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ABSTRACT
This paper treats discontinuous fold bifurcations of periodic

solutions of discontinuous systems. It is shown how jumps in the
fundamental solution matrix lead to jumps of the Floquet mul-
tipliers of periodic solutions. A Floquet multiplier of a discon-
tinuous system can jump through the unit circle causing a dis-
continuous bifurcation. Numerical examples are treated which
show discontinuous fold bifurcations. The discontinuous fold bi-
furcation can connect stable branches to branches with infinitely
unstable solutions.

INTRODUCTION
The objective of this paper is to explain how discontinuous

fold bifurcations arise in systems with a discontinuous vector
field.

During the last two decades many textbooks about bifur-
cation theory for smooth systems appeared and bifurcations of
smooth vector fields are well understood (Guckenheimer and
Holmes, 1983; Hagedorn, 1988; Kuznetsov, 1995; Parker and
Chua, 1989; Seydel, 1994). However, little is known about bifur-
cations of discontinuous vector fields. Discontinuous dynamical
systems arise due to physical discontinuities such as dry friction,
impact and backlash in mechanical systems or diode elements
in electrical circuits. Many papers deal with discontinuous sys-
tems (Galvanettoet al., 1995; Ibrahim, 1994a; Ibrahim, 1994b;
Popp, 1992; Poppet al., 1995; Stelter, 1992; Stelter and Sextro,
1991; Van de Vrandeet al., 1997). Published bifurcation dia-
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grams constructed from data obtained by brute force techniques
only show stable branches of periodic solutions, whereas those
made by path-following techniques do show bifurcations to un-
stable branches but the bifurcations behave smoothly and are not
discontinuous.

Andronovet al.(1966) treat periodic solutions of discontin-
uous systems. They revealed many aspects of discontinuous sys-
tems but did not treat discontinuous bifurcations with regard to
Floquet theory.

The current paper shows two examples of discontinuous
fold bifurcations and explains how they come into being through
Floquet theory. The first example is a trilinear spring system
which shows a discontinuous fold bifurcation connecting a sta-
ble branch to an unstable branch. A stick-slip system is treated in
the second example. The discontinuous fold bifurcation connects
a stable branch to an infinitely unstable branch.

TRILINEAR SPRING
In this section we will treat a discontinuous fold bifurcation

arising in a trilinear spring system (Figure 1).
The forced oscillation of a damped mass on a spring with cu-

bic term leads to the Duffing equation (Hagedorn, 1988; Guck-
enheimer and Holmes, 1983; Nayfeh and Balachandran, 1995;
Nayfeh and Mook, 1979). The Duffing equation is the classi-
cal example where the backbone curve of the harmonic peak is
bended and two folds (also called turning point bifurcations) are
born. In our example, we will consider a similar mass-spring-
damper system, where the cubic spring is replaced by a trilinear
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Figure 1. Trilinear system

spring. Additionally, trilinear damping is added to the model.
The trilinear damping will turn out to be essential for the exis-
tence of adiscontinuousfold bifurcation.

The model is very similar to the model of Natsiavas (Nat-
siavas, 1989; Natsiavas and Gonzalez, 1992) but the transitions
from contact with the support to no contact are different from
Natsiavas. The model of Natsiavas switches as the position of
the mass passes the contact distance (in both transition direc-
tions). In our model, contact is made when the position of the
mass passes the contact distance, and contact is lost when the
contact force becomes zero.

We consider the system depicted in Figure 1. The model
has two supports on equal contact distancesxc. The supports are
first-order systems which relax to their original state if there is
no contact with the mass. If we assume that the relaxation time
of the supports is much smaller than the time interval between
two impacts, we can neglect the free motion of the supports. It
is thus assumed that the supports are at rest at the moment of
impact. This is not an essential assumption but simplifies our
treatment as the system reduces to a second-order equation. The
second-order differential equation of this system is

mẍ+C(ẋ)+K(x) = f0 sin(ωt) (1)

where

K(x) =

8<
:

kx [x; ẋ]T 2V
�

kx+kf (x�xc) [x; ẋ]T 2V+1

kx+kf (x+xc) [x; ẋ]T 2V+2

(2)
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Figure 2. Subspaces of the trilinear system

is the trilinear restoring force and

C(ẋ) =

�
cẋ [x; ẋ]T 2V

�

(c+cf )ẋ [x; ẋ]T 2V+1[V+2
(3)

is the trilinear damping force. The state space is divided into
three subspacesV

�
, V+1 andV+2 (Figure 2).

If the mass is in contact with the lower support, then the state
is in spaceV+1

V+1 = f[x; ẋ]T 2 IR2 j x> xc;kf (x�xc)+cf ẋ� 0g;

whereas if the mass is in contact with the upper support, then the
state is in spaceV+2

V+2 = f[x; ẋ]T 2 IR2 j x<�xc;kf (x+xc)+cf ẋ� 0g:

If the mass is not in contact with one of the supports, then the
state is in spaceV

�
defined by

V
�
= f[x; ẋ]T 2 IR2 j x =2 (V+1[V+2)g

The hyperplaneΣ1 betweenV
�

andV+1 consists of two partsΣ1a

andΣ1b. The partΣ1a is defined by the indicator equation

h1a = x�xc = 0 (4)
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Figure 3. Response diagram of trilinear spring system

which defines the transition fromV
�

to V+1 because contact is
made whenx becomes larger thanxc. The partΣ1a is defined by
the indicator equation

h1b = kf (x�xc)+cf ẋ= 0 (5)

which defines the transition fromV+1 back toV
�

as contact is lost
when the support-force becomes zero (the support can only push,
not pull on the mass). Similarly, the hyperplaneΣ2 betweenV

�

andV+2 consists of two partsΣ2a andΣ2b defined by the indicator
equations

h2a = x+xc = 0 (6)

h2b = kf (x+xc)+cf ẋ= 0 (7)

Discontinuous systems exhibit discontinuities (or ’salta-
tions’/’jumps’) in the time evolution of the fundamental solution
matrix.

The jumps occur when the flow crosses a hyperplane of dis-
continuity and can be described by a saltation matrixS

Φ(tp+; t0) = SΦ(tp�; t0); (8)

whereΦ(tp�; t0) is the fundamental solution matrix before the
jump andΦ(tp+; t0) after the jump which occurs att = tp. The
saltation matrixScan be expressed as

S= I +
( fep+

� fep�
)neT

neT fep�
+ ∂h

∂t (tp;xe(tp))
; (9)

wherene is the normal to the hyperplane

ne= ne(t;xe(t)) = grad(h(t;xe(t))): (10)

The construction of saltation matrices is due to Aizerman and
Gantmakher (Aizerman and Gantmakher, 1958) and treated
in (Bockman, 1991; Leineet al., 1999; Müller, 1995). The salta-
tion matrices for each hyperplane are

S1a =

�
1 0
�

cf
m 1

�
(11)

S1b = I (12)

S2a =

�
1 0
�

cf
m 1

�
(13)

S2b = I (14)

The hyperplanesΣ1 andΣ2 are non-smooth. The saltation
matrices are not each others inverse,S1a 6= S�1

1b andS2a 6= S�1
2b .

This will turn out to be essential for the existence of a discontinu-
ous bifurcation. Note that the saltation matrices are independent
of the stiffnessk and reduce to the identity matrix ifcf = 0.

The response diagram of the trilinear system is shown in
Figure 3 for varying forcing frequencies with the amplitudeA of
x on the vertical axis. Stable branches are indicated by solid lines
and unstable branches by dashed-dotted lines. The parameter
values are given in Appendix A.

There is no contact with the support for amplitudes smaller
thanxc and the response curve is just the linear harmonic peak.
For amplitudes abovexc there will be contact with the support
which will cause a hardening behaviour of the response curve.
The backbone curve of the peak bends to the right like the Duff-
ing system with a hardening spring. The amplitude becomes
equal toxc twice atω = ωA andω = ωB, on both sides of the
peak, and corners of the response curve can be seen at these
points. The orbit touches the corners ofΣ1 andΣ2 for A= xc.

The magnitude of the Floquet multipliers is shown in Fig-
ure 4. The two Floquet multipliers are complex conjugate (with
the same magnitude) forA< xc. The orbit touches the two hyper-
planes atA< xc and the fundamental solution matrix will jump as
follows from the saltation matrices. The eigenvalues of the fun-
damental solution matrix, which are known as the Floquet multi-
pliers, will therefore jump (indicated by dotted lines in Figure 4).
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Figure 4. Floquet multipliers

The Floquet multipliers are not singular valued at the bifurcation
point (as is the case for smooth systems) but are set-valued.

The pair of Floquet multipliers jumps atωA but does not
jump through the unit circle. The set-valued Floquet multiplier
remains within the unit circle. The stable branch thus remains
stable. However, atω = ωB the complex pair jumps to two dis-
tinct real multipliers, one with a magnitude bigger than one. A
Floquet multiplier thus jumped through the unit circle. This set-
valued Floquet multiplier passed the unit circle through+1 caus-
ing adiscontinuous fold bifurcation.

Damping of the support is essential for the existence of this
discontinuous fold bifurcation. Forcf = 0, all saltation matrices
would be equal to the identity matrix and the corner betweenΣ1a

andΣ1b would disappear (and also betweenΣ2a andΣ2b); thus
no discontinuous bifurcation could take place and the fold bi-
furcation would be smooth. The model of Natsiavas (Natsiavas,
1989; Natsiavas and Gonzalez, 1992) did not contain adiscontin-
uousfold bifurcation because the transitions were modeled such
thatS1a = S�1

1b andS2a = S�1
2b . The saltation matrices will cancel

each other out if they are each other inverse. A corner of hyper-
planes with saltation matrices which are not each others inverse
is therefore essential (but not sufficient) for the existence of a
discontinuous bifurcation.

STICK–SLIP SYSTEM
In the preceding subsection we studied a discontinuous fold

bifurcation, where a Floquet multiplier jumped over the unit cir-
cle to a finite value. In this subsection we will study a discon-
tinuous fold bifurcation where the Floquet multiplier jumps to
infinity. This results in an infinitely unstable periodic solution.

We consider the block-on-belt model depicted in Figure 5

with the parameter values given in Appendix B. The state equa-
tion of this autonomous system reads

ẋe= fe(xe) =
"

ẋ

�
k
m

x�
c
m

ẋ+
F
m

#
; (15)

wherexe= [x ẋ ]T and the friction forceF is given by

F(vrel;x) =

�
�Fslipsgnvrel; vrel 6= 0 slip
min(jkx+cẋj;Fstick)sgnkx; vrel = 0 stick

(16)

The maximum static friction force is denoted byFstick andvrel =
ẋ� vdr is the relative velocity. The constitutive relation forF is
the known as thesignum model with static friction point.

This model permits analytical solutions forc= 0 due to its
simplicity but it is not directly applicable in numerical analysis.
The relative velocity will most likely not be exactly zero in dig-
ital computation. Instead, an adjointswitch model(Leineet al.,
1998) will be studied which is discontinuous but yields a set of
ordinary (and non-stiff!) differential equations. The state equa-
tion for the switch model reads

ẋe=
8>>>>><
>>>>>:

�
ẋ

� k
mx� c

mẋ�
Fslip
m sgnvrel

�
jvrelj> η or
jkx+cẋj> Fstick

"
vdr

�vrel

q
k
m

#
jvrelj< η and
jkx+cẋj< Fstick

(17)

A region of near-zero velocity is defined asjvrelj< η whereη�
vdr . Thus, the spaceIR2 is divided in three subspacesV, W andD
as indicated in Figure 6. The boundaries between the subspaces
are denoted by bold lines. The small parameterη is enlarged to
makeD visible.

The equilibrium solution of system 15 is given by

xeeq=

� Fslip�cvdr
k

vdr

�
(18)

and is stable for positive damping (c> 0).
The model also exhibits stable periodic stick-slip oscilla-

tions. The saltation matrixSα for the transition from slip to stick
is given by (Leineet al., 1999)

Sα =

�
1 0
0 0

�
; (19)
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Figure 5. 1–DOF model with dry friction

which is singular. The fundamental solution matrix will thus also
be singular as the stable periodic oscillation passes the stick state.
The saltation matrixSβ for the transition from stick to slip is
given by

Sβ =

�
1 0

� ∆F
mvdr

1

�
: (20)

with ∆F = Fstick�Fslip.
The periodic solution has two Floquet multipliers, of which

one is always equal to unity as the system is autonomous. The
singularity of the fundamental solution matrix implies that the
remaining Floquet multiplier has to be equal to zero, independent
of any system parameter. The Floquet multipliers of the stable
periodic solution of this system are thusλstable= (1;0).

The stable limit cycle is sketched in the phase plane in Fig-
ure 6 (bold line). The equilibrium position is also stable and
indicated by a dot. The spaceD is enlarged in Figure 6 to make
it visible but is infinitely small in theory and is taken very small
in numerical calculations (Leineet al., 1998; Leineet al., 1999).

A flow outside the stable limit cycle, like flow I in Figure 6,
will spiral inwards to the stable limit cycle and reach the stick-
phaseD. The stick-phase will bring the flow exactly on the stable
limit cycle as it is infinitely small. Every point inD is thus part
of the basin of attraction of the stable limit cycle.

Flow II starts inside the stable limit cycle and spirals around
the equilibrium position and hitsD where-after it is on the stable
limit cycle. But a flow inside the stable limit cycle might also spi-
ral around the equilibrium position and not reach the stick phase
D (flow III). It will then be attracted to the equilibrium position.

A flow inside the stable limit cycle can thus spiral outwards
to the stable limit cycle, like flow II, or inwards to the equilibrium
position (flow III). Consequently, there must exist a boundary of
attraction between the two attracting limit sets. This boundary is
the unstable limit cycle sketched by a dashed line in Figure 6.
Whether a flow is attracted to the stable limit cycle or to the
equilibrium point depends on the attainment of the flow toD.

x

ẋ

V

W

D

I
IIIII

Figure 6. Phase plane

The unstable limit cycle is thus defined by the flow inV which
hits the border ofD tangentially. Another part of the unstable
limit cycle is along the border ofD as flows inD will attract to
the stable limit cycle and just outsideD to the equilibrium po-
sition. This part of the unstable limit cycle along the the border
of D is has a vector field which is repulsing on both sides of
the border. The theory of Filippov gives a generalized solution
of systems with a discontinuous right-hand side (Filippov, 1964;
Leine et al., 1999). If the vector field on one side of a hyper-
plane of discontinuity is pushing to the hyperplane and on the
other side from the hyperplane, then every flow will intersect the
hyperplane transversally. If the vector field is pushing to the hy-
perplane on both sides then there exists a unique solution along
the hyperplane. This is called anattraction sliding mode. If the
vector field is repulsing from both sides of the hyperplane then
there exists a solution along the hyperplane which is not unique.
This is called arepulsion sliding mode.

The flow on either side of the border ofD is repulsing from
it. It is thus a repulsion sliding mode. The flow starting from a
point on a repulsion sliding mode is not unique as follows from
the theory of Filippov. This causes the unstable solution to be
infinitely unstable. As the flow is infinitely unstable, it is not
possible to calculate it in forward time. However, calculation of
the flow in backward time is possible. The vector field in back-
ward time is identical to forward time but opposite in direction.
The repulsion sliding mode in forward time will turn into an
attraction sliding mode in backward time. The flow starting from
a point on the unstable limit cycle will move counter-clockwise
in the phase-plane in backward time and hit the border ofD.
It will slide along the border ofD until the vector field inV
becomes parallel toD, and will then bend off inV. Any flow
starting from a point close to that starting point will hitD and
leave D at exactly the same point. Information about where
the flow came from is thus lost through the attraction sliding
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Figure 7. Bifurcation diagram of the block-on-belt model

mode. In other words: the saltation matrix of the transition
from V to D during backward time is singular. The fundamental
solution matrix will thus be singular in backward time because
it contains an attraction sliding mode. The Floquet multipliers
of the unstable limit cycle in backward time are therefore 1
and 0. The Floquet multipliers in forward time must be their
reciprocal values. The second Floquet multiplier is thus infinity,
λunstable= (1;∞), which of course must hold for an infinitely
unstable periodic solution.

The bifurcation diagram of the system is shown in Figure 7
with the velocity of the beltvdr as control parameter and the am-
plitude A on the vertical axis. The equilibrium branch and the
stable and unstable periodic branches are depicted. The unstable
branch is of course located between the stable periodic branch
and the equilibrium branch as can be inferred from Figure 6. The
stable and unstable periodic branches are connected through a
fold bifurcation point. The second Floquet multiplier jumps from
λ = 0 to λ = ∞ at the bifurcation point. This set-valued Floquet
multiplier thus passes the unit circle at+1. The fold bifurcation
is therefore a discontinuous fold bifurcation. The fold bifurca-
tion occurs whenvdr is such that a flow which leaves the stick
phaseD, transversesV, and hitsD tangentially (like the unstable
periodic solution). The stable and unstable periodic solutions co-
incide at this point. Note that there exists again a corner of hyper-
planes at this point as was the case in the previous section. The
saltation matrices are not each others inverse,SαSβ 6= I , which is
essential for the existence of a discontinuous bifurcation.

A similar model was studied by Van de Vrandeet al. (1997)
with a very accurately smoothed friction curve. The stable
branch was followed for increasingvdr but the fold bifurcation
could not be rounded to proceed on the unstable branch. As the
unstable branch is infinitely unstable in theory, it is extremely

unstable for the smoothed system. The branch can thus not be
followed in forward time if the friction model is approximated
accurately.

The stable branch in Figure 7 was followed in forward time
up to the bifurcation point. The path-following algorithm was
halted and restarted in backward time to follow the unstable
branch.

This section showed that infinitely unstable periodic solu-
tions come into being through repulsion sliding modes. Filippov
theory turns out to be essential for the understanding of infinitely
unstable periodic solutions. Infinitely unstable periodic solutions
and their branches can be found through backward integration.
Smoothing of a discontinuous model is not sufficient to obtain
a complete bifurcation diagram of a discontinuous system as in-
finitely unstable branches cannot be found.

CONCLUSIONS
It was shown in this paper that discontinuous vector fields

lead to jumps in the fundamental solution matrix if a control pa-
rameter is varied. It turned out that a double intersection of a
non-smooth hyperplane is necessary to cause a jump of the fun-
damental solution matrix. These jumps may lead to set-valued
Floquet multipliers. A discontinuous bifurcation is encountered
if a set-valued Floquet multiplier crosses the unit circle.

An example with a trilinear spring demonstrated two jumps
of the Floquet multipliers, one causing a discontinuous fold bi-
furcation.

An example of a stick-slip system showed that the Floquet
multiplier can also jump to infinity. The discontinuous fold bifur-
cation connects a stable branch to an infinitely unstable branch.
The unstable limit cycle can be understood by Filippov’s theory.
Infinitely unstable periodic solutions come into being through re-
pulsion sliding modes and can be found through backward inte-
gration. Branches of infinitely unstable periodic solutions can be
continued with pseudo-arclength continuation based on shooting
with backward integration. Bifurcation to infinitely unstable pe-
riodic solutions lead to complete failure of the classical smooth-
ing method to investigate discontinuous systems.

The theory of bifurcations of periodic solutions has been ex-
tended in this paper to discontinuous bifurcations. Only fold bi-
furcations were discussed. A more complete theory for the bi-
furcation in discontinuous systems is presented in Leineet al.
(1999).

ACKNOWLEDGMENT
This project was supported by the Dutch Technology Foun-

dation, STW. The authors are much indebted to B.L. Van de
Vrande for useful comments.

6 Copyright  1999 by ASME



REFERENCES
Aizerman, M. A. and Gantmakher, F. R., ‘On the Stability

of Periodic Motions’,Journal of Applied Mathematics and Me-
chanics(translated from Russian), pp. 1065-1078, 1958.

Andronov, A. A., Vitt, A. A. and Khaikin, S. E.,Theory of
Oscillators, translated from Russian, Oxford, 1966.

Bockman, S. F., ‘Lyapunov Exponents for Systems De-
scribed by Differential Equations with Discontinuous Right-
Hand Sides’, Proceedings of theAmerican Control Conference,
pp. 1673-1678, 1991.

Filippov, A. F., ‘Differential equations with discontinuous
right-hand side’,American Mathematical Society Translations,
Series 2, 42, pp. 199-231, 1964.

Galvanetto, U., Bishop, S. R. and Briseghella, L., ‘Mechan-
ical Stick–slip vibrations’,International Journal of Bifurcation
and Chaos, 5(3), 1995, 637-651.

Guckenheimer, J. and Holmes, P.,Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields, Applied
Mathematical Sciences 42, New York, 1983.

Hagedorn, P.,Non-Linear Oscillations, Oxford Engineering
Science Series 10, Oxford, 1988.

Ibrahim, R. A., ‘Friction-induced vibration, chatter, squeal
and, chaos; Part I: Mechanics of contact and friction’,ASME
Applied Mechanics Reviews, 47(7), 1994, 209-226.

Ibrahim, R. A., ‘Friction-induced vibration, chatter, squeal
and, chaos; Part II: Dynamics and modeling’ASME Applied Me-
chanics Reviews, 47(7), 1994, 227-253.

Kuznetsov, Y. A.,Elements of Applied Bifurcation Theory,
Applied Mathematical Sciences 112, New York, 1995.

Leine, R. I., Van Campen, D. H., De Kraker, A. and Van den
Steen, L., ‘Stick-Slip Vibrations Induced by Alternate Friction
Models’,Nonlinear Dynamics, 16, pp. 41-54, 1998.

Leine, R. I., Van de Vrande, B. L. and Van Campen, D. H.,
‘Bifurcation in Nonlinear Discontinuous Systems’, to be submit-
ted toNonlinear Dynamics, 1999.

Müller, P. C., ‘Calculation of Lyapunov Exponents for Dy-
namic Systems with Discontinuities’,Chaos, Solitons and Frac-
tals, Vol. 5, No. 9, pp. 1671-1681, 1995.

Natsiavas, S., ‘Periodic Response and Stability of Oscil-
lators with Symmetric Trilinear Restoring Force’,Journal of
Sound and Vibration, 134(2), pp. 315-331, 1989.

Natsiavas, S. and Gonzalez, H., ‘Vibration of harmonically
excited oscillators with asymmetric constraints’,ASME Journal
of Applied Mechanics, 59, pp. 284-290, 1992.

Nayfeh, A. H. and Balachandran, B.,Applied Nonlinear Dy-
namics; Analytical, Computational, and Experimental Methods,
New York, 1995.

Nayfeh, A. H. and Mook, D. T.,Nonlinear Oscillations, Wi-
ley, New York, 1979.

Parker, T. S. and Chua, L. O.,Practical Numerical Algo-
rithms for Chaotic Systems.Springer-Verlag, New York, 1989.

Popp, K., ‘Some model problems showing stick-slip motion

and chaos’, inASME WAM, Proc. Symp. on Friction Induced
Vibration, Chatter, Squeal, and Chaos, Vol. 49, R.A. Ibrahim
and A. Soom (eds.), ASME New York, 1992, pp. 1-12.

Popp, K., Hinrichs, N. and Oestreich, M., ‘Dynamical be-
haviour of a friction oscillator with simultaneous self and exter-
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Appendix A: Trilinear spring system
m= 1 kg
c= 0:05 N/(ms)
k= 1 N/m
xc = 1 m
kf = 4 N/m
cf = 0:5 N/(ms)
f0 = 0:2 N

Appendix B: Stick–slip system
k= 1 N/m
c= 0:1 Ns/m
m= 1 kg
vdr = 1 m/s
Fslip = 1 N
Fslip = 2 N
η = 10�4 m/s
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