vector with all smooth elastic, gyroscopic and dissi-
pating generalized forces. The normal contact force of contact i
is denoted by λNi and the vector of generalized friction forces
by λλλFi. The vectors wwwNi and wwwFi are the generalized normal and
sliding force directions of contact i and constitute the matrices
WWW N = {wwwNi} and WWW F = {wwwFi}. The dual variables to the normal
contact forces λλλN are the variations of the contact distances gggN
and the dual variables to the generalized friction forces λλλF are
the variations of the generalized sliding velocities γγγF .

The usual equation of motion, which relates acceleration to
forces, is not suited to describe motion with impact. We replace
the equation of motion on acceleration level by an equality of
measures (Glocker, 2001; Moreau, 1988)

MMM duuu−hhhdt −WWW N dΛΛΛN −WWW F dΛΛΛF = 000, (10)

where the dependence on t,qqq and q̇qq has been omitted for brevity.
We denote with dt the Lebesgue-measure and with dη the sum of
the dirac pulses at the impact times. The measure for the veloc-
ities duuu = u̇uudt +(uuu+ −uuu−)dη is split in a Lebesgue-measurable
part and an atomic part. The atomic part consists of the left
and right limit of uuu at t. For impact free motion it holds that
duuu = u̇uudt. Similarly, the measure for the impulses is defined as
dΛΛΛ = λλλdt + ΛΛΛdη. The constraints on velocity level can be ex-
pressed in the left and right limits of uuu, i.e. γγγ+ = WWW Tuuu+ + w̃ww and
γγγ− = WWW Tuuu− + w̃ww with γγγ = γγγ+ = γγγ− for impact free motion.

The measure differential equation is discretized by integrat-
ing over a small but finite time interval ∆t

∫

∆t

duuu = ∆uuu,
∫

∆t

hhhdt = ∆hhh ≈ hhh∆t,
∫

∆t

dΛΛΛ = ΛΛΛ,
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and we obtain the equation of motion in differences

MMM∆uuu−hhh∆t −WWW NΛΛΛN −WWW F ΛΛΛF = 000. (11)

The force laws for completely inelastic contact with friction can
be put in the form

−ΛΛΛN ∈ ∂ΨR+(γγγ+
N ), −ΛΛΛF ∈ ∂Φ(γγγ+

F ), (12)

where ΨR+ is the indicator function of convex analysis on R
+

with γγγ+
N = WWW T

N(uuu− +∆uuu)+ w̃wwN and γγγ+
F = WWW T

F(uuu− +∆uuu)+ w̃wwF .
In each incremental step, say time-step, we have to solve

∆uuu and (ΛΛΛN ,ΛΛΛF) from the equation of motion (11) and the force
laws (12), which forms a set of algebraic inclusions. An elegant
way to solve such a set of algebraic inclusions is by transforming
the problem to a constrained optimization problem. The con-
strained optimization problem can subsequently be transformed
to an unconstrained mini-max problem by making use of the
Augmented Lagrangian (Rockafellar, 1976). The solution to
the algebraic inclusion then corresponds to a saddle-point of the
Augmented Lagrangian.

The (quasi) Augmented Lagrangian for a frictional contact
problem can be expressed as (Alart and Curnier, 1991)

LA(∆uuu,ΛΛΛN ,ΛΛΛF) =
1
2
‖∆uuu−MMM−1hhh∆t‖2

MMM

− γγγT
N(∆uuu)ΛΛΛN +

r
2
‖γγγN(∆uuu)‖2 − 1

2r
dist2CN

(

ΛΛΛN − rγγγN(∆uuu)
)

− γγγT
F(∆uuu)ΛΛΛF +

r
2
‖γγγF(∆uuu)‖2 − 1

2r
dist2BF

(

ΛΛΛF − rγγγF(∆uuu)
)

,

where BF is dependent on the normal force1 and r > 0. The
value of r should be taken large enough to make the problem well
conditioned in the constrained region, but not too large in order
to prevent ill-conditioning due to the penalty term r

2‖γγγ(∆uuu)‖2.
We will make use of the following properties of distances

and proximal points on a convex set C

proxC(xxx) = argmin
∀xxx∗∈C

‖xxx− xxx∗‖, distC(xxx) = ‖xxx−proxC(xxx)‖, (13)

∇
1
2

dist2C(xxx) = xxx−proxC(xxx), (14)

f (xxx) = −xxxTyyy+ 1
2‖xxx‖2 − 1

2 dist2C(yyy− xxx)
=⇒ ∇ f (xxx) = −yyy+ xxx+

[

yyy− xxx−proxC(yyy− xxx)
]

= −proxC(yyy− xxx).
(15)

1To be more precise BF = BF (proxR+ (ΛΛΛN − rγγγN(∆uuu)) (Alart and Curnier,
1991).

Evaluating the stationarity conditions of the saddle-point of LA
gives the equations

∇∆uuuLA(∆uuu,ΛΛΛN ,ΛΛΛF) = MMM∆uuu−hhh∆t
−WWW NΠN(ΛΛΛN ,γγγN)−WWW F ΠF(ΛΛΛN ,ΛΛΛF ,γγγF) = 000

∇ΛΛΛN LA(∆uuu,ΛΛΛN ,ΛΛΛF) = − 1
r

(

ΛΛΛN −ΠN(ΛΛΛN ,γγγN)
)

= 000
∇ΛΛΛF LA(∆uuu,ΛΛΛN ,ΛΛΛF) = − 1

r

(

ΛΛΛF −ΠF(ΛΛΛN ,ΛΛΛF ,γγγF)
)

= 000,

(16)

where use has been made of (13) – (15) and the abbreviations

ΠN(ΛΛΛN ,γγγN) = proxCN
(ΛΛΛN − rγγγN),

ΠF(ΛΛΛN ,ΛΛΛF ,γγγF) = proxBF (ΛΛΛN )(ΛΛΛF − rγγγF).

Note that γγγN = γγγN(∆uuu) and γγγF = γγγF(∆uuu). We therefore obtain
the set of algebraic equations

MMM∆uuu−hhh∆t −WWW NΠN(ΛΛΛN ,γγγN)−WWW F ΠF(ΛΛΛN ,ΛΛΛF ,γγγF) = 000,
ΛΛΛN = ΠN(ΛΛΛN ,γγγN),
ΛΛΛF = ΠF(ΛΛΛN ,ΛΛΛF ,γγγF).

The saddle point of the Augmented Lagrangian, being the solu-
tion to the set of algebraic equations, can for instance be found
with a Modified Newton algorithm (Alart and Curnier, 1991).

We will present a time-stepping method, which uses the
Augmented Lagrangian Method to solve the contact problem.
Consider the positions qqqA and velocities uuuA known at the be-
ginning of the time-step at time tA. The algorithm takes first
a half time-step for the positions and arrives at the midpoint
qqqM = qqqA + 1

2 ∆tuuuA. The midpoint is used to classify the status of
the normal constraints, which allows for an index reduction. The
contact set IN = {i | gNi(tM,qqqM) ≤ 0} is calculated at the mid-
point and used to set-up the contact problem on velocity level
for both the normal and tangential constraints. The set IN con-
tains all indices of the closed contact points. The velocity uuuE , at
the end of time-step tE = tA +∆t, is subsequently calculated by a
trapezoidal scheme

MMMM(uuuE −uuuA) = hhhM∆t +WWW NMΛΛΛN +WWW FMΛΛΛF ,

and the set-valued force laws

−ΛΛΛN ∈ ∂ΨR+(γγγ+
N ), −ΛΛΛF ∈ ∂Φ(γγγ+

F ),

where MMMM , hhhM , WWW NM and WWW FM are the system matrices eval-
uated at the midpoint. This set of algebraic inclusions can be
solved using an Augmented Lagrangian approach together with
a Modified Newton Method. Finally, the positions at the end of
the time-step are calculated qqqE = qqqM + 1

2 ∆tuuuE .
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Figure 10. Geometry of the Tippe-Top.

The time-stepping method of Moreau (1988) is very ele-
gant due to its simplicity but is at best a second-order method.
High frequency oscillations during smooth parts of the motion
require a higher-order integration scheme. A Runge-Kutta inte-
gration method for ordinary differential equations can be adapted
to measure differential equations. For a mechanical system with
impacts, one cannot determine accelerations nor contact forces
because they are not functions of bounded variation if an im-
pact occurs. Still, for a discretized measure differential equa-
tion we are able to define an average acceleration per time-
step aaa j = (uuu j − uuu j−1)/∆t, which will be denoted by ‘pseudo-
acceleration’. The average acceleration, taking into account the
set-valued behaviour of the contact forces, can be computed
with the method of Moreau. A Runge-Kutta method for sys-
tems with impact and friction can therefore be formulated, which
uses the time-stepping method of Moreau to compute pseudo-
accelerations at every stage of the Runge-Kutta scheme.

THE TIPPE-TOP
We will present a rigid-body model of the Tippe-Top and

numerical results using a Runge-Kutta time-stepping method and
Coulomb-Contensou’s friction law. The Tippe-Top (Figure 10)
consists of a spherical body with geometric center M, radius r1,
and a stick attached on top of the body. The stick is rounded at
the tip with a hemisphere with geometric center N and radius r2.
The toy is axisymmetric around the axis MN. The center of mass
of the top is the point S at a distance a1 below M and at a distance
a2 from N.

The eee1 =
[

eee1
1,eee

1
2,eee

1
3
]T coordinate frame is the orthonormal

absolute coordinate frame fixed to the world where eee1
3 points in

the vertical direction. The frame eee4 =
[

eee4
1 eee4

2 eee4
3
]T is fixed to the

body with eee4
3 along the axis of symmetry. The rotation of the top

will be described in standard Euler angles θ (nutation), ϕ (pre-
cession) and ψ (spin angle) (Figure 11). As generalized coordi-

Figure 11. The Euler angles of the Tippe-Top.

nates for the top we choose the positions xS, yS and zS along the
axes eee1

1,eee
1
2,eee

1
3 to describe the translational motion of the center of

mass S and the Euler angles θ, ϕ and ψ to describe the rotational
motion, i.e. qqq =

[

xS yS zS θ ϕ ψ
]T. The kinetic energy T can be

expressed in the generalized coordinates

T =
1
2

m(ẋ2
S + ẏ2

S + ż2
S)+

1
2

I1(ω4
1)

2 +
1
2

I2(ω4
2)

2 +
1
2

I3(ω4
3)

2

=
1
2

m(ẋ2
S + ẏ2

S + ż2
S)+

1
2

I1(ϕ̇2 sin2 θ+ θ̇2)+
1
2

I3(ψ̇+ ϕ̇cosθ)2,

with I1 = I2 due to axisymmetry. The potential energy V is purely
due to gravity, V = mgzS. The Lagrange’s equation of motion for
the unconstrained undamped motion is d

dt T,q̇ −T,q +V,q = 0. The
equations of motion can be put in the form MMM(qqq)q̈qq−hhh(qqq, q̇qq) = 000,
where MMM is the mass matrix and hhh is a vector containing gyro-
scopical and gravitational forces.

The top has two contact points (either open or closed). Con-
tact point 1 is the contact between the body and the floor. Contact
point 2 is the contact between the tip of the stick and the floor.
The point on the spherical part of the top, being closest to the pro-
jection point M′, is called point C. Contact is established when C
agrees with M′ and then we call C the contact point with location

rrrC =





xS +a1 sinϕsinθ
yS −a1 cosϕsinθ
zS +a1 cosθ− r1



 ,

The third component of rrrC is the contact distance of contact 1

gN1 = zS +a1 cosθ− r1.

Similarly, the contact distance between the stick and the floor
reads as gN2 = zS +a2 cosθ− r2. The contact distances have the
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Figure 12. Inclination of the Tippe-Top (R = 5 ·10−4 m).

derivatives γNi = ġNi (almost everywhere)

γNi = żS −aiθ̇sinθ, i = 1,2

or γNi = WWW T
Niq̇qq + w̃Ni. The velocity of point C on the spherical

part top is given by vvvC = vvvS + ωωω× rrrSC where rrrSC is the vector
from the center of mass S to the point C, i.e. rrrSC = rrrC − rrrS. The
velocity vvvC in the frame eee1 becomes

vvv1
C =





ẋS +(a1ϕ̇+ r1ψ̇)sinθcosϕ+ θ̇(a1 cosθ− r1)sinϕ
ẏS +(a1ϕ̇+ r1ψ̇)sinθsinϕ− θ̇(a1 cosθ− r1)cosϕ

żS −a1θ̇sinθ



 ,

where the component in eee1
3 is zero when γN1 = 0.

The tangential contact velocity is a vector in the (eee1
1,eee

1
2)

plane. The tangential contact velocity at contact point 1 is given
by the components of vvv1

C in the (eee1
1,eee

1
2) directions

γγγT 1 =

[

ẋS +(a1ϕ̇+ r1ψ̇)sinθcosϕ+ θ̇(a1 cosθ− r1)sinϕ
ẏS +(a1ϕ̇+ r1ψ̇)sinθsinϕ− θ̇(a1 cosθ− r1)cosϕ

]

.

In the same way we can find γγγT 2, which we write in the form
γγγTi = WWW T

Tiq̇qq+ w̃wwTi with i = 1,2.
The relative spin of a contact point is the projection of the

Poisson vector on the eee1
3 axis, i.e. ω1

3. The spin velocity vector is
the product of spin angular velocity and a contact radius Ri and
given by γτi = ω1

3Ri = (φ̇+ ψ̇cosθ)Ri = WWW T
τiqqq+ w̃τi for i = 1,2.

Numerical results on the Tippe-Top with an approximated
Coulomb-Contensou friction model (tangens hyperbolicus ap-
proximation) and a penalty approximation in the normal direc-
tion were given in (Friedl, 1997). We will present similar results,
but making use of the set-valued Coulomb-Contensou friction

law in tangential direction and Signorini’s law in normal direc-
tion. We consider for the numerical analysis the same dataset as
taken in (Friedl, 1997): m = 6 · 10−3 kg , I1 = 8 · 10−7 kgm2,
I3 = 7 · 10−7 kgm2, g = 9.81 m/s2, a1 = 0.3 · 10−2 m, a2 =
1.6 · 10−2 m, r1 = 1.5 · 10−2 m, r2 = 0.5 · 10−2 m, µi = 0.3,
εNi = 0, Ri = 5 · 10−4 m for i = 1,2. These parameters are real-
istic for a wooden commercial Tippe-Top on a wooden floor. A
difficult parameter to choose is the contact radius R, which would
be according to Hertz law (Johnson, 1985)

RHertz =

(

3ρ∗λN

4E∗

)
1
3

.

We assume that the underground is flat and therefore that ρ∗ = r1.
The contact force is approximately equal to its stationary value
λN ≈ mg. Furthermore, we assume the effective modulus of elas-
ticity to be E∗ = 5 GPa, which is realistic for a wooden toy
on a wooden surface. The theoretical radius RHertz would with
these assumptions be about 5 · 10−5 m, which is much less than
the surface roughness of wood (10−4 · · ·10−3 m). It can there-
fore be expected that the radius of the contact surface does not
follow Hertz’ law but depends on the roughness of the contact-
ing bodies. We therefore assume a constant contact radius of
R = 5 ·10−4 m for both contact points.

The motion of the Tippe-Top was simulated with a four stage
Runge-Kutta time-stepping method and with the initial condition
(following Friedl (1997)) zS0 = 1.2015 · 10−2 m, θ0 = 0.1 rad,
ψ̇0 = 180 rad/s, and all other initial states being equal to zero.
The inclination θ during the first 8 seconds of the motion is
shown in Figure 12 and the contact distances in Figure 13. The
initial condition at t = 0 s corresponds to a slightly inclined
top which is resting with its body on the floor, i.e. gN1 = 0
and gN2 > 0, and is spinning fastly around its axis of revolu-
tion. The friction forces in the contact surface cause a fric-
tional torque along the eee1

3 axis. The frictional torque together
with the spin around the eee4

3 axis causes a gyroscopical torque
around nodal axis eee2

1 which slowly inverts the orientation of the
top, θ = 0 → θ = π. A high-frequency nutational oscillation is
superimposed on the global motion of the top. The stick touches
the floor at t = 1.5 s, after which the body loses contact with
the floor, i.e. gN1 > 0 and gN2 = 0. The top turns almost com-
pletely upright on the stick during the period 1.6 < t < 4 s. The
rotational speed of the top is gradually reduced due to the dissi-
pation of the friction forces, which causes a re-inversion of the
top, t > 4 s. The re-inversion causes the body to touch the floor
at t = 4.5 s. A rocking motion is initiated, which ends in an ac-
cumulation point of impacts. The top remains in double-point
contact ( gN1 = gN2 = 0) during the period 4.6 < t < 5.4 s. Fi-
nally, the contact between stick and floor is opened and the top
gradually returns to its trivial non-rotating equilibrium position.

Stationary motion of the Tippe-Top can occur in the trivial
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Figure 13. Time-history of the contact distances (R = 5 ·10−4 m).

position (θ = 0) with contact between the body and the floor or
in an inverted position (θ = π) with contact between the stick and
the floor. The two equilibria show a similarity and it will there-
fore prove to be convenient to introduce the following parameters

1. body-floor contact: a = a1 > 0, r = r1 > 0, r > a,

2. stick-floor contact: a = −a2 < 0, r = r2 > 0, r > −a.

For each case the value of h =−a+r, which defines the maximal
height of the center of mass S with respect to the floor, is positive
h > 0. The stability of these equilibria depends on the spin ω and
on the geometry of the top. Dissipation will slow down the top
and bring it back to rest. The trivial position is therefore in the
classical sense always globally asymptotically stable. Still, it is
of interest to know whether the top can stay (for some time) on
its stick for a certain spin ω and whether the trivial position can
become (temporarily) unstable for large values of ω.

The Contensou phenomenon causes the tangential friction
force λλλT to be a smooth single-valued function of γγγT for non-
zero values of ω (Figure 8). For small values of u, the tangential
friction force can be approximated by the smooth relation

λλλT ≈−µλN
3

8π
1

ωR
γγγT = −εγγγT , (17)

with ε = µmg 3
8π

1
ωR . Magnus (1971) presented the necessary and

sufficient conditions for local stability of the Tippe-Top in the
presence of a smooth friction law using a linear stability analysis.
The stability-diagram of the Tippe-Top (Figure 14) shows four
regions. Regions II and IV are conditionally stable depending on
the critical spin velocity ωk,

ω2
k =

−amg
r
h I1

( I3
I1
− r

h

) > 0. (18)

A commercial Tippe-Top is designed such that the trivial po-

Figure 14. Stability diagram of the Tippe-Top (Magnus, 1971).

Figure 15. Time-history of the inclination for different contact radii.

sition is located in Region IV, which can become unstable, and
the inverted position is located in Region II and can be stable
for large values of ω0. The stability regions do not depend on ε
and do therefore not depend on the contact radius R > 0, but the
magnitude of the eigenvalues does depend on ε and R.

Figure 15 shows numerical simulations of the Tippe-Top
for three values of the contact radius. A smaller contact radius
causes a slower inversion of the Tippe-Top, because a decrease
of the contact radius also decreases the magnitude of the real
part of the eigenvalues. This shows the importance of Coulomb-
Contensou’s friction law for the dynamics of the system.

CONCLUSION
A set-valued force law for spatial Coulomb-Contensou fric-

tion was formulated in this paper within the theory of non-
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smooth potentials and is able to describe the smooth nature of
the friction forces during slipping/spin as well as the set-valued
nature of the friction forces during stick (no slipping, no spin).
Other contact and friction effects, such as adhesion and rolling
friction, might be described within the same framework.

A higher-order Runge-Kutta time-stepping method was
briefly described as an extension to the existing time-stepping
method of Moreau. The need for such a higher-order integration
method became apparent during the numerical analysis of the
Tippe-Top. The Tippe-Top experiences almost no damping and
exhibits high-frequency oscillation in the nutation. Numerical
simulation with the classical (low-order) time-stepping method
yielded fastly diverging solutions, or a fast deadening of the nu-
tational oscillation if integrated with a fully implicit version of
the classical time-stepping method. Reducing the step-size led to
different results as the divergence or deadening was weakened.
The higher-order Runge-Kutta time-stepping method gives the
correct result and converges for a reduction of the step-size.

The algebraic inclusion, formed by the equation of motion
and the set-valued contact laws, was numerically solved by mak-
ing use of the Augmented Lagrangian. The (N)LCP formulation
of the contact problem, formerly used by the authors, was aban-
doned as it became fully impractical when applied to Coulomb-
Contensou friction. A substantial advantage of the Augmented
Lagrangian approach is that it solves the algebraic inclusion for
arbitrary admissible sets of contact forces (e.g. the set BF ).

The importance of Coulomb-Contensou friction for the dy-
namics of mechanical systems was illustrated in this paper by
an analysis on the Tippe-Top. Industrial applications with fairly
rigid contact between spinning objects, such as ball bearings,
grinding devices and drillstrings for oil-wells, motivate research
on Coulomb-Contensou friction within a non-smooth formalism.
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