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Abstract Disk’. The Euler Disk consists of a metal disk, about

In this paper we are interested in the dynamics and 75 mm in diameter and a thickness of 12 mm, which
numerical treatment of a rolling disk on a flat sup- can spin on a slightly concave mirror, called the sup-
port. The objective of the paper is to develop a numer- port. More commonly, a similar kind of motion, al-
ical model which is able to simulate the dynamics of though with more damping, is that of a coin spinning
a rolling disk taking into account frictional resistance on a table. This type of motion involves an energy de-
against sliding, pivoting and rolling. A mechanical crease to zero in a finite time accompanied by a cer-
model of a rolling disk is presented in the framework of tain kind of singularity. In the course of the motion,
Non-smooth Dynamics. In an analytical study, approx- both the inclination of the disk with respect to the sup-
imations are derived for the energy decay of the systemport and its angular velocity decrease to zero, while
during the final stage of the motion for various kinds the relative velocity of the contact point with respect
of frictional dissipation models. Finally, the numerical to the disk tends to infinity in the final stage of the
and analytical results are discussed and compared withmotion. The spinning disk on a flat support, which
experimental results available in literature. constitutes the simplest example of this specific type
of motion regarding the shape of the body, has often
been discussed theoretically since 1B century up to
now (Appell, 1900; Moffatt, 2000; McDonald and Mc-
Donald, 2001; Easwasat al, 2002; Borisowet al., 2003;
Stanislavsky and Weron, 2001; O’'Reilly, 1996; Kessler
and O’'Reilly, 2002).

1 Introduction The objective of the current paper is to develop a nu-

The theoretical framework developed during the last merical model which is able to simulate the dynam-
decades in the fields of Numerical Analysis and Non- ics of a rolling disk taking into account the unilateral
smooth Dynamics provides the basis for the efficient contact with a flat rigid support, collisions, stick-slip
numerical simulation of multi-body systems submitted transitions and other frictional effects between disk and
to multiple unilateral contact constraints with friction. support. The mechanical model of a rolling disk is
When dealing with multi-body systems submitted to presented in the framework of Non-smooth Dynam-
many unilateral contact constraints, the so-called time- ics (Moreau, 1988; Glocker, 2001; Leine and Nijmei-
stepping approach has proven its efficiency and robust-jer, 2004). Moreover, we want to study the dynamics
ness (Moreau, 1988; Jean, 1999). The time-steppingof a rolling disk by using the numerical model and by
method permits us to study various kinds of mechanical an analytical study and to compare those results with
systems in Civil Engineering (granular materials), dy- experimental results available in literature.
namics of machines (turbine blade dampers), robotics
(walking robots) and mechanisms (electrical circuit-
breakers). However, unilateral contact between an ob-2 Mechanical model
ject with a flat side of rounded contour and a plane, We will use the following notation. The displace-
like that of a bottle on a table, is still a topic of re- ment of pointB relative to pointA is expressed by
search. Such a type of contact can for instance bethe vectorr,5. The term vp denotes the velocity
found in grinding machines and the transportation of of point B, i.e. vp = 74 if A is not moving.
cylindrical objects on a conveyor belt. Systems with Only orthonormal frames are used, which we write as
such a type of contact undergo a specific type of mo- C = (B,e¢,e’,e¢). The angular velocity of frame

T Ty Tz

tion, as is described by a scientific toy called the ‘Euler C relative to another fram® is denoted bywp. The
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Figure 1. Mechanical system.

angular velocity of a body is thue; g, if B denotes a
body-fixed frame and is an inertial frame. The com-
ponents of a vectoa associated with a fram® are
denoted pa. The velocity pvp of point D written
down in frameB is then obtained by Euler's formula
BUD = BTAD+ BWIB X BT ap, If A is not moving

and/ denotes the inertial frame. The general version of ten in the form ;roy (q) =

Euler’s formula reads;(a) = pa + pwrp x pa and
is applied in Section 4 on the linear momentpnand
on the angular momentuiV.

relationship

pip=1, withp = [eo eT}T 0}

The rotation transformatioR, which identifies with a
linear mapping with associated mattR = [R;;] =
(2¢2 — 1)I5 + 2(eeT + e€), relates the global com-
ponents; s of a vectors to its body-fixed components
Bs asys = R gs. We parameterize the body using

a set of7 generalized coordinates composed of three
translational coordinategrogs, being the absolute co-
ordinates of the centre of mass and four rotational
coordinate®, being the Euler parameters. Introducing
the generalized coordinate vector

a= |70 | R @

a Lagrangian description of the motion can be writ-
ros+ R Brsu
VY M € Q. This equation must be considered to-
gether with the constraint (1). Differentiation leads
to the Eulerian description of the motioprpy, =

The mechanical system under consideration consists ;70s + R prys VM € Q, with the relations

of a diskQ with radiusr, massm and centre of mass
S, which can be in contact with a table during its mo-

tion. The system is modelled as simply as possible,

R = ;o;sRandR = Rpw;p, Where @;5 is
the skew-symmetric operator associated with the abso-
lute angular velocity of the bodw;g. Subsequently,

in order to show only the main physical phenomena of we introduce the generalized velocity vectarwhich

interest, and the disk is therefore considered to be in-

finitely thin. Both the disk and table are considered
to be perfectly rigid. An absolute coordinate frame
= (0, el,e], el) is attached to the table and a body
f|xed coordinate frameB = (S,ef,el,e?) is at-
tached to the disk such thef is the axis of revolution
(Figure l). The disk has principal moments of inertia
A=B= "””2 with respect taS along
the axes(ef, el e?) respectlvely The inertia tensor

of the disk with respect to the centre of m&sss de-
noted by® . Gravity is denoted by.

2.1 System parametrization

The disk is allowed to undergo arbitrary rotations. We
parameterize the orientation of the disk with Euler pa-
rameters (unit quaternions).
figuration of the body, the absolute orientation (of
may be defined by the coordinate transformation
(el.el,el) — (el el el), which can be accom-
plished by a finite rotation of an anghe around an
axis which is specified by the unit vectar. We de-
note byn; the three components gfn, i.e. the three
components of in the basige’, e, el). Each rota-
tion (n, x) is associated with a unit quaternion, repre-
sented in the following by thetuplep which compo-
nentseq = cos 5 ande; = n;sin § fori = 1,2,3, are
called the Euler parameters We will use the abbrevia-

tione = [e1, ez, 63] . The Euler parameters fulfill the

For each possible con-

gathers the absolute coordinates of the global velocity
of the centre of masgr g and the body-fixed coordi-
nates of the absolute angular velocity vectapr; 5,

IﬁOS:| e R6. (3)

[BUJIB

2.2 Contact kinematics

During the time-evolution of the system, the disk can
be in contact with the table. The unilateral contact
between disk and table is assumed to be of the type
point—surface. A single contact constraint is not able
to describe the static equilibrium of a disk lying hor-
izontally on the table. We therefore model the disk
with three unilateral contact constraints. For an arbi-
trary configuration of the disk, we define three points
on the contour of the disk which are candidates to con-
tact. Subsequently, we derive the normal gap functions
g~ ;j(q) associated with the three unilateral contact con-
straints under consideratidp = 1, 2, 3). It must hold
thatgn;(g) > 0 to avoid penetration.

2.2.1 Derivation of gap functions We first con-
sider a non-horizontal configuration of the digRs; #

1). We define the poin€'; as the point on the contour
of the disk which has a minimal height with respect to
the plane of the table. If the disk is above the table,
then C; is the closest point to the table. Lef< be



with respect to time.

2.2.2 Derivation of relative velocities at the con-
tact points Consider the constrained motion of the
disk, such that it is in contact with the table at a single
pointC; (gnv1 = 0, gn2 = gns > 0). The pointCy
moves during the time-evolution of the system along
the contour of the disk such that it remains the proxi-
mal point on the contour with respect to the table. The
absolute velocity of poinf’; is obtained by differenti-
ation Of’r'oc1 =7ros +Tsc,

BVCc, = BUs+ BWiB X BTsc, + BTsc, - (4)

BUPp,

The term gvp, represents the absolute velocity of
the body-fixed pointP; which at time-instance co-
incides with pointC;. The second termgrsc, =

—r e corresponds to the velocity of point; rel-
ative to the disk. For each non-horizontal configura-
tion of the disk(R33 # 1), the coordinate transfor-
mationB = (e, el el) — K = (eX,ef el)is

Ty Tz Ty Tz

Figure 2. Contacts poir®'y, C andCs. a rotationy» around axiseZ. It therefore holds that
péE = pwpk xpeX = ¢ geX, from which fol-
lows prsc, = —r¢ geX. In addition, by differenti-

a unit directional vector of the intersection line of the ation of zrg¢, we obtain grgc, = —r (RsaRs1 —
planell of the disk and the horizontal plaiié, e’ e) R31Rs2)/(1— R2,) peX. By usingR = R a5, we
(Figure 2), ie. elf = —(el x el)/|lel x €7 derive the following expression far

with |lel x eB| = /1 — RZ%,. The direction in the

plane IT with the largest inclination with respect to . .

the plane(S, el, e]) is characterized by the unit vec- W= Rz Rsy — 1531R32

toreX = —e? x eX = (el — Ryze?) /\/1— 3. 1= T ®)
The pointC; on the contour of the disk which has a _ | Ba1Rl33 R3yRss 1w

minimal height with respect to the plane, is defined by - |1-R3; 1-R3, BB

rsc, = —r eX. Based on the definition of’;, we

introduce two other points’; andC on the contour We now introduce a number of velocity quantities for
of the disk, being candidates of contact (Figure 2) de- the relative kinematics of the interacting bodies. We

fined by rsc, = —4 rsc, + %2 (eZ x rsc,), and first define the time-derivative of the gap function;
rso, = —L rso, — %2 (eB x rgo,). The gap func-  Using the notationyy: = g1 With gn1 = el - e,

tions g ;, associated with the three contact poifits and considering (4), it holds that
with rc, = rs + rsc;, are defined agy;(q) =
el rco; (j = 1,2,3) and can be expressed in the form

gn1(q) = zs — /1 — R3; andgna(q) = gns(q) =
25 + 5y/1— R%,. The functionsyy; are continuous
functions ing.

If the disk is parallel to the table, then the proximal
point can not be uniquely defined because all points on
the disk have the same height, and the configuration
is said to be singular. In this cas®4; = 1, gn1 =
gn2 = gns = zg) the functionsrsc, (q) (7 = 1,2,3)
are not defined. The points;, C> andCj3 can there-
fore, a priori, be chosen arbitrarily on the contour of the
disk. When, at a time-instatt, the disk passes a hori- Y1 =
zontal singularity position during its motion, we define
the pointsCy, C2 andC5 by the continuity condition
ric (t*) = Tsc,(t7) for j = 1,2,3, where the up-  The relative spin vector of the interacting bodies,in,
per indicest and— denote the right and left limit at is a vector normal to the contact plang,i, = wspinel,

IN1 = 6£' Vo, = Zs— (Iei)T 1msc, R pwip . (6)

That is to say, whegy, = 0, yn1 represents the rel-
ative velocity of the interacting bodies in the direction
el normal to the contact plari@’, e!). Secondly, we
define the tangential relative velociy; of the inter-
acting bodies at contact point;, as a 2-vector which

elements are the first two components;@fp,

is— (1el)T ;Fsc, R pwip 7

ys — (1e))T Psc, R pwip



with wepin = wip-el. Furthermore, we introduce

the spin velocityy,; as the product of the relative spin
wspin @Nd SOMeE quantity;

Yr1 = €1 Wspin = El(lei)T I¥IB, (8)

wheree; is an assumed radius of a hypothetical circular
contactareainthgel, e])-plane. Lastly, we define the
relative ‘rolling’ velocity vr as the product of minus
the radius of the disk and (5)

Figure 3. Friction balC .

S —Ra1Rss —RaaRss o
YR1 = = 1-RZ, 1-RZ, BWIB -

have to allow for temporal discontinuities, e.g. veloc-
ity jumps usually associated with collisions. The gen-
Subsequently, we treat the situation for which the disk, eralized velocity vectot: is assumed to be a function
while being in contact, passes a horizontal singular- of locally bounded variation on the time-intervalof

ity position at instant* and thereafter moves in the interest (Moreau, 1988). Such a function possesses a
plane of the tablegy: = gn2 = gns = 0, and left limit = (¢) and a right limitu™ (¢) at every time-
thus R33 = 1). At such a time-instant*, the previ- instancet € T. Similarly, a left and right limit exists
ous relations forgrsc, do not hold, and the points for the relative velocityyy consideringWy to be a
C1, Cy, C3 are defined by the continuity condition continuous function of time. For a time-instancéor
rgcj (t*) = rgc, (), 7 = 1,2,3,inwhichrg (t*)is which gy = 0 and Ay admits a right limit it follows
considered to be known. During the subsequent time-thaty > 0, A, > 0, 7% - AL = 0, which is Sig-
evolution (in the plane of the table), the three points norini’s condition on velocity level. It is possible to
Ci1, Cy, Cs are considered to be fixed to the disk. prove that if Signorini’'s condition on velocity level is
Consequently, the relative velocitieg:;, j = 1,2,3 satisfied for almost every time-instantec T', and if
are considered to be zero. According to the definition g5 > 0 at the initial time-instance, then the non-
gn; = el-r¢,, the time-derivative of the gap functions  interpenetration of the interacting bodies are satisfied
vn; = gnj (7 = 1,2, 3) are defined by expressions of for all t € T" succeeding, (see also Proposition 7.1.1.
the form (6). Similarly,yr; andv.; (j = 1,2, 3) are in (Glocker, 2001)). Using concepts of Convex Analy-
defined by expressions of the form (7) and (8), respec- sis, we can write Signorini’'s condition on velocity level
tively. in the form
Summarizing, for arbitrary configurations of the disk,

we can write the relative velocitiegy ;, yr;, v-; and

+ +

vrj, for j = 1,2,3, as affine functions ofs, i.e. —n € Nox(AR), ©)

YN = W};j u, Yrj = ng w, Yrj = W}; u and

vrj = WE u. It can be demonstrated th&¥ 1, whereN¢,, (A};) is the normal cone t@'y at\};, with

Wya, Wys are three linearly independent vectors, Cn = R".

which is of importance especially when dealing with

non-interpenetration constraint violations. 2.3.2 Coulomb-Contensou friction Drilling fric-
tion is taken into account by using the Coulomb-

2.3 Constitutive laws Contensou friction model (Leine and Glocker, 2003).

Associated with each of the relative velocitiesare The Coulomb-Contensou friction model describes the

forcesA as their dual entities, for which we now intro- coupled behaviour of spatial sliding friction and
duce certain constitutive laws. These constitutive laws drilling friction. The tangential friction force\r and
regard unilateral contact, Coulomb-Contensou friction the normal drilling torquery are derived from a non-
as well as rolling friction, and are formulated as set- Smooth scalar convex (pseudo) potential (dissipation
valued interaction laws in the framework of convex function) expressed in terms of the sliding velocity
analysis by applying the concept of normal cone. The and spinwspin. We assume that the disk locally de-

indexj, used to label the contact constraints, is omitted forms in the vicinity of a contact such that it has a
for brevity in the following. circular contact surface with radiusin the contact

plane. Moreover, we consider a parabolic normal pres-
sure distribution over the contact area. The Coulomb-
Contensou friction model reads for a persistent contact
as

2.3.1 Contact in normal direction We assume
Signorini’s law to hold in the normal direction asso-
ciated with a unilateral constraigty > 0, Ay > 0,
gn - Axy = 0, where\y represents the normal contact
force. Within the context of non-smooth dynamics we —vr € Nep (AF), (10)



in which Ar = [ArA]", A, = 2, 4p =

[vr ’yT]T = W} uwwith Wy = [Wp W], The
convex set’r, shown in Figure 3, is defined in (Leine
and Glocker, 2003). The coefficient of friction in the
Coulomb-Contensou friction model is denoted /oy
and is in general a function efz. It is important to re-
alize that the frictional sliding forc& and the normal-
ized drilling torque, are coupledby the Coulomb-
Contensou friction law (10). If both the sliding velocity
~r and spirnwspin are identically zero, then this case is
referred to as ‘stick’. If either the sliding velocity; or
the spinwspi, are nonzero, then the contact is in ‘slip’.
In the case of a persistent contact, the ratio
llvrll/prAn is a strictly increasing smooth function
of ||vr||/v- for non-zero values of, = ewspin # O.
Similarly, the ratio,/urAn is a strictly increasing
smooth function of the ratig. /||vr|| for non-zero val-
ues ofyr # 0. For example, this means thayr|| de-
creases when, increases for fixed values efr and

The stepsize of the numerical scheme is given the fixed
valueAt = 10~* s.

The results of the simulation with Coulomb-
Contensou and contour friction are presented in Fig-
ure 4. Immediately aftet = 0 s, the disk starts to
slide laterally (also to pivot) which leads to a decrease
in the inclination of the disk and therefore in the po-
tential energy of the system (grapltsgy ) and(t, 3)).

At time-instantt = 0.4 s, when the nutation reaches
the valueg = 0.45 rad, the sliding velocity of con-
tact 1 highly increases and subsequently decreases on
a short time-interval, as is illustrated by the peak in
the graph(¢, ||vr1]|)- The contour friction force\g; is
very small because the contour friction coefficignt

is taken to be a small constadw10~—*. Meanwhile, the
contour rolling velocityyg; is rather small during this
part of motion. The dissipation due to contour friction
is therefore small with respect to the dissipation due
to Coulomb-Contensou friction. The dissipated energy

prAn. This physical effect can be demonstrated by is mostly due to the work done by the tangential con-
an electric polishing machine used to clean floors. The tact force. During the subsequent part of the motion,
machine is hard to move when the brushes are not rotat-in presence of sliding and spinning, the inclination of
ing but can easily be pushed over the floor with rotating the disk with respect to the table and its angular ve-

brushes.

2.3.3 Contour friction Classically, the resistance
against rolling of two interacting bodies is modelled by
the Coulomb’s law of rolling friction. This set-valued
force law relates a frictional couple transmitted by the
contact to the relative velocity of rotation of the two
interacting bodies. However, the classical rolling fric-
tion law is ambiguous and can lead to contradictions.
Here, we will employ another type of rolling friction

locity fall down, whereas the velocity of the contact
point with respect to the disk’ is strongly increasing
(graphs(t, ) and (¢,4))). When the disk approaches
a horizontal configuration, the contour rolling veloc-
ity vr1 tends to infinity and contour friction becomes
the main mechanism of energy dissipation. At time
t=13.6 s, as contact 2 and 3 become active, the disk
reaches a horizontal equilibrium configuration. Con-
tour friction plays a crucial role in the end phase of the
motion and causes the disk to reach a horizontal equi-

law, which models resistance against the movement ofIIbrIum configuration in a finite time.

the contact point along the contour of the disk. We refer

to this rolling friction law as theontour friction model
throughout this paper. The contour friction model for a
persistent contact relates the relative (rolling) velpcit
~r to aforcelr opposing the movement of the contact
point along the contour of the disk

—R € NCR()\R)’ (11)

inwhichCr :={v e R | |v| < prAn}.

3 Numerical results

4 Analytical analysis of rolling motion

The simulation of the previous section reveals vari-
ous dynamic effects. The consideration of an analyt-
ical model of the pure rolling motion of the disk per-
mits to give an interpretation of these dynamic effects
and therefore contributes to a better understanding of
the dynamics of a rolling disk.

The analytical model, presented here, describes the
mechanical system under consideration as a disk sub-
mitted to a bilateral contact constraint and a sticking

The time_stepping method (MoreaU, 1988, Leine and condition at contact pOir'(f'l. We define a parametriza-

Nijmeijer, 2004; Leineet al,, 2005) has been used to
simulate the time-evolution of a rolling disk. The fol-

tion of the disk(z, y, «, 8, v) as illustrated in Fig-
ure 6, which accounts for the bilateral contact con-

lowing dataset has been used for the simulation. Iner- Straint in normal direction. The sticking condition at

tial properties:m = 0.3048 kg, A = B = 1.0716 x
1074 kg m2, C = 2.1433 x 107% kg m?, g = 9.81
m/s®. Geometrical propertiesr = 3.75 x 1072 m.
Contact propertiesyr; = 0.3, ¢; = 2 x 1072 m,
prj = 0.3 x 1073 for j = 1,2,3. Initially, the disk

is considered to be orthogonal to the table and rolling
without sliding but with an additional small angular ve-
locity around theeX axis which causes the disk to turn.

contact point”; can be expressed by means of the two
nonholonomic scalar constraints— y& — ry = 0 and
¥ + x& = 0. These conditions permit us to express
i and ¢ as functions of&, 8 and 4. Subsequently,
we write the equations of motion using the coordinates
(z, y, o, B, ~) and minimal velocitiegc, 3, 7).

First, we derive the angular velocityw;g and the
velocity of the center of masgvg of the disk, by using
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Figure 4. Simulation with Coulomb-Contensou and contour fric
tion.

frameK = (ef, el eX),

kwip = d gel + B kek +4 kel
0 10] [a
= [sinp 01| | ,
cosB00| |¥
w—/
KJR
rsinf 0 r| |&
KVs = kwWip X gre,s=| 0 —r0f |3
0 005
xJs
(12)

Note that frameK is not body-fixed, but moves along

0.06

0.05F

0.04f

0.03F

0.02f gn2=gn3 [m]

gn [m]

0.01F

-50

-100 -

-150 -

-200 -

¢ [rad/s]

-250

-300 -

-350 1

-400

t[s]

0.15

0.1

0.05F

T+V ]

0 5 10 15

t [s]
Figure 5. Simulation with Coulomb-Contensou and contour fric
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with the disk such that theX -axis remains parallel to
the table.

Furthermore, we introduce the linear momentum
kP = mpguvg and angular momentuny Ng =
k®s gwrp of the disk. Considering the parameters

for the diskA = B = ™~ andC' = ™~ it holds that

@sin B+ 5 + 2a6 cos 8
x(P) =mr | =+ &%sinBcos B + i cos 3] ,
—3%2 — &%sin? B — aysin 8
B — a2 sin Bcos B — 26 cos 3
Kk (Ns) = tmr? 26 sin 8 + 25 + 26
& cos B+ 267



Figure 6. Parametrization of the disk.

Subsequently, we apply the principle of virtual power
for virtual velocities which are compatible with the
sticking condition. As the constraints are consid-
ered to be ideal, only the action of gravity arises
in the virtual power of external effort. The action
of the gravity on the disk is described by a force
xkF = mgr [0 —sinf —cos,B]T and a momentum
kMs = 0 with g = £. From the principle of vir-
tual power follow the projected Newton-Euler equa-
tions (Glocker, 2001)

kJ3 [k(D) — kF)+ xJj [K(NS) —kMs| =0,
which yield the equations of motion of the disk:
(5sin? 3 + 1)é+65 sin 8 + 1043 sin 3 cos 3 (13
+ 26"& cos B =0,
53 — 5&% sin Bcos 3 — 6aycos B —4gsin 3 =0,
(14)
6cisin B + 6% + 1068 cos 3 = 0. (15)

4.1 Circular rolling motion

We now proceed to analyze a particular type of rolling
motion. We consider the type of motidm(¢), yo(t),
ag(t), Bo(t), vo(t)) for whichzg = 0 andg, = const.

(0 < By < %) intime. It follows thatiy = Z = 0
andf, = B, = 0. Consequently the sticking con-
ditionst — ya — ry = 0 andy + z& = 0 yield

Yo = —wod = 0 = 9o = 4o = 0 ; yo = R and
To = Yoldo + Y = 0 = Rdég + rio. During such

a motion, the inclination of the disk, with respect to
the verticale! and the height of the center of mass, are
constant in time. As contact poirdf; moves on the
contour of the disk (relative motion), it describes on
the table (absolute motion) a circular trajecté€y, R)

of radius R around the origirO of the inertial frame.
The equatior) = Rdg + 7 IS the condition for pure
rolling, which means that, for a given time-interval of

C1 on both the perimeter of the circ(@, R) and the
perimeter of the disk, are equal. In the following we
refer to such motion asircular rolling motion Sub-
traction of (15)sin Gy from (13) yields, together with
By = 0, toéy = 0. Consequently, it can be deduced
from the pure rolling condition that botl, and+, are
constant in time for circular rolling motion. In the fol-
lowing we definep asp = 5. It follows from the
equation of motion (14), and the pure rolling condition

written asay = —prp that

o 4G sin fy
o (6 — 5psin By)pcos By’

(16)

Subsequently, we study a particular type of circular
rolling motion for which, as the disk is rolling on the
table, the center of massremains on the axi€, e?).
Such type of motion is characterized byin 5y = R
or psin By = 1, which fulfills the restriction in (16). In
this casey? and&? can be written as

: 49 . . 4gp

2 2 2.2

707p\/P27—1 and a5 = ™6 = ,02—1'
(17)

Considering (12) together withy = —p-q, psin Gy =
1 and (17) we deduce

- 1
HwIBH2:49 1—? and 'USZO,

which reveals that the center of maSsis immobile
with respect to the inertial frame. We call this type of
motionstationary rolling motion In the limit of 35 —

5 itholds thatp — 1. Consequently, it follows that3
and42 — +oo while w;p — 0. The contact poin€;
therefore moves infinitely fast on the cirgl@, R) with
radiusR — r, and moves infinitely fast on the contour
of the disk, while the disk does practically not rotate.

4.2 Energy decay during the final stage of motion

In the beginning of this analytical analysis we studied
the circular rolling motion (without dissipation) of a
disk. As a special case, we focused on the stationary
rolling motion, for which the center of masgsremains
immobile with respect to the inertial frame.

Section 3 shows the numerical simulation of a rolling
disk with Coulomb-Contensou and contour friction.
The numerical results, in terms gft) (2) andu(t) (3),
can be expressed in the parametrizationy, ., 5,7)
of the analytical model (Figure 6). A number of obser-
vations can be made concerning the simulation. Dur-
ing the first phase of the motion, the disk rolls over the
table much like the circular rolling motion. However,
the system is not conservative due the presence of fric-
tion and the movement slowly changes. A short phase
of rapid sliding occurs. We observe that the subse-

the motion, the arc lengths covered by the contact point quent time-evolution of the disk is much like stationary



rolling motion. Asg tends tor/2, the center of mass E
hardly moves and the relative sliding velocity is becom-
ing small. Moreover, the componeat, = £ of the
angular velocity along the axis? (Figure 6) becomes
small when compared to the componefjt= 4 cos 8
along the axis)}.

Inthe foIIowmg we will study analytically the energy
decay of a rolling disk for various kinds of dissipation ‘
using the following standing assumptions for the type
of motion ‘

A.1 The center of mass is assumed to be almost immo-
bile, i.e.psin 5 = 1. (a)

A.2 We assumés| < g and|f| < |é| cos . E
A.3 The sliding velocity is assumed to be small, i.e. ]
& = —py.
A.4 We assumg to be close tor/2.
The analytically obtained energy decays for different \
kinds of dissipation will be compared with the en- N
ergy decay during the final stage of the motion of the ~
corresponding numerical simulations. With assump- =~ -
tions A.1-A.4, it follows from equation of motion (14)
that (17) still holds approximately, i.e.(t) = ¥(p(t)) £ . ;
and a(t) = a(p(t)) with p(t) = 1/sinB(t). Sub-
sequently, we derive the total energy of the system ®)
E =T+ VwithV = mgrcos 8 and Figure 7. Energy decay for (a) contour friction (dry = blagis-
cous = grey), (b) classical rolling friction (dry = black,sebus =
T %m K’UST s +% leBT O KWIp grey) and Contensou friction (dashed).
L N2, A2 -
= gmr <(O‘bmﬁ+7) +5 ) —pnrAN|YR| = —rurAN|Y|. The assumptions A.2
1 oo o N o o and A.4 allow us to approximate the normal contact
T3 (Aﬁ +C(asinf +7)" + Ad” cos ﬂ) : force with Ay = mg. We now have to express

4 as a function of . Using (17), (18) andh =
Using the above assumptions, we approximate the to-/ V1 — cos? 3, itholds that
tal energy by the expressiof = Ad?cos® 8 +

mgr cos 3, in which only the major terms have been .9 4g 43(1 — cos? B)
taken into account. An expression for the energy as a 7= o/ 1 = cos 3
function of 5 ) (19)
~ E
4g (1 - (377217"25}) )
3 5. = .

E= S gcos 3 (18) (37721]326)

follows from the substitution of (17) and = mr®. |t follows from assumption A.4 thak < S g and

In the following, we express, for different kinds of fric- e approximate (19) with? ~ 63°mr?/E = 4*. The
tion models, the power as a function of energy, i.e. dissipation rate’ for dry contour friction can there-
E = f(E). The corresponding power—energy rela- fore be expressed af — —= for E > 0 with
tions define a time-evolution of the system, which can VBugm?/ 2§

- R

. . . . g=r* > 0. For an arbitrary initial
be shown to verify the standing assumptions A.1-A.4. condition E(to) — Eo, this differential equation irE

obeys the solution
4.2.1 Contour friction model First we consider a
model of rolling friction called contour friction (Sec- 2
tion 2.3.3), which relates thg velocity Qf 'the contact E(t) = <E0% B §a(t B to)> 3 fortg <1<t
point on the contour of the diskg to a friction force 2
by relation (11). Considering the parametrization of ) ) . (20)
the disk (z,y, o, 3,7) it holds thatyg = —r4. If which shows (see the black line F|gure 7a) a decrease
we choose a dry contour friction law, as used in Sec- to zero in a finite tlmef —ty = 2EO /(3a).
tion 2.3.3, then the dissipation rate reads las= If we consider a viscous contour friction modet =



—cYr, in Which c is the viscosity parameter, then the  4.2.3 Coulomb-Contensou friction We assume

dissipation rate reads d = —cy% = —cr?4?. Us- the sliding velocityyr to be negligible. Consequently,
ing the approximatiory? ~ &2, similar to the above the dissipation rate is due to the work done by the
analysis, we deduce that = — <, with a = 6¢cgmr?, drilling torque, i.e. E = A, - ~,, which according
which obeys the solution to (8) and the Coulomb-Contensou friction law (Sec-

tion 2.3.2) leads td& = —?—gupmg €|+ ysinFl, in
whiche is the radius of the contact surface. Using (18),
psin = 1 anda = —py we deduce the differen-
tial equationt? = —aE?3 with a = Z—gr?fﬂ, which
obeys the solution

E(t) = (E} — 2a(t — to))% forto <t <ts, (21)

and shows (the grey line in Figure 7a) a decrease to
zero in afinite timet ; — to = EZ/(2a).

a
+ —

1
vEy 2

—2
4.2.2 Classical rolling fricion model Classi- E(t) ( (tt0)> fort >y, (25)
cally, the resistance against rolling of two interacting
bodies is modelled by a set-valued force law which re-
lates the orthogonal projection, on the contact plane, and which shows (see the dashed line in Figure 7b) an
of the relative angular velocity of the bodies, to ~ @symptotic behaviour of the energy.

a tangential frictional coupld/{g, transmitted by the

contact 5 Discussion of analytical, numerical and experi-
mental results
—wr € Nc,(MR), (22) In this section we will discuss the analytical and nu-
merical results (Sections 3 and 4) and compare those
with Cp := {v € R? | |jv|| < prAn}. Sim- with experimental results which can be found in litera-

ilar to the analysis conducted with the contour fric- ture.

tion model, we study here the total energy decrease In the analytical analysis of Section 4.2, we studied
for classical rolling friction. More generally, the set the energy decrease of a rolling disk under the as-
Cr will be some non-circular closed convex set cor- sumptions A.1-A.4 for various types of friction. If dry
responding to an anisotropic law. The projection of contour friction is assumed, then the analytical analy-
angular velocity vector on the contact plawmeg; can sis indicates that the energy decreases in a finite time

be decomposed along the axi§ ande? (Figure 6) to zero, which is in accordance with the numerical
Y simulation for Coulomb and contour friction (Leir

T .. T . .
wi = [wswy] = [85cosf] . The dissipation al., 2005). Moreover, we checked that the profile of

rate due to classical rolling friction reads & = E(t) during the final stage of the corresponding simula-
—HrAN||lwrl|. The assumptions A.1-A.4 allowed us  tion is indeed of the form (20). If Coulomb-Contensou
to make the approximatiody = —urAn|i[cosf. s assumed, then the analytical analysis indicates that
Substitution of (18) and® ~ &” givesE = —avV'E  the energy decreases asymptotically to zero, which is

with a = 2v/6/341z g /m > 0. For an arbitrary initial i accordance with a numerical simulation with only
conditionE(ty) = E, this differential equation obeys  coylomb-Contensou friction and the profile Bft) is

the solution indeed of the form (25). Additional simulations, not
presented here, show that the numerical results for clas-
a 2 ical rolling friction are in accordance with the ana-
E(t) = (\/EO - S(t- to)) for to <t <ty sical rolling

23) lytical results of Section 4.2.2. The final stage of the
motion of the simulation with Coulomb-Contensou and
contour friction is similar in form to the final stage of
the simulation with contour friction. This can be un-
derstood from the analytical analysis of the energy de-
cay (Section 4.2): the dissipation rafedue to contour
friction increases with decreasing enetgywhile the
dissipation rate®Z due to Coulomb-Contensou friction
decreases with decreasing enefgyThe final stage of

which shows (see the black line in Figure 7b) a de-
crease to zero in a finite timg — ¢y = 2/Ep/a.

If we consider a viscous classical rolling friction
model Mr = —cwg, then the dissipation rate reads
asE = —c|lwg|? = —¢¥? cos? 3, in which assump-
tion A. 2 has been used andis a viscosity param-
eter. Similar to the above analysis, we deduce that

E = —aE, with ¢ = 3¢, For an arbitrary initial . .

’ 3mr2 m mb-
conditionE(tg) = Ey, this differential equation obeys the . otlo_n with both Coulo b Contensou ar_1d _conFour
the solution friction will therefore be dominated by the dissipation

due to contour friction.
Experiments on rolling disks have been performed
E(t) = Epe (=" fort > to, (24) by (McDonald and McDonald, 2001) and (Easvedr
al., 2002), both presenting their results in termsc6f).
which shows (see the grey line in Figure 7b) an asymp- McDonald and McDonald performed the experiment
totic behaviour of the energy and a decrease to zero ison a single disk using a phototransistor. Easwar et al.
therefore not achieved in a finite time. measured the movement of steel disks and a steel ring



on supports of various materials using a high-speedwith available experimental results suggests that con-

camera. The experimental data of (McDonald and Mc-
Donald, 2001) and (Easwat al., 2002) can be de-
scribed for the final stage of the motion by a power
law

a(t) o« (t; —t) 7w . (26)

The experiments of (McDonald and McDonald, 2001)
suggest thate., = 4 and the experiments of (Easwar
et al, 2002) on various disk/ring—support combinations
suggest thaR.7 < nexp < 3.2.

The analytical analysis of Section 4.2 leads to the re-
lation 6g°mr?/E = &? betweeny andE

7 (ty — 1) .

alt) o« B(t)~ (27)

We now deriven,,, for those friction models of Sec-

tour friction might very well be the dominant mecha-
nism of dissipation.

The results obtained in this paper may provide a good
basis for numerical treatment of more general dynam-
ical multi-contact problems involving interaction be-
tween cylindrical and planar objects and the like.
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