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Abstract. In this paper we will give conditions under which the equilibrium set of multi-degree-
of-freedom nonlinear mechanical systems with an arbitrary number of frictional unilateral con-
straints is attractive. The theorems for attractivity are proved by using the framework of measure
differential inclusions together with a Lyapunov-type stability analysis and a generalisation of
LaSalle’s invariance principle for non-smooth systems. The special structure of mechanical
multi-body systems allows for a natural Lyapunov function and an elegant derivation of the
proof. These results are illustrated by means of examples with unilateral frictional constraints.
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1 INTRODUCTION

Dry friction can seriously affect the performance of a wide range of systems. More specif-
ically, the stiction phenomenon in friction can induce the presence of equilibrium sets, see
for example [25]. The stability properties of such equilibrium sets is of major interest when
analysing the global dynamic behaviour of these systems.

The aim of the paper is to present a number of theoretical results which can be used to
rigourously prove the conditional attractivity of the equilibrium set for nonlinear mechanical
systems with frictional unilateral constraints (including impact) using Lyapunov stability theory
and LaSalle’s invariance principle.

The dynamics of mechanical systems with set-valued friction laws are described by differ-
ential inclusions of Filippov-type [13, 16]. Filippov systems, describing systems with friction,
can exhibit equilibrium sets, which correspond to the stiction behaviour of those systems. Many
publications deal with stability and attractivity properties of (sets of) equilibria in differential
inclusions [22, 2, 3, 26, 1, 11]. In previous publications [23, 24], we provided conditions under
which the equilibrium set of multi-degree-of-freedomlinear mechanical systems with an arbi-
trary number of Coulomb friction elements is attractive using Lyapunov-type stability analysis
and a generalisation of LaSalle’s invariance principle fornon-smooth systems. Dissipative as
well as non-dissipative linear systems have been considered, but the analysis was restricted to
bilateral frictional constraints and linear systems.

Systems with impact between rigid bodies undergo instantaneous changes in the velocities
of the bodies. Impact systems, with or without friction, canbe properly described by measure
differential inclusions as introduced by Moreau [18, 19] (see also [10, 16, 4]), which allow for
discontinuities in the state of the system. Measure differential inclusions, being more general
than Filippov systems, can exhibit equilibrium sets as well.

The Lagrange-Dirichlet stability theorem is extended by Brogliato [5] to measure differential
inclusions describing mechanical systems with frictionless impact. The idea to use Lyapunov
functions involving indicator functions associated with unilateral constraints is most probably
due to [5]. It is clearly explained in the work of Chareyron andWieber [7, 8] why the Lya-
punov function has to be globally positive definite, in orderto prove stability in the presence of
state-discontinuities (when no further assumptions on thesystem or the form of the Lyapunov
function are made). LaSalle’s invariance principle is generalised in [6] to differential inclusions
and in [7, 8] to measure differential inclusions describingmechanical systems with frictionless
impact. The proof of LaSalle’s invariance principle strongly relies on the positive invariance of
limit sets. It is assumed in [7, 8] that the system enjoys continuity of the solution with respect
to the initial condition which is a sufficient condition for positive invariance of limit sets. In [8],
an extension of LaSalle invariance principle to systems with unilateral constraints is presented
(more specifically it is applied to mechanical systems with frictionless unilateral contacts).

In this paper (see also [17]) we give conditions under which the equilibrium set of multi-
degree-of-freedomnonlinear mechanical systems with an arbitrary number of frictionaluni-
lateral constraints (i.e. systems with friction and impact) is attractive. The theorems for at-
tractivity are proved by using the framework of measure differential inclusions together with a
Lyapunov-type stability analysis and a generalisation of LaSalle’s invariance principle for non-
smooth systems, which is based on the assumption that every limit set is positively invariant
(see also [14]). The special structure of mechanical multi-body systems allows for a natural
choice of the Lyapunov function and a systematic derivationof the proof for this large class of
systems.
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Figure 1: Contact distancegN and tangential velocityγT between two rigid bodies.

In Sections 2 and 3, the constitutive laws for frictional unilateral contact and impact are
formulated as set-valued force laws. The modelling of mechanical systems with dry friction
and impact by measure differential inclusions is discussedin Section 4. Subsequently, the
attractivity properties of the equilibrium set of a system with frictional unilateral contact are
studied in Section 5. In Section 6, two examples are studied in order to illustrate the theoretical
results of Section 5. A discussion of the results and concluding remarks are given in Section 7.

2 FRICTIONAL CONTACT LAWS IN THE FORM OF SET-VALUED FORCE LAWS

In this section we formulate the constitutive laws for frictional unilateral contact formulated
as set-valued force laws (see [10] for an extensive treatiseon the subject). Normal contact
between rigid bodies is described by a set-valued force law called Signorini’s law. Consider
two convex rigid bodies at a relative distancegN from each other (Fig. 1). The normal contact
distancegN is uniquely defined for convex bodies and is such, that the points 1 and 2 have
parallel tangent planes (shown as dashed lines in Fig. 1). The normal contact distancegN

is nonnegative because the bodies do not penetrate into eachother. The bodies touch when
gN = 0. The normal contact forceλN between the bodies is nonnegative because the bodies
can exert only repelling forces on each other, i.e. the constraint is unilateral. The normal contact
force vanishes when there is no contact, i.e.gN > 0, and can only be positive when contact is
present, i.e.gN = 0. Under the assumption of impenetrability only two situations may occur:

gN = 0 ∧ λN ≥ 0 contact,
gN > 0 ∧ λN = 0 no contact.

(1)

From (1) we see that the normal contact law shows a complementarity behaviour: the product
of the contact force and normal contact distance is always zero, i.e.gNλN = 0. The relation
between the normal contact force and the normal contact distance is therefore described by

gN ≥ 0, λN ≥ 0, gNλN = 0, (2)

which is the inequality complementarity condition betweengN andλN . The inequality com-
plementarity behaviour of the normal contact law is depicted in the lower-right figure of Fig. 2
and shows a set-valued graph of admissible combinations ofgN andλN . The magnitude of the
contact force is denoted byλN and the direction of the contact force is normal to the bodies, i.e.
along the line 1–2 in Fig. 1.

The normal contact law, also called Signorini’s law, can be expressed by the subdifferential
(see [21]) of a non-smooth conjugate potentialΨ∗

CN
(gN)

−λN ∈ ∂Ψ∗
CN

(gN) ⇐⇒ gN ∈ ∂ΨCN
(−λN), (3)
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whereCN = {−λN ∈ R|λN ≥ 0} = R
− is the admissible set of negative contact forces

−λN andΨCN
is the indicator function ofCN . The potentialΨCN

is depicted in the upper-left
figure of Fig. 2 and is the indicator function ofCN = R

−. Taking the subdifferential of the
indicator function gives the set-valued relationgN ∈ ∂ΨCN

(−λN), depicted in the lower left
figure. Interchanging the axis gives the lower right figure which expresses (3) and is equivalent
to the lower-right graph of Fig. 2. Integration of the latterrelation gives the support function
Ψ∗

CN
(gN), which is the conjugate of the indicator function onCN . The normal contact law for

a number of contact pointsi = 1, . . . , nC can formally be stated as

−λN ∈ ∂Ψ∗
CN

(gN) ⇐⇒ gN ∈ ∂ΨCN
(−λN), CN = {−λN ∈ R

n|λN ≥ 0}, (4)

whereλN is the vector containing the normal contact forcesλNi andgN is the vector of nor-
mal contact distancesgNi. Signorini’s law, which is a set-valued law for normal contact on
displacement level, can for closed contacts withgN = 0 be expressed on velocity level:

−λN ∈ ∂Ψ∗
CN

(γN) ⇐⇒ γN ∈ ∂ΨCN
(−λN), gN = 0, (5)

whereγN is the relative normal contact velocity, i.e.γN = ġN for non-impulsive motion.
Coulomb’s friction law is another classical example of a force law that can be described

by a non-smooth potential. Consider two bodies as depicted inFig. 1 with Coulomb friction
at the contact point. We denote the relative velocity of point 1 with respect to point 2 along
their tangent plane byγT . If contact is present between the bodies (gN = 0), then the friction
between the bodies imposes a forceλT along the tangent plane of the contact point. If the
bodies are sliding over each other, then the friction forceλT has the magnitudeµλN and acts in
the direction of−γT , i.e.−λT = µλN sign(γT ) for γT 6= 0, whereµ is the friction coefficient
andλN is the normal contact force. If the relative tangential velocity vanishes (γT = 0), then
the bodies purely roll over each other without slip. Pure rolling, or no slip for locally flat
objects, is denoted bystick. If the bodies stick, then the friction force must lie in the interval
−µλN ≤ λT ≤ µλN . For unidirectional friction, the following three cases are possible:

γT = 0 ⇒ |λT | ≤ µλN sticking,
γT < 0 ⇒ λT = +µλN negative sliding,
γT > 0 ⇒ λT = −µλN positive sliding.

(6)

We can express the friction force by a potentialπT (γT ), which we mechanically interpret as
a dissipation function, i.e.−λT ∈ ∂πT (γT ) with πT (γT ) = µλN |γT |, from which follows the
set-valued force law which is depicted in the lower-right graph of Fig. 3. A non-smooth convex
potential therefore leads to a maximal monotone set-valuedforce law. The admissible values
of the negative tangential forceλT form a convex setCT = {−λT | −µλN ≤ λT ≤ +µλN}
which is bounded by the values of the normal force. Coulomb’s law can be expressed with the
aid of the indicator function ofCT asγT ∈ ∂ΨCT

(−λT ) where the indicator functionΨCT
is

the conjugate potential of the support functionπT (γT ) = Ψ∗
CT

(γT ) [10], see Fig. 3.
The classical Coulomb’s friction law for spatial contact formulates a two-dimensional fric-

tion forceλT ∈ R
2 which lies in the tangent-plane of the contacting bodies. The set of negative

admissible friction forces is a diskCT = {−λT | ‖λT‖ ≤ µλN} ⊂ R
2 for isotropic Coulomb

friction. Using the setCT , the spatial Coulomb friction law can be formulated as

−λT ∈ ∂Ψ∗
CT

(γT ) ⇐⇒ γT ∈ ∂ΨCT
(−λT ), (7)

in which γT ∈ R
2 is the relative sliding velocity. Similarly, an elliptic choice of CT would

result in an orthotropic Coulomb friction law.
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Figure 2: Potential, conjugate potential and subdifferential of the normal contact problemC = CN = R
−.

Figure 3: Potential, conjugate potential and subdifferential of the tangential contact problemC = CT .
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3 IMPACT LAWS

Signorini’s law and Coulomb’s friction law are set-valued force laws for non-impulsive
forces. In order to describe impact, we need to introduce impact laws for the contact impulses.
We will consider a Newton-type of restitution law,

γ+
N = −eNγ−

N , gN = 0, (8)

which relates the post-impact velocityγ+
N of a contact point to the pre-impact velocityγ−

N by
Newton’s coefficient of restitutioneN . The caseeN = 1 corresponds to a completely elastic con-
tact, whereaseN = 0 corresponds to a completely inelastic contact. The impact,which causes
the sudden change in relative velocity, is accompanied by a normal contact impulseΛN > 0.
Following [9], suppose that, for any reason, the contact does not participate in the impact, i.e.
that the value of the normal contact impulseΛN is zero, although the contact is closed. This
happens normally for multi-contact situations. For this case we allow the post-impact relative
velocities to be higher than the value prescribed by Newtonsimpact law,γ+

N > −eNγ−
N , in order

to express that the contact is superfluous and could be removed without changing the contact-
impact process. We can therefore express the impact law as aninequality complementarity on
velocity–impulse level:ΛN ≥ 0, ξN ≥ 0, ΛNξN = 0, with ξN = γ+

N +eNγ−
N (see [9]). Similarly

to Signorini’s law on velocity level, we can write the impactlaw in normal direction as

−ΛN ∈ ∂Ψ∗
CN

(ξN), gN = 0. (9)

A normal contact impulseΛN at a frictional contact leads to a tangential contact impulseΛT

with ‖ΛT‖ ≤ µΛN . We therefore have to specify a tangential impact law as well. The tangential
impact law can be formulated in a similar way as has been done for the normal impact law:

−ΛT ∈ ∂Ψ∗
CT (ΛN )(ξT ), gN = 0, (10)

with ξT = γ+
T + eT γ−

T . This impact law involves the tangential restitution coefficienteT , which
is normally considered to be zero, but can be used to model thetangential velocity reversal as
observed in the motion of the Super Ball, being a very elastic ball used on play grounds.

4 MODELLING OF SYSTEMS WITH DRY FRICTION AND IMPACT

In this section, we define the class of nonlinear time-autonomous mechanical systems with
unilateral frictional contact for which the stability results are derived in Section 5. We first
derive a measure differential inclusion describing the dynamics of mechanical systems with
discontinuities in the velocity and, subsequently, we study the equilibrium set.

4.1 The measure differential inclusion

We assume that the mechanical systems exhibit only bilateral holonomic frictionless con-
straints and unilateral constraints in which dry friction can be present. Furthermore, we assume
that a set of independent generalised coordinates,q ∈ R

n, for which these bilateral constraints
are eliminated from the formulation of the dynamics of the system, is known. The generalised
coordinatesq(t) are assumed to be absolutely continuous functions of timet. Also, we assume
the generalised velocities,u(t) = q̇(t) for almost allt, to be functions of locally bounded vari-
ation. At each time-instance it is therefore possible to define a left limitu− and a right limitu+

of the velocity. The generalised accelerationsu̇ are therefore not for allt defined. The set of
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discontinuity points{tj} for which u̇ is not defined is assumed to be Lebesgue negligible. We
formulate the dynamics of the system using a Lagrangian approach, resulting in

(
d
dt

(T,u) − T,q + U,q

)T

= fnc(q,u) + W N(q)λN + W T (q)λT , (11)

or, alternatively,

M(q)u̇ − h(q,u) = W N(q)λN + W T (q)λT , (12)

which is a differential equation for the non-impulsive partof the motion. Herein,M (q) =
MT(q) > 0 is the mass-matrix. The scalarT represents kinetic energy and it is assumed
that it can be written asT = 1

2
uTM(q)u. Moreover,U denotes the potential energy. The

column-vectorfnc in (11) represents all smooth generalised non-conservative forces. The
state-dependent column-vectorh(q,u) in (12) contains all differentiable forces, such as spring
forces, gravitation, smooth damper forces and gyroscopic terms.

We introduce the following index sets:

IG = {1, . . . , nC} the set of all contacts,
IN = {i ∈ IG | gNi(q) = 0} the set of all closed contacts,

(13)

and set up the force laws and impact laws of each contact as hasbeen elaborated in Sections 2
and 3. The normal contact distancesgNi(q) depend on the generalised coordinatesq and are
gathered in a vectorgN(q).

During a non-impulsive part of the motion, the normal contact force−λNi ∈ CN and friction
force−λT i ∈ CT i ⊂ R

p of each closed contacti ∈ IN , are assumed to be associated with a
non-smooth potential, being the support function of a convex set, i.e.

−λNi ∈ ∂Ψ∗
CN

(γNi), −λT i ∈ ∂Ψ∗
CTi

(γT i), (14)

whereCN = R
− and the setCT i can be dependent on the normal contact forceλNi ≥ 0. The

normal and tangential contact forces of allnC contacts are gathered in columnsλN = {λNi}
andλT = {λT i} and the corresponding normal and tangential relative velocities are gathered
in columnsγN = {γNi} andγT = {γT i}, for i ∈ IG. We assume that these contact velocities
are related to the generalised velocities through:

γN(q,u) = W T
N(q)u, γT (q,u) = W T

T (q)u. (15)

It should be noted thatW T
X(q) = ∂γX

∂u
for X = N, T . This assumption is very important as it

excludes rheonomic contacts.
Equation (12) together with the set-valued force laws (14) form a differential inclusion

M(q)u̇ − h(q,u) ∈ −
∑

i∈IN

W Ni(q)∂Ψ∗
CN

(γNi) − W T i(q)∂Ψ∗
CTi

(γT i), a.e. (16)

Differential inclusions of this type are called Filippov systems. The differential inclusion (16)
only holds for impact free motion.

Subsequently, we define for each contact point the constitutive impact laws

−ΛNi ∈ ∂Ψ∗
CN

(ξNi), −ΛT i ∈ ∂Ψ∗
CTi(ΛNi)

(ξT i), i ∈ IN , (17)
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with ξNi = γ+
Ni + eNiγ

−
Ni andξT i = γ+

T i + eT iγ
−
T i in which eNi andeT i are the normal and tan-

gential restitution coefficients respectively. The inclusions (17) form very complex set-valued
mappings representing the contact laws at the impulse level. The force laws for non-impulsive
motion can be put in the same form becauseu+ = u− holds in the absence of impacts and
because of the positive homogeneity of the support function(see [21]), i.e.−λNi ∈ ∂Ψ∗

CN
(ξNi)

and−λT i ∈ ∂Ψ∗
CTi(λNi)

(ξT i). We now replace the differential inclusion (16), which holds for
almost allt, by an equality of measures

M(q)du − h(q,u)dt = W N(q)dPN + W T (q)dPT ∀t, (18)

which holds for all time-instancest. The differential measure of the contact impulsions dPN

and dPT contains a Lebesgue measurable partλdt and an atomic partΛdη

dPN = λNdt + ΛNdη, dPT = λT dt + ΛT dη, (19)

which can be expressed as inclusions

−dPNi ∈ ∂Ψ∗
CN

(ξNi)(dt+dη), −dPT i ∈ ∂Ψ∗
CTi(λNi)

(ξT i)dt+∂Ψ∗
CTi(ΛNi)

(ξT i)dη. (20)

As an abbreviation we write

M(q)du − h(q,u)dt = W (q)dP ∀t, (21)

using short-hand notation

λ =

[
λN

λT

]

, Λ =

[
ΛN

ΛT

]

, P =

[
PN

PT

]

, W =
[
W N W T

]
, γ =

[
γN

γT

]

. (22)

Furthermore we introduce the quantities

ξ ≡ γ+ + Eγ−, δ ≡ γ+ − γ−, (23)

with E = diag({eNi, eT i}) from which we deduceγ+ = (I + E)−1(ξ + Eδ) andγ− =
(I + E)−1(ξ − δ). The equality of measures (21) together with the set-valuedforce laws (20)
form a measure differential inclusion which describes the time-evolution of a mechanical system
with discontinuities in the generalised velocities. Such ameasure differential inclusion does
not necessarily have existence and uniqueness of solutionsfor all admissible initial conditions.
Indeed, if the friction coefficient is large, then the coupling between motion normal to the
constraint and tangential to the constraint can cause existence and uniqueness problem (known
as the Painlev́e problem [4, 15]). In the following, we assume existence anduniqueness of
solutions in forward time. The contact laws guarantee that the generalised positionsq(t) are
such that penetration is avoided (gNi ≥ 0) and the generalised positions therefore remain within
the admissible set

K = {q ∈ R
n | gNi(q) ≥ 0∀i ∈ IG}, (24)

for all t. The conditionq(t) ∈ K follows from the assumption of existence of solutions. We
remark that the following theorems can be relaxed to systemswith non-uniqueness of solutions.
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4.2 Equilibrium set

The measure differential inclusion described by (21) and (20) exhibits an equilibrium set.
Note that the assumption of scleronomic contacts implies that impliesγT = 0 for u = 0,
see (15). This means that every equilibrium implies sticking in all closed contact points. Every
equilibrium position has to obey the equilibrium inclusion

h(q,0) −
∑

i∈IN

(
W Ni(q)∂Ψ∗

CN
(0) + W T i(q)∂Ψ∗

CTi
(0)
)
∋ 0, (25)

which, usingC = ∂Ψ∗
C(0), simplifies toh(q,0) −∑i∈IN

(W Ni(q)CNi + W T i(q)CT i) ∋ 0.
An equilibrium set, being a simply connected set of equilibrium points, is therefore given by

E ⊂
{

(q,u) ∈ R
n × R

n| (u = 0) ∧ h(q,0) +
∑

i∈IN

(
W Ni(q)R+ − W T i(q)CT i

)
∋ 0

}

(26)

and is positively invariant if we assume uniqueness of the solutions in forward time. WithE we
denote an equilibrium set of the measure differential inclusion in the state-space(q,u), while
Eq is reserved for the union of equilibrium positionsq∗, i.e. E = {(q,u) ∈ R

n × R
n | q ∈

Eq,u = 0}. Note that nonlinear mechanical systems without dry friction can exhibit multiple
equilibria. Similarly, a system with dry friction may exhibit multiple equilibrium sets.

Let us now state some consequences of the assumptions made, which will be used in the next
section. Due to the fact that the kinetic energy can be described by

T =
1

2
uTM (q)u =

1

2
Mrsu

rus, (27)

with M (q) = MT(q), we can write in tensorial language

∂T

∂qk
=

1

2

(
∂Mrs

∂qk

)

urus,
∂T

∂uk
= Mkru

r,

d
dt

(
∂T

∂uk

)

= Mkru̇
r +

(
∂Mkr

∂qs

)

urus = Mkru̇
r + 2

∂T

∂qk
+

(
∂Mkr

∂qs
− ∂Mrs

∂qk

)

urus

d
dt

(T,u) = u̇TM (q) + 2T,q − (f gyr)T for almost allt

(28)

with the gyroscopic forces

f gyr = {f gyr
k }, f gyr

k = −
(

∂Mkr

∂qs
− ∂Mrs

∂qk

)

urus. (29)

In the next section we will exploit that the gyroscopic forcesfgyr have zero power, i.e.uTf gyr =
ukf gyr

k = 0. In the same way as before, we can write the differential measure ofT,u as d(T,u) =
duTM (q) + 2T,qdt − (f gyr)Tdt for all t. Comparison with (12) and (11) yields

h = fnc + f gyr − (T,q + U,q)
T . (30)
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5 ATTRACTIVITY OF EQUILIBRIUM SETS FOR NONLINEAR SYSTEMS

In this section, we will investigate the attractivity properties of the equilibrium sets defined
in the previous section. We define the following nonlinear functionalsRn → R onu ∈ R

n:

• Dnc
q (u) := −uTfnc(q,u) is the dissipation rate function of the smooth non-conservative

forces.

• DλT
q (u) :=

∑

i∈IN

1
1+eTi

Ψ∗
CTi(λNi)

(ξT i(q,u)) is the dissipation rate function of the tan-
gential contact forces.

• DΛT
q (u) :=

∑

i∈IN

1
1+eTi

Ψ∗
CTi(ΛNi)

(ξT i(q,u)) is the dissipation rate function of the tan-
gential contact impulses.

For non-impulsive motion it holds thatγT = γ+
T = γ−

T andξT = (1 + eT )γT . Due to the fact
that the support function is positively homogeneous it follows that

DλT
q (u) =

∑

i∈IN

Ψ∗
CTi(λNi)

(γT i(q,u)) =
∑

i∈IN

−λT iγT i(q,u), (31)

from which we see that the dissipation rate function of the tangential contact forces does not
depend on the restitution coefficienteT . The above dissipation rate functions are of course
functions of(q,u), but we write them as nonlinear functionals onu for every fixedq so that
we can speak of the zero setD−1

q (0) = {u ∈ R
n | Dq(u) = 0} of the functionalDq(u).

As stated before, the type of systems under investigation may exhibit multiple equilibrium
sets. Here, we will study the attractivity properties of a specific given equilibrium set. Byqe we
denote an equilibrium position of the system with unilateral frictionlesscontacts

M(q)u̇ − h(q,u) − W N(q)λN = 0, (32)

from which follows that the equilibrium positionqe is determined by the inclusionh(qe,0) −
∑

i∈IG
W Ni(qe)∂Ψ∗

CN
(gNi(qe)) ∋ 0 or

h(qe,0) −
∑

i∈IN

W Ni(qe)∂Ψ∗
CN

(γNi(qe,0)
︸ ︷︷ ︸

=0

) ∋ 0, (33)

which is equivalent toh(qe,0) + W N(qe)R
+ ∋ 0 with W N = {W Ni}, i ∈ IN . Let the

potentialQ(q) be thetotal potential energy of the system

Q(q) = U(q) +
∑

i∈IG

Ψ∗
CN

(gNi(q)), (34)

which is the sum of the potential energy of all smooth potential forces and the support functions
of the normal contact forces. Moreover, we assume that the equilibrium positionqe is a local
minimum of the total potential energyQ(q). The subsetU is assumed to enclose the equilibrium
setEq under investigation. Notice that the equilibrium pointqe of the system without friction
is also an equilibrium point of the system with friction,(qe,0) ∈ E . If the system does exhibit
multiple equilibrium sets, then the attractivity ofE will be only local for obvious reasons. In
the following we will make use of the Lyapunov candidate function

V = T (q,u) + Q(q) = T (q,u) + U(q) +
∑

i∈IG

Ψ∗
CN

(gNi(q)), (35)
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being the sum of kinetic and total potential energy. The function V : R
n × R

n → R ∪ {∞} is
an extended lower semi-continuous function. Moreover, thefunctionV (t) = V (q(t),u(t)) is
of locally bounded variation in time becauseq(t) is absolutely continuous and remains in the
admissible setK defined in (24),u ∈ lbv(I, Rn), andT is a Lipschitz continuous function and
Q is an extended lower semi-continuous function but only dependent onq(t). In the following
we will make use of the differential measure dV of V (t). If it holds that dV ≤ 0, then it follows
that

V +(t) − V −(t0) =

∫

[t0,t]

dV ≤ 0, (36)

which means thatV (t) is non-increasing. Similarly, dV < 0 implies a strict decrease ofV (t).
We now formulate a technical result which states conditionsunder which the equilibrium set
can be shown to be (locally) attractive.

Theorem 1 (Attractivity of the equilibrium set)
Consider an equilibrium setE of the system (21), with constitutive laws (14) and (20). If

1. T = 1
2
uTM (q)u, with M (q) = MT(q) > 0,

2. the equilibrium positionqe is a local minimum of the total potential energyQ(q) and
Q(q) has a non-vanishing generalised gradient for allq ∈ U\{qe}, i.e. 0 /∈ ∂Q(q)∀q ∈
U\{qe}, and the equilibrium setEq is contained inU , i.e.Eq ⊂ U ,

3. Dnc
q (u) = −uTfnc ≥ 0, i.e. the smooth non-conservative forces are dissipative,and

fnc = 0 for u = 0,

4. there exists a non-empty setIC ⊂ IG and an open neighbourhoodV ⊂ R
n × R

n of the
equilibrium set, such thaṫγNi(q,u) < 0 (a.e.) for∀i ∈ IC\IN and(q,u) ∈ V,

5. Dnc
q

−1(0) ∩ DλTC
q

−1
(0) ∩ ker W T

NC(q) = {0} ∀q ∈ C with

gNC = {gNi}, WNC = {wNi} for i ∈ IC as defined in 4.,

C = {q | gNC(q) = 0}, DλTC
q =

∑

i∈IC∩IN

Ψ∗
CTi(λNi)

(γT i(q,u)),

6. 0 ≤ eNi < 1, |eT i| < 1 ∀i ∈ IG,

7. one of the following conditions holds

(a) the restitution coefficients are small in the sense that2emax

1+emax
< 1

cond(G(q))
∀q ∈ C

whereG(q) := W (q)TM (q)−1W (q) and emax is the largest restitution coeffi-
cient, i.e.emax ≥ max(eNi, eT i)∀i ∈ IG,

(b) all restitution coefficients are equal, i.e.e = eNi = eT i∀i ∈ IG,

(c) friction is absent, i.e.µi = 0∀i ∈ IG,

11
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8. E ⊂ Iρ∗ in which the setIρ∗, with Iρ = {(q,u) ∈ R
n×R

n | V (q,u) < ρ}, is the largest
level set ofV , given by (35), that is contained inV andQ = {(q,u) ∈ R

n×R
n | q ∈ U},

i.e.

ρ∗ = max
{ρ:Iρ⊂(V∩Q)}

ρ, (37)

9. each limit set inIρ∗ is positively invariant,

then the equilibrium setE is locally attractive andIρ∗ is a conservative estimate for the region
of attraction.

Proof: Note thatV is positive definite around the equilibrium point(q,u) = (qe,0) due to
conditions 1 and 2 in the theorem. Classically, we seek the time-derivative ofV in order to
prove the decrease ofV along solutions of the system. However,u̇ is not defined for allt andu

can undergo jumps. We therefore compute the differential measure dV = dT + dQ. The total
potential energy, being an extended lower semi-continuousfunction, is only a function of the
generalised displacementsq, which are absolutely continuous, and it therefore holds that

dQ = dQ(q)(dq) = U,qdq + dΨK(q)(dq), (38)

wheredQ(q)(dq) is the subderivative (see [21]) ofQ at q in the direction dq = udt. The
subderivativedΨK(q)(dq) of the indicator functionΨK(q) equals the indicator function on the
associated contingent coneKK(q), i.e. dΨK(q)(dq) = ΨKK(q)(dq). It holds thatu ∈ KK(q)
due to the consistency of the system and the indicator function on the contingent cone therefore
vanishes, i.e.ΨKK(q)(udt) = 0. Consequently, the differential measure ofQ simplifies to

dQ = U,qdq + ΨKK(q)(dq) = U,qudt. (39)

The kinetic energyT (q,u) = 1
2
uTM (q)u is a symmetric quadratic form inu and has the

differential measure

dT =
1

2
(u+ + u−)TM (q)du + T,qdq. (40)

The differential measure of the Lyapunov candidateV becomes

dV
(39)+(40)

=
1

2
(u+ + u−)TM (q)du + (T,q + U,q) dq

(21)
=

1

2
(u+ + u−)T (h(q,u)dt + W dΛ) + (T,q + U,q) udt.

(41)

A term 1
2
(u++u−)Tdt in front of a Lebesgue measurable term equalsuTdt. Together with (30),

i.e.h = fnc + f gyr − (T,q + U,q)
T, and (19) with (22) we obtain

dV = uTfncdt + uTf gyrdt + uTWλdt +
1

2
(u+ + u−)TWΛdη. (42)

12
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The gyroscopic forces have zero poweruTf gyr = 0. Moreover, the constraints are assumed to
be scleronomic and according to (15) it therefore holds thatγ = W Tu, which gives

dV = uTfncdt + γTλdt +
1

2
(γ+ + γ−)T

Λdη

(23)
= uTfncdt + γTλdt +

1

2

(
(I + E)−1 (2ξ − (I − E)δ)

)T
Λdη

= uTfncdt + γTλdt + ξT(I + E)−1
Λdη − 1

2
δT(I − E)(I + E)−1

Λdη

(19)+(23)
= uTfncdt + ξT(I + E)−1dP − 1

2
δT(I − E)(I + E)−1

Λdη

= uTfncdt +
∑

i∈IN

(
ξNidPNi

1 + eNi

+
ξT

T idPT i

1 + eT i

)

− 1

2
δT(I − E)(I + E)−1

Λdη.

(43)

Using (20) andxTx∗ = Ψ∗
C(x∗), we obtain

ξNidPNi = −Ψ∗
CN

(ξNi)(dt + dη) = 0
ξT

T idPT i = −Ψ∗
CTi(λNi)

(ξT i)dt − Ψ∗
CTi(ΛNi)

(ξT i)dη ≤ 0,
(44)

because ofΨ∗
CTi

(ξT i) ≥ 0 andΨ∗
CN

(ξNi) = ΨR+(ξNi) = 0 for admissibleξNi ≥ 0. Moreover,
applying (15) to (23) gives

δ := γ+ − γ− = W T(u+ − u−) = W TM−1WΛ = GΛ, (45)

in which we used the abbreviationG := W TM−1W , which is known as the Delassus ma-
trix [19]. The matrixG is positive definite whenW has full rank, becauseM > 0. The matrix
G is only positive semi-definite if the matrixW does not have full rank, meaning that the gen-
eralised force directions of the contact forces are linearly dependent. However, we assume that
the matrixW only contains the generalised force directions of unilateral constraints, and that
these unilateral constraints do not constitute a bilateralconstraint. It therefore holds that there
exists noΛN 6= 0 such thatWNΛN = 0. The impact law requires thatΛN ≥ 0. Hence, it holds
thatΛT

NW T
N M−1WNΛN > 0 for all ΛN 6= 0 with ΛN ≥ 0, even if the unilateral constraints

are linearly dependent. Moreover,ΛT 6= 0 impliesΛN 6= 0. The inequalityΛTGΛ > 0 there-
fore holds for allΛ 6= 0 which obey the impact law (9), even if dependent unilateral constraints
are considered.

Using (45), we can put the last term in (43) in the following quadratic form

1

2
δT(I − E)(I + E)−1

Λdη =
1

2
Λ

TG(I − E)(I + E)−1
Λdη. (46)

in whichG(I − E)(I + E)−1 is a square matrix. The matrix(I − E)(I + E)−1 is a diagonal
matrix which is positive definite if the contacts are not purely elastic, i.e.0 ≤ eNi < 1 and
0 ≤ eT i < 1 for all i. The smallest diagonal element of(I − E)(I + E)−1 is 1−emax

1+emax
. Using

Proposition 1 in Appendix A, we deduce that ifG is positive definite and if condition 7a holds,
then the positive definiteness ofG(I − E)(I + E)−1 implies

1

2
Λ

TG(I − E)(I + E)−1
Λ > 0, ∀Λ 6= 0. (47)

If the generalised force directions are linearly dependent, then the Delassus matrixG is singular
andcond(G) is infinity. Condition 7a can therefore not hold.

13
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If G is positive semi-definite (or even positive definite) and allrestitution coefficients are
equal toe (condition 7b), then the product1

2
Λ

TG(I−E)(I+E)−1
Λ simplifies to1

2
1−e
1+e

Λ
TGΛ

which is in general non-negative. Again, we can show that (47) still holds for dependent unilat-
eral constraints if we considerΛ 6= 0 with Λ ≥ 0.

If G is positive semi-definite (or even positive definite) and friction is absent (condition 7c:
µi = 0∀i ∈ IG ), then it holds thatΛTG(I − E)(I + E)−1

Λ = (γ+
N − γ−

N)T(I − E)(I +
E)−1

ΛN =
∑

i(γ
+
Ni − γ−

Ni)
1−eNi

1+eNi
ΛNi. The impact law requires thatγ+

Ni + eNiγ
−
Ni > 0 and

ΛNi ≥ 0. Moreover, the unilateral contacts did not penetrate before the impact and the pre-
impact relative velocitiesγ−

Ni are therefore non-positive. The post-impact relative velocities
γ+

Ni = −eNiγ
−
Ni are therefore non-negative for0 ≤ eNi < 1. Furthermore, ifΛNi > 0, then it

must hold thatγ−
Ni < 0. Hence,1

2
Λ

TG(I − E)(I + E)−1
Λ > 0 for all Λ 6= 0 with Λ ≥ 0.

Looking again at the differential measure of the total energy (43), we realise that (under
conditions 6 and 7) all terms related to the contact forces and impulses are dissipative or passive.
Moreover, if we consider not purely elastic contacts, then nonzero contact impulsesΛ strictly
dissipate energy.

We can now decompose the differential measure dV in a Lebesgue part and an atomic part

dV = V̇ dt + (V + − V −)dη, (48)

with (see (31) and above)̇V = uTfnc−∑i∈IN

1
1+eTi

Ψ∗
CTi(λNi)

(ξT i) = −Dnc
q (u)−DλT

q (u) ≤ 0

andV +−V − = −DΛT
q (u)− 1

2
Λ

TG(I+E)−1(I−E)Λ ≤ 0. For positive differential measures
dt and dη we deduce that the differential measure ofV (48) is non-positive, dV ≤ 0. There are
a number of cases for dV to distinguish:

• Case u = 0: It directly follows that dV = 0.

• Case gNi = 0 and γ−
Ni < 0 for some i ∈ IN : One or more contacts are closing, i.e. there

are impacts. It follows from (47) thatV + − V − < 0 and therefore that dV < 0.

• Case gNC = 0, u ∈ ker W T
NC and u = u− = u+ with gNC = {gNi} for i ∈ IC: It then

holds that all contacts inIC are closed and remain closed,IC ⊂ IN . We now consideṙV as
a nonlinear operator onu and writeV̇ = 0 for u ∈ V̇ −1

q (0) andV̇ < 0 for u /∈ V̇ −1
q (0)

with V̇ −1
q (0) = Dnc

q
−1(0) ∩ DλT

q

−1
(0) ⊂ Dnc

q
−1(0) ∩ DλTC

q

−1
(0). Condition 5 of the

theorem states that, if the contacts inIC are persistent (W T
NCu = 0), then dissipation can

only vanish ifu = 0, i.e.Dnc
q

−1(0)∩DλTC
q

−1
(0) = {0}. In other words, if all contacts in

IC are closed and remain closed andu 6= 0 then dissipation is present. Using condition 5
andu ∈ ker W T

NC \ {0}, it follows that V̇ −1
q (0) = {0} and henceV̇ = 0 for u = 0

andV̇ < 0 for u 6= 0. Impulsive motion for this case is excluded. For a strictly positive
differential measure dt we obtain the differential measure ofV as given in (48) and write
dV = 0 for u = 0 and dV < 0 andu 6= 0.

• Case gNC = 0, u /∈ ker W T
NC \ {0} and WNiu > 0 for some i ∈ IC: It then holds that

one or more contacts will open. All we can say is that dV ≤ 0.

• Case gNi > 0 for some i ∈ IC: One or more contacts are open. All we can say is that
dV ≤ 0.

We conclude that dV = 0 for u = 0, dV ≤ 0 for gNC 6= 0 and dV < 0 for gNC = 0 and
u− 6= 0.

14
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(a) Falling block (b) Rocking bar

Figure 4: Example systems.

We apply a generalisation of LaSalle’s invariance principle, which is valid when every limit
set is a positively invariant set [8, 14]. A sufficient condition for the latter is continuity of the
solution with respect to the initial condition, which is generally not satisfied by non-smooth
mechanical systems with multiple impacts. It is therefore explicitly stated in Condition 9 of
Theorem 1 that every limit set inIρ∗ is positively invariant. Hence, under this assumption, the
generalisation of LaSalle’s invariance principle can be applied.

Let us consider the setIρ∗ whereρ∗ is chosen such thatIρ∗ ⊂ (V ∩ Q), see (37). Note that
Iρ∗ is a positively invariant set due to the choice ofV . Moreover, the setS = {(q,u) | dV = 0}
generally has a nonzero intersection withP = {(q,u) | gNC 6= 0, gNC ≥ 0}.

Consider a solution curve with an arbitrary initial condition in P for t = t0. Due to condi-
tion 4 of the theorem, which requires thatγ̇Ni < 0 (a.e.) for∀i ∈ IC\IN , at least one impact
will occur for somet > t0. The impact does not necessarily occur at a contact inIC . In any
case, the impact will cause dV < 0 at the impact time. Therefore, there exists no solution curve
with initial condition inP that remains in the intersectionP ∩ S. Hence, it holds that the inter-
sectionP ∩ S does not contain any invariant subset. We therefore seek thelargest invariant set
in T = {(q,u) | gNC(q) = 0,u = 0} which clearly is the equilibrium setE . Consequently,
we can conclude that the largest invariant set inS is the equilibrium setE . Hence, it can be
concluded from LaSalle’s invariance principle thatE is an attractive set. �

Remark: If no conditions on the restitution coefficients exist (other than0 ≤ eNi < 1 and
|eT i| < 1∀i) and if friction is present, then the impact laws (20) can, under circumstances,
lead to an energy increase. Such an energetic inconsistencyhas been reported by Kane and
Levinson [12]. In the proof of Theorem 1, we derived sufficient conditions for the energetical
consistency (dissipativity) of the adopted impact laws.

6 EXAMPLES

In this section we show how the above theorems can be used to prove the attractivity of an
equilibrium set of two mechanical systems.
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6.1 Falling block

Consider a planar rigid block (see Fig. 4a) with massm under the action of gravity (gravi-
tational accelerationg), which is attached to a vertical wall with a spring. The block can freely
move in the vertical direction but is not able to undergo a rotation. The coordinatesx andy
describe the position of the block. The spring is unstressedfor x = 0. The block comes into
contact with a horizontal floor when the contact distancegN = y becomes zero. The constitutive
properties of the contact are the friction coefficientµ and the restitution coefficients0 ≤ eN < 1
andeT = 0. The equations of motion for impact free motion read as

mẍ + kx = λT ,
mÿ = −mg + λN .

(49)

Using generalised coordinatesq =
[
x y

]T
, we describe the system in the form (18) with

M =

[
m 0
0 m

]

, h =

[
−kx
−mg

]

, WN =

[
0
1

]

, WT =

[
1
0

]

. (50)

The system forµ = 0 admits a unique equilibrium positionqe = 0. For µ > 0 there exists
an equilibrium setE = {(x, y, ẋ, ẏ) | k|x| ≤ µmg, y = 0, ẋ = ẏ = 0} and it holds that
(qe,0) ∈ E . The total potential energy function used in condition 2 of Theorem 1 reads as

Q(q) = U(q) + Ψ∗
CN

(gN(q)) =
1

2
kx2 + mgy + Ψ∗

R−(y) =
1

2
kx2 + mgy + ΨR+(y). (51)

Notice that the termmgy + ΨR+(y) is a positive definite term iny. It holds thatQ is a positive
definite function inq, because it is above or equal to another positive definite functionQ(q) ≥
1
2
kx2 +mg|y|. Moreover, the minimum ofQ is located at the equilibrium pointqe = 0, because

∂Q(qe) ∋ 0 and is unique because of the convexity ofQ. Condition 2 of Theorem 1 is therefore
fulfilled for all q ∈ R

n. The system does not contain smooth non-conservative forces, i.e.
fnc = 0, which fulfills condition 3 of Theorem 1. Denote the contact between block and floor
as contact1 and takeIC = IG = {1}. It holds thatγ̇N = −g for gN = y > 0, which guarantees
the satisfaction of condition 4 of Theorem 1. Furthermore, it holds thatDnc

q
−1(0) = R

n and

DλTC
q

−1
(0) = ker W T

T . Because the vectorsWN andWT are linearly independent it holds that
ker W T

T ∩ ker W T
N = {0} and condition 5 of Theorem 1 is therefore fulfilled. Consequently,

Theorem 1 proves that the equilibrium setE is globally attractive.

6.2 Rocking bar

Consider a planar rigid bar with massm and inertiaJS around the centre of massS, which
is attached to a vertical wall with a spring (Fig. 4b). The gravitational acceleration is denoted
by g. The position and orientation of the bar are described by thegeneralised coordinates
q =

[
x y ϕ

]T
, wherex andy are the displacements of the centre of massS with respect

to the coordinate frame(eI
x, eI

y) andϕ is the inclination angle. The spring is unstressed for
x = 0. The bar has length2a and two endpoints which can come into contact with the floor.
The contact between bar and floor is described by a friction coefficient µ > 0 and a normal
restitution coefficient0 ≤ eN < 1 which is equal to the tangential restitutioneT = eN . The
contact distances, indicated in Fig. 4b, aregN1 = y−a sin ϕ andgN2 = y+a sin ϕ, whereas the
relative velocities of contact points 1 and 2 with respect tothe floor read asγT1 = ẋ + aϕ̇ sin ϕ
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andγT2 = ẋ − aϕ̇ sin ϕ. We can describe the system in the form (18) with

M =





m 0 0
0 m 0
0 0 JS



 , h =





−kx
−mg

0



 , W T
N =

[
0 1 −a cos ϕ
0 1 a cos ϕ

]

, W T
T =

[
1 0 a sin ϕ
1 0 −a sin ϕ

]

.

(52)

The system contains a number of equilibrium sets. We will consider the equilibrium set

E = {(x, y, ϕ, ẋ, ẏ, ϕ̇) | k|x| ≤ µmg, y = 0, ϕ = 0, ẋ = ẏ = ϕ̇ = 0}, (53)

for whichgN1 = gN2 = 0. The total potential energy function (usingΨ∗
R−(gN1) = ΨR+(gN1))

Q(q) = U(q)+Ψ∗
CN

(gN1(q))+Ψ∗
CN

(gN2(q)) =
1

2
kx2+mgy+ΨR+(gN1)+ΨR+(gN2) (54)

contains a quadratic term inx, a linear term iny and two indicator functions on the contact
distances. Notice thatQ(q) = 0 for q = 0. Moreover, it holds that ifgN1 ≥ 0 andgN2 ≥ 0
theny ≥ 0 anda| sin ϕ| ≤ y. We therefore deduce that ifgN1 ≥ 0 ∧ gN2 ≥ 0 thenQ(q) =
1
2
kx2 + mgy = 1

2
kx2 + mg

2
(|y| + y) and ifgN1 < 0 ∨ gN2 < 0 thenQ(q) = +∞. The function

f(q) = 1
2
kx2+ mg

2
(|y|+a| sin ϕ|) is locally positive definite in the setU = {q ∈ R

n | |ϕ| < π
2
}.

Consequently, the total potential energy functionQ(q) ≥ f(q) is locally positive definite in the
setU as well. It can be easily checked that the generalised gradient ∂Q(q) can only vanish in
the setU for q = qe, i.e.0 /∈ ∂Q(q)∀q ∈ U\{qe} and0 ∈ ∂Q(qe).

Smooth non-conservative forces are absent in this system, i.e.fnc = 0 andDnc
q (u) = 0. We

now want to prove that condition 4 of Theorem 1 holds withIC = {1, 2}. Consider the open
subsetV = {(q,u) ∈ R

n × R
n | µ| tan ϕ| < 1, aϕ̇2 < g} which contains the equilibrium set,

i.e.E ⊂ V. We consider the following cases with(q,u) ∈ V:

• IN = ∅: both contacts are open, i.e.gN1 > 0 andgN2 > 0. It holds for(q,u) ∈ V that

γ̇N1 = ÿ − aϕ̈ cos ϕ + aϕ̇2 sin ϕ = −g + aϕ̇2 sin ϕ < 0
γ̇N2 = ÿ + aϕ̈ cos ϕ − aϕ̇2 sin ϕ = −g − aϕ̇2 sin ϕ < 0.

(55)

• IN = {1}: contact 1 is closed and contact 2 is open, i.e.gN1 = 0 andgN2 > 0. We con-
sider contact 1 to be closed for a nonzero time-interval. Thenormal contact acceleration
of the closed contact 1 must vanish:

γ̇N1 = ÿ − aϕ̈ cos ϕ + aϕ̇2 sin ϕ

0 = −g +
1

m
λN1 +

a2

JS

cos2 ϕλN1 −
a2

JS

cos ϕ sin ϕλT1 + aϕ̇2 sin ϕ

0 = −g +

(
1

m
+

a2

JS

cos ϕ(cos ϕ − µ̄ sin ϕ)

)

λN1 + aϕ̇2 sin ϕ,

(56)

with λT1 = µ̄λN1, i.e. µ̄ ∈ −µ Sign(γT1). It follows from (56) that the normal con-
tact forceλN1 is a function ofϕ andϕ̇. The contact acceleration of contact 2 therefore
becomes

γ̇N2 = ÿ + aϕ̈ cos ϕ − aϕ̇2 sin ϕ

= −g +
1

m
λN1 −

a2

JS

cos2 ϕλN1 +
a2

JS

cos ϕ sin ϕλT1 − aϕ̇2 sin ϕ

= −2g
a2 m

JS
cos ϕ(cos ϕ − µ̄ sin ϕ)

1 + a2 m
JS

cos ϕ(cos ϕ − µ̄ sin ϕ)
− 2aϕ̇2 sin ϕ

1 + a2 m
JS

cos ϕ(cos ϕ − µ̄ sin ϕ)
.

(57)
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Using|µ̄| ≤ µ and(q,u) ∈ V it follows that γ̇N2 < 0.

• IN = {2}: contact 1 is open and contact 2 is closed, i.e.gN1 > 0 andgN2 = 0. Similar to
the previous case we can prove thatγ̇N1 < 0.

Hence, there exists a non-empty setIC = {1, 2}, such thaṫγNi(q,u) < 0 (a.e.) for∀i ∈ IC\IN

and∀(q,u) ∈ V. Condition 4 of Theorem 1 is therefore fulfilled.
It holds thatDnc

q
−1(0) = R

n and it follows thatDλT
q

−1
(0) = ker W T

T (q). Furthermore, for
q ∈ C = {q ∈ R

n | gN1 = gN2 = 0} follows the implicationW T
N (q)u = 0 =⇒ ẏ = 0∧ ϕ̇ = 0

and similarlyW T
T (q)u = 0 =⇒ ẋ = 0. We conclude that there is always dissipation when

both contacts are closed andu 6= 0 becauseker W T
T (q)∩ ker W T

N (q) = {0} for all q ∈ C, and
condition 5 of Theorem 1 is therefore fulfilled. The largest level set ofV = T (q,u) + Q(q)
which lies entirely inQ = {(q,u) ∈ R

n×R
n | q ∈ U} is given byV (q,u) < mga. The largest

level set ofV which lies entirely inV is determined byV (q,u) < 1
2
JS

g

a
andV (q,u) < mga√

1+µ2
.

We therefore choose the setIρ∗ as

Iρ∗ = {(q,u) ∈ R
n × R

n | V (q,u) < ρ∗}, with ρ∗ = min

(

1

2
JS

g

a
,

mga
√

1 + µ2

)

. (58)

If additionally 1
2

(µmg)2

k
< ρ∗ then it holds thatE ⊂ Iρ∗. We conclude that Theorem 1 proves

conditionally the local attractivity of the equilibrium set E and thatIρ∗ is a conservative estimate
of the region of attraction. Naturally, the attractivity isonly local, because the system has also
other attractive equilibrium sets forϕ = nπ with n ∈ Z and unstable equilibrium sets around
ϕ = π

2
+ nπ.

7 CONCLUSIONS

In this paper conditions are given under which the equilibrium set of a multi-degree-of-
freedom nonlinear mechanical system with an arbitrary number of frictional unilateral con-
straints is attractive. The theorems for attractivity are proved by using the framework of mea-
sure differential inclusions together with a Lyapunov-type stability analysis and a generalisation
of LaSalle’s invariance principle for non-smooth systems.The total mechanical energy of the
system, including the support function of the normal contact forces, is chosen as Lyapunov func-
tion. It has been proved that, under some conditions, the differential measure of the Lyapunov
function is non-positive, which is basically a dissipativity argument. Sufficient conditions for
the dissipativity of frictional unilateral constraints are given. If we do not consider dependent
constraints, then the restitution coefficients must eitherbe small enough, or, be all equal to each
other. The latter condition has also been stated in [20]. Attractivity of the equilibrium set is
proved in Theorem 1 under a number of conditions. Condition 4 is a condition which is difficult
to satisfy and check. It guarantees that there exists no invariant set when one or more contacts
are open. Still, we are able to use Theorem 1 to prove the attractivity of equilibrium sets in the
example systems of Section 6. Moreover, we provide conservative estimates for the region of
attraction of the equilibrium set.

The theorems presented in this paper have been proved for dissipative systems and form the
stepping stone to the analysis of non-dissipative systems for which the equilibrium set might
still be attractive due to the dissipation of the frictionalimpacts (see also [23]). The results of
this paper will be used in further research to develop control methods for systems with unilateral
constraints.
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A A RESULT ON POSITIVE DEFINITE MATRICES
Proposition 1 (see [17])
Let A ∈ R

n×n be a symmetric positive definite matrix andB ∈ R
n×n be a diagonal positive

definite matrix with the diagonal elementsbii which fulfil 1 ≥ bii ≥ bmin > 0, i = 1, . . . , n. If
1 − bmin < 1

cond(A)
then it holds that the matrixAB is positive definite.

Proof: The matrixA = AT > 0 has real positive eigenvalues and it therefore holds that
xTAx ≥ λmin‖x‖2, whereλmin is the smallest eigenvalue ofA. Moreover, it holds that

xTA(I − B)x ≤ |xTA(I − B)x| ≤ |A| |I − B| ‖x‖2 ≤ λmax(1 − bmin)‖x‖2 , (59)

whereλmax is the largest eigenvalue ofA andbmin is the smallest diagonal element ofB. Using
the above inequalities, we deduce that

xTABx = xT(A − A(I − B))x ≥ (λmin − λmax(1 − bmin)) ‖x‖2 . (60)

Hence, if it holds that1 − bmin < λmin

λmax
=: 1

cond(A)
, then it follows thatxTABx > 0 holds for

all x 6= 0. �
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