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Abstract
In this paper we are interested in the dynamics and

numerical treatment of a rolling disk on a flat sup-
port. The objective of the paper is to develop a numer-
ical model which is able to simulate the dynamics of
a rolling disk taking into account frictional resistance
against sliding, pivoting and rolling. A mechanical
model of a rolling disk is presented in the framework of
Non-smooth Dynamics. In an analytical study, approx-
imations are derived for the energy decay of the system
during the final stage of the motion for various kinds
of frictional dissipation models. Finally, the numerical
and analytical results are discussed and compared with
experimental results available in literature.
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1 Introduction
The theoretical framework developed during the last

decades in the fields of Numerical Analysis and Non-
smooth Dynamics provides the basis for the efficient
numerical simulation of multi-body systems submitted
to multiple unilateral contact constraints with friction.
When dealing with multi-body systems submitted to
many unilateral contact constraints, the so-called time-
stepping approach has proven its efficiency and robust-
ness (Moreau, 1988; Jean, 1999). The time-stepping
method permits us to study various kinds of mechanical
systems in Civil Engineering (granular materials), dy-
namics of machines (turbine blade dampers), robotics
(walking robots) and mechanisms (electrical circuit-
breakers). However, unilateral contact between an ob-
ject with a flat side of rounded contour and a plane,
like that of a bottle on a table, is still a topic of re-
search. Such a type of contact can for instance be
found in grinding machines and the transportation of
cylindrical objects on a conveyor belt. Systems with
such a type of contact undergo a specific type of mo-
tion, as is described by a scientific toy called the ‘Euler

Disk’. The Euler Disk consists of a metal disk, about
75 mm in diameter and a thickness of 12 mm, which
can spin on a slightly concave mirror, called the sup-
port. More commonly, a similar kind of motion, al-
though with more damping, is that of a coin spinning
on a table. This type of motion involves an energy de-
crease to zero in a finite time accompanied by a cer-
tain kind of singularity. In the course of the motion,
both the inclination of the disk with respect to the sup-
port and its angular velocity decrease to zero, while
the relative velocity of the contact point with respect
to the disk tends to infinity in the final stage of the
motion. The spinning disk on a flat support, which
constitutes the simplest example of this specific type
of motion regarding the shape of the body, has often
been discussed theoretically since the19th century up to
now (Appell, 1900; Moffatt, 2000; McDonald and Mc-
Donald, 2001; Easwaret al., 2002; Borisovet al., 2003;
Stanislavsky and Weron, 2001; O’Reilly, 1996; Kessler
and O’Reilly, 2002).
The objective of the current paper is to develop a nu-

merical model which is able to simulate the dynam-
ics of a rolling disk taking into account the unilateral
contact with a flat rigid support, collisions, stick-slip
transitions and other frictional effects between disk and
support. The mechanical model of a rolling disk is
presented in the framework of Non-smooth Dynam-
ics (Moreau, 1988; Glocker, 2001; Leine and Nijmei-
jer, 2004). Moreover, we want to study the dynamics
of a rolling disk by using the numerical model and by
an analytical study and to compare those results with
experimental results available in literature.

2 Mechanical model
We will use the following notation. The displace-

ment of pointB relative to pointA is expressed by
the vector rAB . The term vB denotes the velocity
of point B, i.e. vB = ṙAB if A is not moving.
Only orthonormal frames are used, which we write as
C = (B,eC

x ,e
C
y ,e

C
z ). The angular velocity of frame

C relative to another frameD is denoted byωDC . The



Figure 1. Mechanical system.

angular velocity of a body is thusωIB , if B denotes a
body-fixed frame andI is an inertial frame. The com-
ponents of a vectora associated with a frameD are
denotedDa. The velocity BvD of point D written
down in frameB is then obtained by Euler’s formula
BvD = B ṙAD + BωIB ×BrAD, if A is not moving
andI denotes the inertial frame. The general version of
Euler’s formula readsB(ȧ) = Bȧ + BωIB ×Ba and
is applied in Section 4 on the linear momentum̄p and
on the angular momentum̄NS .
The mechanical system under consideration consists

of a diskΩ with radiusr, massm and centre of mass
S, which can be in contact with a table during its mo-
tion. The system is modelled as simply as possible,
in order to show only the main physical phenomena of
interest, and the disk is therefore considered to be in-
finitely thin. Both the disk and table are considered
to be perfectly rigid. An absolute coordinate frame
I = (O,eI

x,e
I
y,e

I
z) is attached to the table and a body

fixed coordinate frameB = (S,eB
x ,e

B
y ,e

B
z ) is at-

tached to the disk such thateB
z is the axis of revolution

(Figure 1). The disk has principal moments of inertia
A = B = mr2

4 andC = mr2

2 with respect toS along
the axes(eB

x ,e
B
y ,e

B
z ) respectively. The inertia tensor

of the disk with respect to the centre of massS is de-
noted byΘS . Gravity is denoted byg.

2.1 System parametrization
The disk is allowed to undergo arbitrary rotations. We

parameterize the orientation of the disk with Euler pa-
rameters (unit quaternions). For each possible con-
figuration of the body, the absolute orientation ofΩ
may be defined by the coordinate transformationR :
(eI

x,e
I
y,e

I
z) 7→ (eB

x ,e
B
y ,e

B
z ), which can be accom-

plished by a finite rotation of an angleχ around an
axis which is specified by the unit vectorn. We de-
note byni the three components ofIn, i.e. the three
components ofn in the basis(eI

x,e
I
y,e

I
z). Each rota-

tion (n, χ) is associated with a unit quaternion, repre-
sented in the following by the4-tuplep which compo-
nents,e0 = cos χ

2 andei = ni sin χ
2 for i = 1, 2, 3, are

called the Euler parameters. We will use the abbrevia-

tion e =
[
e1, e2, e3

]T
. The Euler parameters fulfill the

relationship

pTp = 1, with p =
[
e0 eT

]T
. (1)

The rotation transformationR, which identifies with a
linear mapping with associated matrixR = [Rij ] =
(2e20 − 1)I3 + 2(eeT + e0ẽ), relates the global com-
ponentsIs of a vectors to its body-fixed components
Bs asIs = R Bs. We parameterize the bodyΩ using
a set of7 generalized coordinates composed of three
translational coordinatesIrOS , being the absolute co-
ordinates of the centre of massS, and four rotational
coordinatesp, being the Euler parameters. Introducing
the generalized coordinate vector

q =

[

IrOS

p

]

∈ IR7, (2)

a Lagrangian description of the motion can be writ-
ten in the form IrOM (q) = IrOS + R BrSM

∀ M ∈ Ω. This equation must be considered to-
gether with the constraint (1). Differentiation leads
to the Eulerian description of the motionI ṙOM =

I ṙOS + Ṙ BrMS ∀ M ∈ Ω, with the relations
Ṙ = Iω̃IB R and Ṙ = R Bω̃IB , where ω̃IB is
the skew-symmetric operator associated with the abso-
lute angular velocity of the bodyωIB . Subsequently,
we introduce the generalized velocity vectoru, which
gathers the absolute coordinates of the global velocity
of the centre of massI ṙOS and the body-fixed coordi-
nates of the absolute angular velocity vectorBωIB ,

u =

[

I ṙOS

BωIB

]

∈ IR6. (3)

2.2 Contact kinematics
During the time-evolution of the system, the disk can

be in contact with the table. The unilateral contact
between disk and table is assumed to be of the type
point–surface. A single contact constraint is not able
to describe the static equilibrium of a disk lying hor-
izontally on the table. We therefore model the disk
with three unilateral contact constraints. For an arbi-
trary configuration of the disk, we define three points
on the contour of the disk which are candidates to con-
tact. Subsequently, we derive the normal gap functions
gNj(q) associated with the three unilateral contact con-
straints under consideration(j = 1, 2, 3). It must hold
thatgNj(q) ≥ 0 to avoid penetration.

2.2.1 Derivation of gap functions We first con-
sider a non-horizontal configuration of the disk(R33 6=
1). We define the pointC1 as the point on the contour
of the disk which has a minimal height with respect to
the plane of the table. If the disk is above the table,
thenC1 is the closest point to the table. LeteK

x be



Figure 2. Contacts pointC1,C2 andC3.

a unit directional vector of the intersection line of the
planeΠ of the disk and the horizontal plane(S,eI

x,e
I
y)

(Figure 2), i.e. eK
x = −(eI

z × eB
z )/‖eI

z × eB
z ‖

with ‖eI
z × eB

z ‖ =
√

1 −R2
33. The direction in the

plane Π with the largest inclination with respect to
the plane(S,eI

x,e
I
y) is characterized by the unit vec-

tor eK
z = −eB

z × eK
x =

(
eI

z −R33e
B
z

)
/
√

1 −R2
33.

The pointC1 on the contour of the disk which has a
minimal height with respect to the plane, is defined by
rSC1

= −r eK
z . Based on the definition ofC1, we

introduce two other pointsC2 andC3 on the contour
of the disk, being candidates of contact (Figure 2) de-
fined by rSC2

= − 1
2 rSC1

+
√

3
2

(
eB

z × rSC1

)
, and

rSC3
= − 1

2 rSC1
−

√
3

2

(
eB

z × rSC1

)
. The gap func-

tionsgNj , associated with the three contact pointsCj ,
with rCj

= rS + rSCj
, are defined asgNj(q) =

eI
z · rCj

(j = 1, 2, 3) and can be expressed in the form

gN1(q) = zS − r
√

1 −R2
33 andgN2(q) = gN3(q) =

zS + r
2

√

1 −R2
33. The functionsgNj are continuous

functions inq.
If the disk is parallel to the table, then the proximal

point can not be uniquely defined because all points on
the disk have the same heightzS , and the configuration
is said to be singular. In this case (R33 = 1, gN1 =
gN2 = gN3 = zS) the functionsrSCj

(q) (j = 1, 2, 3)
are not defined. The pointsC1, C2 andC3 can there-
fore, a priori, be chosen arbitrarily on the contour of the
disk. When, at a time-instantt∗, the disk passes a hori-
zontal singularity position during its motion, we define
the pointsC1, C2 andC3 by the continuity condition
r+

SCj
(t∗) = r−

SCj
(t∗) for j = 1, 2, 3, where the up-

per indices+ and− denote the right and left limit att∗

with respect to timet.

2.2.2 Derivation of relative velocities at the con-
tact points Consider the constrained motion of the
disk, such that it is in contact with the table at a single
pointC1 (gN1 = 0, gN2 = gN3 > 0). The pointC1

moves during the time-evolution of the system along
the contour of the disk such that it remains the proxi-
mal point on the contour with respect to the table. The
absolute velocity of pointC1 is obtained by differenti-
ation ofrOC1

= rOS + rSC1

BvC1
= BvS + BωIB ×BrSC1

︸ ︷︷ ︸

BvP1

+ B ṙSC1
. (4)

The term BvP1
represents the absolute velocity of

the body-fixed pointP1 which at time-instancet co-
incides with pointC1. The second termB ṙSC1

=
−r B ėK

z corresponds to the velocity of pointC1 rel-
ative to the disk. For each non-horizontal configura-
tion of the disk(R33 6= 1), the coordinate transfor-
mationB = (eB

x ,e
B
y ,e

B
z ) 7→ K = (eK

x ,e
K
y ,e

K
z ) is

a rotationψ around axiseB
z . It therefore holds that

B ėK
z = BωBK ×BeK

z = ψ̇ BeK
x , from which fol-

lows B ṙSC1
= −rψ̇ BeK

x . In addition, by differenti-
ation of BrSC1

we obtain B ṙSC1
= −r (Ṙ32R31 −

Ṙ31R32)/(1−R2
33)BeK

x . By usingṘ = R Bω̃IB , we
derive the following expression foṙψ

ψ̇ =
Ṙ32R31 − Ṙ31R32

1 −R2
33

=

[
R31R33

1 −R2
33

R32R33

1 −R2
33

−1

]

BωIB .

(5)

We now introduce a number of velocity quantities for
the relative kinematics of the interacting bodies. We
first define the time-derivative of the gap functiongN1.
Using the notationγN1 = ġN1 with gN1 = eI

z · rC1
,

and considering (4), it holds that

γN1 = eI
z · vC1

= żS − (Ie
I
z)

T
I r̃SC1

R BωIB . (6)

That is to say, whengN1 = 0, γN1 represents the rel-
ative velocity of the interacting bodies in the direction
eI

z normal to the contact plane(eI
x,e

I
y). Secondly, we

define the tangential relative velocityγT1 of the inter-
acting bodies at contact pointC1, as a 2-vector which
elements are the first two components ofIvP1

γT1 =

[

ẋS − (Ie
I
x)T I r̃SC1

R BωIB

ẏS − (Ie
I
y)T I r̃SC1

R BωIB

]

. (7)

The relative spin vector of the interacting bodies,ωspin,
is a vector normal to the contact planeωspin = ωspineI

z,



with ωspin = ωIB ·eI
z. Furthermore, we introduce

the spin velocityγτ1 as the product of the relative spin
ωspin and some quantityǫ1

γτ1 = ǫ1 ωspin = ǫ1(Ie
I
z)

T
IωIB , (8)

whereǫ1 is an assumed radius of a hypothetical circular
contact area in the(eI

x,e
I
y)-plane. Lastly, we define the

relative ‘rolling’ velocity γR as the product of minus
the radius of the disk anḋψ (5)

γR1 = −r ψ̇ = r

[−R31R33

1 −R2
33

−R32R33

1 −R2
33

1

]

BωIB .

Subsequently, we treat the situation for which the disk,
while being in contact, passes a horizontal singular-
ity position at instantt⋆ and thereafter moves in the
plane of the table (gN1 = gN2 = gN3 = 0, and
thusR33 = 1). At such a time-instantt⋆, the previ-
ous relations forBrSCj

do not hold, and the points
C1, C2, C3 are defined by the continuity condition
r+

SCj
(t⋆) = r−

SCj
(t⋆), j = 1, 2, 3, in whichr−

SCj
(t⋆) is

considered to be known. During the subsequent time-
evolution (in the plane of the table), the three points
C1, C2, C3 are considered to be fixed to the disk.
Consequently, the relative velocitiesγRj , j = 1, 2, 3
are considered to be zero. According to the definition
gNj = eI

z ·rCj
, the time-derivative of the gap functions

γNj = ġNj (j = 1, 2, 3) are defined by expressions of
the form (6). Similarly,γTj andγτj (j = 1, 2, 3) are
defined by expressions of the form (7) and (8), respec-
tively.
Summarizing, for arbitrary configurations of the disk,

we can write the relative velocitiesγNj , γTj , γτj and
γRj , for j = 1, 2, 3, as affine functions ofu, i.e.
γNj = W T

Nj u, γTj = W T
Tj u, γτj = W T

τj u and
γRj = W T

Rj u. It can be demonstrated thatWN1,
WN2, WN3 are three linearly independent vectors,
which is of importance especially when dealing with
non-interpenetration constraint violations.

2.3 Constitutive laws
Associated with each of the relative velocitiesγ are

forcesλ as their dual entities, for which we now intro-
duce certain constitutive laws. These constitutive laws
regard unilateral contact, Coulomb-Contensou friction
as well as rolling friction, and are formulated as set-
valued interaction laws in the framework of convex
analysis by applying the concept of normal cone. The
indexj, used to label the contact constraints, is omitted
for brevity in the following.

2.3.1 Contact in normal direction We assume
Signorini’s law to hold in the normal direction asso-
ciated with a unilateral constraintgN ≥ 0, λN ≥ 0,
gN · λN = 0, whereλN represents the normal contact
force. Within the context of non-smooth dynamics we

Figure 3. Friction ballCF .

have to allow for temporal discontinuities, e.g. veloc-
ity jumps usually associated with collisions. The gen-
eralized velocity vectoru is assumed to be a function
of locally bounded variation on the time-intervalT of
interest (Moreau, 1988). Such a function possesses a
left limit u−(t) and a right limitu+(t) at every time-
instancet ∈ T . Similarly, a left and right limit exists
for the relative velocityγN consideringWN to be a
continuous function of time. For a time-instancet for
which gN = 0 andλN admits a right limit it follows
that γ+

N ≥ 0, λ+
N ≥ 0, γ+

N · λ+
N = 0, which is Sig-

norini’s condition on velocity level. It is possible to
prove that if Signorini’s condition on velocity level is
satisfied for almost every time-instancet ∈ T , and if
gN ≥ 0 at the initial time-instancet0 then the non-
interpenetration of the interacting bodies are satisfied
for all t ∈ T succeedingt0 (see also Proposition 7.1.1.
in (Glocker, 2001)). Using concepts of Convex Analy-
sis, we can write Signorini’s condition on velocity level
in the form

−γ+
N ∈ NCN

(λ+
N ), (9)

whereNCN
(λ+

N ) is the normal cone toCN atλ+
N , with

CN := IR+.

2.3.2 Coulomb-Contensou friction Drilling fric-
tion is taken into account by using the Coulomb-
Contensou friction model (Leine and Glocker, 2003).
The Coulomb-Contensou friction model describes the
coupled behaviour of spatial sliding friction and
drilling friction. The tangential friction forceλT and
the normal drilling torqueτN are derived from a non-
smooth scalar convex (pseudo) potential (dissipation
function) expressed in terms of the sliding velocityγT

and spinωspin. We assume that the disk locally de-
forms in the vicinity of a contact such that it has a
circular contact surface with radiusǫ in the contact
plane. Moreover, we consider a parabolic normal pres-
sure distribution over the contact area. The Coulomb-
Contensou friction model reads for a persistent contact
as

−γF ∈ NCF
(λF ), (10)



in which λF =
[
λT λτ

]T
, λτ = τN

ǫ , γF =
[
γT γτ

]T
= W T

F u with WF =
[
WT Wτ

]
. The

convex setCF , shown in Figure 3, is defined in (Leine
and Glocker, 2003). The coefficient of friction in the
Coulomb-Contensou friction model is denoted byµF

and is in general a function ofγF . It is important to re-
alize that the frictional sliding forceλT and the normal-
ized drilling torqueλτ are coupledby the Coulomb-
Contensou friction law (10). If both the sliding velocity
γT and spinωspin are identically zero, then this case is
referred to as ‘stick’. If either the sliding velocityγT or
the spinωspin are nonzero, then the contact is in ‘slip’.
In the case of a persistent contact, the ratio
‖γT ‖/µFλN is a strictly increasing smooth function
of ‖γT ‖/γτ for non-zero values ofγτ = ǫωspin 6= 0.
Similarly, the ratioλτ/µFλN is a strictly increasing
smooth function of the ratioγτ/‖γT ‖ for non-zero val-
ues ofγT 6= 0. For example, this means that‖γT ‖ de-
creases whenγτ increases for fixed values ofγT and
µFλN . This physical effect can be demonstrated by
an electric polishing machine used to clean floors. The
machine is hard to move when the brushes are not rotat-
ing but can easily be pushed over the floor with rotating
brushes.

2.3.3 Contour friction Classically, the resistance
against rolling of two interacting bodies is modelled by
the Coulomb’s law of rolling friction. This set-valued
force law relates a frictional couple transmitted by the
contact to the relative velocity of rotation of the two
interacting bodies. However, the classical rolling fric-
tion law is ambiguous and can lead to contradictions.
Here, we will employ another type of rolling friction
law, which models resistance against the movement of
the contact point along the contour of the disk. We refer
to this rolling friction law as thecontour friction model
throughout this paper. The contour friction model for a
persistent contact relates the relative (rolling) velocity
γR to a forceλR opposing the movement of the contact
point along the contour of the disk

−γR ∈ NCR
(λR), (11)

in whichCR := {v ∈ IR | |v| ≤ µRλN}.

3 Numerical results
The time-stepping method (Moreau, 1988; Leine and

Nijmeijer, 2004; Leineet al., 2005) has been used to
simulate the time-evolution of a rolling disk. The fol-
lowing dataset has been used for the simulation. Iner-
tial properties:m = 0.3048 kg, A = B = 1.0716 ×
10−4 kg m2, C = 2.1433 × 10−4 kg m2, g = 9.81
m/s2. Geometrical properties:r = 3.75 × 10−2 m.
Contact properties:µFj = 0.3, ǫj = 2 × 10−3 m,
µRj = 0.3 × 10−3 for j = 1, 2, 3. Initially, the disk
is considered to be orthogonal to the table and rolling
without sliding but with an additional small angular ve-
locity around theeK

x axis which causes the disk to turn.

The stepsize of the numerical scheme is given the fixed
value∆t = 10−4 s.

The results of the simulation with Coulomb-
Contensou and contour friction are presented in Fig-
ure 4. Immediately aftert = 0 s, the disk starts to
slide laterally (also to pivot) which leads to a decrease
in the inclination of the disk and therefore in the po-
tential energy of the system (graphs(t, gN ) and(t, β)).
At time-instantt = 0.4 s, when the nutation reaches
the valueβ = 0.45 rad, the sliding velocity of con-
tact 1 highly increases and subsequently decreases on
a short time-interval, as is illustrated by the peak in
the graph(t, ‖γT1‖). The contour friction forceλR1 is
very small because the contour friction coefficientµR1

is taken to be a small constant3 ·10−4. Meanwhile, the
contour rolling velocityγR1 is rather small during this
part of motion. The dissipation due to contour friction
is therefore small with respect to the dissipation due
to Coulomb-Contensou friction. The dissipated energy
is mostly due to the work done by the tangential con-
tact force. During the subsequent part of the motion,
in presence of sliding and spinning, the inclination of
the disk with respect to the table and its angular ve-
locity fall down, whereas the velocity of the contact
point with respect to the diskC1 is strongly increasing
(graphs(t, β) and (t, ψ̇)). When the disk approaches
a horizontal configuration, the contour rolling veloc-
ity γR1 tends to infinity and contour friction becomes
the main mechanism of energy dissipation. At time
t=13.6 s, as contact 2 and 3 become active, the disk
reaches a horizontal equilibrium configuration. Con-
tour friction plays a crucial role in the end phase of the
motion and causes the disk to reach a horizontal equi-
librium configuration in a finite time.

4 Analytical analysis of rolling motion

The simulation of the previous section reveals vari-
ous dynamic effects. The consideration of an analyt-
ical model of the pure rolling motion of the disk per-
mits to give an interpretation of these dynamic effects
and therefore contributes to a better understanding of
the dynamics of a rolling disk.

The analytical model, presented here, describes the
mechanical system under consideration as a disk sub-
mitted to a bilateral contact constraint and a sticking
condition at contact pointC1. We define a parametriza-
tion of the disk(x, y, α, β, γ) as illustrated in Fig-
ure 6, which accounts for the bilateral contact con-
straint in normal direction. The sticking condition at
contact pointC1 can be expressed by means of the two
nonholonomic scalar constraintsẋ− yα̇− rγ̇ = 0 and
ẏ + xα̇ = 0. These conditions permit us to express
ẋ and ẏ as functions ofα̇, β̇ and γ̇. Subsequently,
we write the equations of motion using the coordinates
(x, y, α, β, γ) and minimal velocities(α̇, β̇, γ̇).

First, we derive the angular velocityKωIB and the
velocity of the center of massKvS of the disk, by using



Figure 4. Simulation with Coulomb-Contensou and contour fric-

tion.

frameK = (eK
x ,e

K
y ,e

K
z ),

KωIB = α̇ KeR
z + β̇ KeK

x + γ̇ KeK
y

=





0 1 0
sinβ 0 1
cosβ 0 0





︸ ︷︷ ︸

K J̄R





α̇

β̇
γ̇



 ,

KvS = KωIB ×KrC1S =





r sinβ 0 r
0 −r 0
0 0 0





︸ ︷︷ ︸

K J̄S





α̇

β̇
γ̇



 .

(12)
Note that frameK is not body-fixed, but moves along

Figure 5. Simulation with Coulomb-Contensou and contour fric-

tion.

with the disk such that theeK
x -axis remains parallel to

the table.
Furthermore, we introduce the linear momentum

K p̄ = mKvS and angular momentumKN̄S =

KΘS KωIB of the disk. Considering the parameters
for the diskA = B = mr2

4 andC = mr2

2 , it holds that

K( ˙̄p) = mr





α̈ sinβ + γ̈ + 2α̇β̇ cosβ

−β̈ + α̇2 sinβ cosβ + α̇γ̇ cosβ

−β̇2 − α̇2 sin2 β − α̇γ̇ sinβ



 ,

K( ˙̄NS) = 1
4mr

2





β̈ − α̇2 sinβ cosβ − 2α̇γ̇ cosβ
2α̈ sinβ + 2γ̈ + 2α̇γ̇

α̈ cosβ + 2βγ̇



 .



Figure 6. Parametrization of the disk.

Subsequently, we apply the principle of virtual power
for virtual velocities which are compatible with the
sticking condition. As the constraints are consid-
ered to be ideal, only the action of gravity arises
in the virtual power of external effort. The action
of the gravity on the disk is described by a force

KF = mg̃r
[
0 − sinβ − cosβ

]T
and a momentum

KMS = 0 with g̃ = g
r . From the principle of vir-

tual power follow the projected Newton-Euler equa-
tions (Glocker, 2001)

K J̄T
S

[

K( ˙̄p) − KF
]
+ K J̄T

R

[

K( ˙̄NS) − KMS

]

= 0,

which yield the equations of motion of the disk:

(5 sin2 β + 1)α̈+6γ̈ sinβ + 10α̇β̇ sinβ cosβ

+ 2β̇γ̇ cosβ = 0,
(13)

5β̈ − 5α̇2 sinβ cosβ − 6α̇γ̇ cosβ − 4g̃ sinβ = 0,
(14)

6α̈ sinβ + 6γ̈ + 10α̇β̇ cosβ = 0. (15)

4.1 Circular rolling motion
We now proceed to analyze a particular type of rolling

motion. We consider the type of motion(x0(t), y0(t),
α0(t), β0(t), γ0(t)) for whichx0 = 0 andβ0 = const.
(0 < β0 <

π
2 ) in time. It follows thatẋ0 = ẍ0 = 0

and β̇0 = β̈0 = 0. Consequently the sticking con-
ditions ẋ − yα̇ − rγ̇ = 0 and ẏ + xα̇ = 0 yield
ẏ0 = −x0α̇0 = 0 ⇒ ẏ0 = ÿ0 = 0 ; y0 = R and
ẋ0 = y0α̇0 + rγ̇0 ⇒ 0 = Rα̇0 + rγ̇0. During such
a motion, the inclination of the diskβ0 with respect to
the verticaleI

z and the height of the center of mass, are
constant in time. As contact pointC1 moves on the
contour of the disk (relative motion), it describes on
the table (absolute motion) a circular trajectory(O,R)
of radiusR around the originO of the inertial frame.
The equation0 = Rα̇0 + rγ̇0 is the condition for pure
rolling, which means that, for a given time-interval of
the motion, the arc lengths covered by the contact point

C1 on both the perimeter of the circle(O,R) and the
perimeter of the disk, are equal. In the following we
refer to such motion ascircular rolling motion. Sub-
traction of (15)· sinβ0 from (13) yields, together with
β̇0 = 0, to α̈0 = 0. Consequently, it can be deduced
from the pure rolling condition that botḣα0 andγ̇0 are
constant in time for circular rolling motion. In the fol-
lowing we defineρ as ρ = r

R . It follows from the
equation of motion (14), and the pure rolling condition
written asα̇0 = −ργ̇0 that

γ̇2
0 =

4g̃ sinβ0

(6 − 5ρ sinβ0)ρ cosβ0
, (16)

with 0 < ρ < 6
5 sin β0

.
Subsequently, we study a particular type of circular

rolling motion for which, as the disk is rolling on the
table, the center of massS remains on the axis(O,eI

z).
Such type of motion is characterized byr sinβ0 = R
or ρ sinβ0 = 1, which fulfills the restriction in (16). In
this casėγ2 andα̇2 can be written as

γ̇2
0 =

4g̃

ρ
√

ρ2 − 1
and α̇2

0 = ρ2γ̇2
0 =

4g̃ρ
√

ρ2 − 1
.

(17)
Considering (12) together witḣα0 = −ργ̇0, ρ sinβ0 =
1 and (17) we deduce

‖ ωIB ‖2 = 4g̃

√

1 − 1

ρ2
and vS = 0,

which reveals that the center of massS is immobile
with respect to the inertial frame. We call this type of
motionstationary rolling motion. In the limit of β0 →
π
2 it holds thatρ→ 1. Consequently, it follows thaṫα2

0

andγ̇2
0 → +∞ while ωIB → 0. The contact pointC1

therefore moves infinitely fast on the circle(O,R) with
radiusR → r, and moves infinitely fast on the contour
of the disk, while the disk does practically not rotate.

4.2 Energy decay during the final stage of motion
In the beginning of this analytical analysis we studied

the circular rolling motion (without dissipation) of a
disk. As a special case, we focused on the stationary
rolling motion, for which the center of massS remains
immobile with respect to the inertial frame.
Section 3 shows the numerical simulation of a rolling

disk with Coulomb-Contensou and contour friction.
The numerical results, in terms ofq(t) (2) andu(t) (3),
can be expressed in the parametrization(x, y, α, β, γ)
of the analytical model (Figure 6). A number of obser-
vations can be made concerning the simulation. Dur-
ing the first phase of the motion, the disk rolls over the
table much like the circular rolling motion. However,
the system is not conservative due the presence of fric-
tion and the movement slowly changes. A short phase
of rapid sliding occurs. We observe that the subse-
quent time-evolution of the disk is much like stationary



rolling motion. Asβ tends toπ/2, the center of mass
hardly moves and the relative sliding velocity is becom-
ing small. Moreover, the componentωx = β̇ of the
angular velocity along the axiseR

x (Figure 6) becomes
small when compared to the componentωy = γ̇ cosβ
along the axiseR

y .
In the following, we will study analytically the energy

decay of a rolling disk for various kinds of dissipation
using the following standing assumptions for the type
of motion

A.1 The center of mass is assumed to be almost immo-
bile, i.e.ρ sinβ = 1.

A.2 We assume|β̈| ≪ g̃ and|β̇| ≪ |α̇| cosβ.
A.3 The sliding velocity is assumed to be small, i.e.

α̇ = −ργ̇.
A.4 We assumeβ to be close toπ/2.

The analytically obtained energy decays for different
kinds of dissipation will be compared with the en-
ergy decay during the final stage of the motion of the
corresponding numerical simulations. With assump-
tions A.1–A.4, it follows from equation of motion (14)
that (17) still holds approximately, i.e.̇γ(t) = γ̇(ρ(t))
and α̇(t) = α̇(ρ(t)) with ρ(t) = 1/ sinβ(t). Sub-
sequently, we derive the total energy of the system
E = T + V with V = mgr cosβ and

T =
1

2
mKvS

T
KvS +

1

2
KωIB

T
KΘS KωIB

=
1

2
mr2

(

(α̇ sinβ + γ̇)2 + β̇2
)

+
1

2

(

Aβ̇2 + C(α̇ sinβ + γ̇)2 +Aα̇2 cos2 β
)

.

Using the above assumptions, we approximate the to-
tal energy by the expressionE = 1

2Aα̇
2 cos2 β +

mgr cosβ, in which only the major terms have been
taken into account. An expression for the energy as a
function ofβ

E =
3

2
mr2g̃ cosβ (18)

follows from the substitution of (17) andA = 1
4mr

2.
In the following, we express, for different kinds of fric-
tion models, the power as a function of energy, i.e.
Ė = f(E). The corresponding power–energy rela-
tions define a time-evolution of the system, which can
be shown to verify the standing assumptions A.1-A.4.

4.2.1 Contour friction model First we consider a
model of rolling friction called contour friction (Sec-
tion 2.3.3), which relates the velocity of the contact
point on the contour of the diskγR to a friction force
by relation (11). Considering the parametrization of
the disk (x, y, α, β, γ) it holds thatγR = −rγ̇. If
we choose a dry contour friction law, as used in Sec-
tion 2.3.3, then the dissipation rate reads asĖ =

Figure 7. Energy decay for (a) contour friction (dry = black,vis-

cous = grey), (b) classical rolling friction (dry = black, viscous =

grey) and Contensou friction (dashed).

−µRλN |γR| = −rµRλN |γ̇|. The assumptions A.2
and A.4 allow us to approximate the normal contact
force with λN = mg. We now have to express
γ̇ as a function ofE. Using (17), (18) andρ =
1/

√

1 − cos2 β, it holds that

γ̇2 =
4g̃

ρ
√

ρ2 − 1
=

4g̃(1 − cos2 β)

cosβ

=

4g̃

(

1 −
(

2E
3mr2g̃

)2
)

(
2E

3mr2g̃

) .

(19)

It follows from assumption A.4 thatE ≪ 3
2mr

2g̃ and
we approximate (19) witḣγ2 ≈ 6g̃2mr2/E = α̇2. The
dissipation rateĖ for dry contour friction can there-
fore be expressed aṡE = − a√

E
for E > 0 with

a =
√

6µRm
3/2g̃2r2 > 0. For an arbitrary initial

conditionE(t0) = E0, this differential equation inE
obeys the solution

E(t) =

(

E
3
2

0 − 3

2
a(t− t0)

) 2
3

for t0 ≤ t ≤ tf ,

(20)
which shows (see the black line Figure 7a) a decrease

to zero in a finite timetf − t0 = 2E
3
2

0 /(3a).
If we consider a viscous contour friction modelλR =



−cγR, in which c is the viscosity parameter, then the
dissipation rate reads aṡE = −cγ2

R = −cr2γ̇2. Us-
ing the approximatioṅγ2 ≈ α̇2, similar to the above
analysis, we deduce thatĖ = − a

E , with a = 6cg̃mr3,
which obeys the solution

E(t) =
(
E2

0 − 2a(t− t0)
) 1

2 for t0 ≤ t ≤ tf , (21)

and shows (the grey line in Figure 7a) a decrease to
zero in a finite timetf − t0 = E2

0/(2a).

4.2.2 Classical rolling friction model Classi-
cally, the resistance against rolling of two interacting
bodies is modelled by a set-valued force law which re-
lates the orthogonal projection, on the contact plane,
of the relative angular velocity of the bodiesωR, to
a tangential frictional coupleMR, transmitted by the
contact

−ωR ∈ NCR
(MR), (22)

with CR := {v ∈ IR2 | ‖v‖ ≤ µRλN}. Sim-
ilar to the analysis conducted with the contour fric-
tion model, we study here the total energy decrease
for classical rolling friction. More generally, the set
CR will be some non-circular closed convex set cor-
responding to an anisotropic law. The projection of
angular velocity vector on the contact planeωR can
be decomposed along the axiseR

x andeR
y (Figure 6)

ωR =
[
ωx ωy

]T
=

[

β̇ γ̇ cosβ
]T

. The dissipation

rate due to classical rolling friction reads aṡE =
−µRλN‖ωR‖. The assumptions A.1–A.4 allowed us
to make the approximatioṅE = −µRλN |γ̇| cosβ.
Substitution of (18) anḋγ2 ≈ α̇2 givesĖ = −a

√
E

with a = 2
√

6/3µR g̃
√
m > 0. For an arbitrary initial

conditionE(t0) = E0, this differential equation obeys
the solution

E(t) =
(√

E0 −
a

2
(t− t0)

)2

for t0 ≤ t ≤ tf ,

(23)
which shows (see the black line in Figure 7b) a de-
crease to zero in a finite timetf − t0 = 2

√
E0/a.

If we consider a viscous classical rolling friction
modelMR = −cωR, then the dissipation rate reads
asĖ = −c‖ωR‖2 = −cγ̇2 cos2 β, in which assump-
tion A. 2 has been used andc is a viscosity param-
eter. Similar to the above analysis, we deduce that
Ė = −aE, with a = 8c

3mr2 . For an arbitrary initial
conditionE(t0) = E0, this differential equation obeys
the solution

E(t) = E0e
−a(t−t0) for t ≥ t0, (24)

which shows (see the grey line in Figure 7b) an asymp-
totic behaviour of the energy and a decrease to zero is
therefore not achieved in a finite time.

4.2.3 Coulomb-Contensou friction We assume
the sliding velocityγT to be negligible. Consequently,
the dissipation rate is due to the work done by the
drilling torque, i.e. Ė = λτ · γτ , which according
to (8) and the Coulomb-Contensou friction law (Sec-
tion 2.3.2) leads tȯE = − 3π

16µFmg · ǫ|α̇+ γ̇ sinβ|, in
whichǫ is the radius of the contact surface. Using (18),
ρ sinβ = 1 and α̇ = −ργ̇ we deduce the differen-
tial equationĖ = −aE 3

2 with a = π
√

2
4
√

3

µF ǫ
r2

√
m

, which
obeys the solution

E(t) =

(
1√
E0

+
a

2
(t− t0)

)−2

for t ≥ t0, (25)

and which shows (see the dashed line in Figure 7b) an
asymptotic behaviour of the energy.

5 Discussion of analytical, numerical and experi-
mental results

In this section we will discuss the analytical and nu-
merical results (Sections 3 and 4) and compare those
with experimental results which can be found in litera-
ture.
In the analytical analysis of Section 4.2, we studied

the energy decrease of a rolling disk under the as-
sumptions A.1–A.4 for various types of friction. If dry
contour friction is assumed, then the analytical analy-
sis indicates that the energy decreases in a finite time
to zero, which is in accordance with the numerical
simulation for Coulomb and contour friction (Leineet
al., 2005). Moreover, we checked that the profile of
E(t) during the final stage of the corresponding simula-
tion is indeed of the form (20). If Coulomb-Contensou
is assumed, then the analytical analysis indicates that
the energy decreases asymptotically to zero, which is
in accordance with a numerical simulation with only
Coulomb-Contensou friction and the profile ofE(t) is
indeed of the form (25). Additional simulations, not
presented here, show that the numerical results for clas-
sical rolling friction are in accordance with the ana-
lytical results of Section 4.2.2. The final stage of the
motion of the simulation with Coulomb-Contensou and
contour friction is similar in form to the final stage of
the simulation with contour friction. This can be un-
derstood from the analytical analysis of the energy de-
cay (Section 4.2): the dissipation rateĖ due to contour
friction increases with decreasing energyE, while the
dissipation rateĖ due to Coulomb-Contensou friction
decreases with decreasing energyE. The final stage of
the motion with both Coulomb-Contensou and contour
friction will therefore be dominated by the dissipation
due to contour friction.
Experiments on rolling disks have been performed

by (McDonald and McDonald, 2001) and (Easwaret
al., 2002), both presenting their results in terms ofα̇(t).
McDonald and McDonald performed the experiment
on a single disk using a phototransistor. Easwar et al.
measured the movement of steel disks and a steel ring



on supports of various materials using a high-speed
camera. The experimental data of (McDonald and Mc-
Donald, 2001) and (Easwaret al., 2002) can be de-
scribed for the final stage of the motion by a power
law

α̇(t) ∝ (tf − t)
− 1

nexp . (26)

The experiments of (McDonald and McDonald, 2001)
suggest thatnexp = 4 and the experiments of (Easwar
et al., 2002) on various disk/ring–support combinations
suggest that2.7 < nexp < 3.2.
The analytical analysis of Section 4.2 leads to the re-

lation6g̃2mr2/E = α̇2 betweenα̇ andE

α̇(t) ∝ E(t)−
1
2 ∝ (tf − t)−

1
nana . (27)

We now derivenana for those friction models of Sec-
tion 4.2, which lead to an energy decease to zero in a
finite time. It follows from (20), thatnana = 3 for
the dry contour friction model. Similarly, it holds that
nana = 4 for viscous contour friction. Dry classical
rolling friction leads tonana = 1. If we now com-
pare the experimental results with the results from the
analytical model, then dry or viscous contour friction
could well explain the energy decay of the experimen-
tal results. We therefore belief that contour friction is
indeed the dominant mechanism of dissipation during
the final stage of the motion. However, we have to keep
in mind that (at least in theory) other dissipation mech-
anisms might exist that lead to a similar energy decay.

6 Conclusion
In this paper a numerical model for a rolling disk has

been developed, using a parametrization with Euler pa-
rameters, which is able to take into account the unilat-
eral contact constraints and different types of frictional
models. The numerical model has proven its capability
to describe the motion of objects, with a flat side of cir-
cular contour, on a plane. The numerical results seem
to be reasonable for the chosen contact parameters, but
a fairly small stepsize has to be taken to properly de-
scribe the motion.
An analytical analysis of the energy decay during the

final stage of rolling motion has been performed in Sec-
tion 4. The derived energy profiles for the different
types of frictional dissipation mechanisms agree well
with the corresponding numerical energy profiles. An
energy decrease to zero in finite time occurs for dry
contour friction and dry classical rolling friction, and,
remarkably, forviscouscontour friction. An asymp-
totic decrease to zero of the energy occurs for viscous
classical rolling friction and (dry) Contensou friction.
The analytical analysis of Section 4 gives a better un-
derstanding of the behaviour of the disk during the
last stage of the numerical simulations. A comparison

with available experimental results suggests that con-
tour friction might very well be the dominant mecha-
nism of dissipation.
The results obtained in this paper may provide a good

basis for numerical treatment of more general dynam-
ical multi-contact problems involving interaction be-
tween cylindrical and planar objects and the like.
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