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Abstract. In this paper we will give conditions under which the equililniget of multi-degree-
of-freedom nonlinear mechanical systems with an arbitrampher of frictional unilateral con-
straints is attractive. The theorems for attractivity areyed by using the framework of measure
differential inclusions together with a Lyapunov-type fligbanalysis and a generalisation of
LaSalle’s invariance principle for non-smooth systemse $pecial structure of mechanical
multi-body systems allows for a natural Lyapunov functiod an elegant derivation of the
proof. These results are illustrated by means of exampldsumilateral frictional constraints.
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1 INTRODUCTION

Dry friction can seriously affect the performance of a widage of systems. More specif-
ically, the stiction phenomenon in friction can induce thregence of equilibrium sets, see
for example [25]. The stability properties of such equililbn sets is of major interest when
analysing the global dynamic behaviour of these systems.

The aim of the paper is to present a number of theoreticaltsesinich can be used to
rigourously prove the conditional attractivity of the etuium set for nonlinear mechanical
systems with frictional unilateral constraints (incluglimpact) using Lyapunov stability theory
and LaSalle’s invariance principle.

The dynamics of mechanical systems with set-valued frickdovs are described by differ-
ential inclusions of Filippov-type [13, 16]. Filippov sgshs, describing systems with friction,
can exhibit equilibrium sets, which correspond to the stitbehaviour of those systems. Many
publications deal with stability and attractivity propeg of (sets of) equilibria in differential
inclusions [22, 2, 3, 26, 1, 11]. In previous publication8,[24], we provided conditions under
which the equilibrium set of multi-degree-of-freeddimear mechanical systems with an arbi-
trary number of Coulomb friction elements is attractive gdigapunov-type stability analysis
and a generalisation of LaSalle’s invariance principlerfon-smooth systems. Dissipative as
well as non-dissipative linear systems have been considbte the analysis was restricted to
bilateral frictional constraints and linear systems.

Systems with impact between rigid bodies undergo inst&aas changes in the velocities
of the bodies. Impact systems, with or without friction, ¢cenproperly described by measure
differential inclusions as introduced by Moreau [18, 18d4slso [10, 16, 4]), which allow for
discontinuities in the state of the system. Measure difféainclusions, being more general
than Filippov systems, can exhibit equilibrium sets as well

The Lagrange-Dirichlet stability theorem is extended bydiiedo [5] to measure differential
inclusions describing mechanical systems with frictigslenpact. The idea to use Lyapunov
functions involving indicator functions associated withilateral constraints is most probably
due to [5]. It is clearly explained in the work of Chareyron aneeber [7, 8] why the Lya-
punov function has to be globally positive definite, in ortteprove stability in the presence of
state-discontinuities (when no further assumptions orsytséem or the form of the Lyapunov
function are made). LaSalle’s invariance principle is gahged in [6] to differential inclusions
and in [7, 8] to measure differential inclusions describingchanical systems with frictionless
impact. The proof of LaSalle’s invariance principle striyngelies on the positive invariance of
limit sets. Itis assumed in [7, 8] that the system enjoysioaitly of the solution with respect
to the initial condition which is a sufficient condition foogitive invariance of limit sets. In [8],
an extension of LaSalle invariance principle to system# witilateral constraints is presented
(more specifically it is applied to mechanical systems wiittibnless unilateral contacts).

In this paper (see also [17]) we give conditions under whiwh eéquilibrium set of multi-
degree-of-freedommonlinear mechanical systems with an arbitrary number of frictiomai-
lateral constraints (i.e. systems with friction and impact) isative. The theorems for at-
tractivity are proved by using the framework of measureetiéhtial inclusions together with a
Lyapunov-type stability analysis and a generalisationa®alle’s invariance principle for non-
smooth systems, which is based on the assumption that ewatysét is positively invariant
(see also [14]). The special structure of mechanical niaty systems allows for a natural
choice of the Lyapunov function and a systematic derivabibtine proof for this large class of
systems.
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Figure 1: Contact distanggy and tangential velocityr between two rigid bodies.

In Sections 2 and 3, the constitutive laws for frictional latgral contact and impact are
formulated as set-valued force laws. The modelling of meidah systems with dry friction
and impact by measure differential inclusions is discuseeflection 4. Subsequently, the
attractivity properties of the equilibrium set of a systenthwirictional unilateral contact are
studied in Section 5. In Section 6, two examples are studiedder to illustrate the theoretical
results of Section 5. A discussion of the results and cometucemarks are given in Section 7.

2 FRICTIONAL CONTACT LAWSIN THE FORM OF SET-VALUED FORCE LAWS

In this section we formulate the constitutive laws for fioctal unilateral contact formulated
as set-valued force laws (see [10] for an extensive treatisthe subject). Normal contact
between rigid bodies is described by a set-valued force HEied Signorini’s law. Consider
two convex rigid bodies at a relative distange from each other (Fig. 1). The normal contact
distancegy is uniquely defined for convex bodies and is such, that thatpdi and 2 have
parallel tangent planes (shown as dashed lines in Fig. 1 ndimal contact distancgy
is nonnegative because the bodies do not penetrate intoatlaeh The bodies touch when
gnv = 0. The normal contact forcey between the bodies is nonnegative because the bodies
can exert only repelling forces on each other, i.e. the caimdtis unilateral. The normal contact
force vanishes when there is no contact, g.£.> 0, and can only be positive when contact is
present, i.egy = 0. Under the assumption of impenetrability only two situaianay occur:

(1)

From (1) we see that the normal contact law shows a complamignibehaviour: the product
of the contact force and normal contact distance is always, z&. gy Ay = 0. The relation
between the normal contact force and the normal contactrdistis therefore described by

which is the inequality complementarity condition betwegnand \y. The inequality com-
plementarity behaviour of the normal contact law is depidtethe lower-right figure of Fig. 2
and shows a set-valued graph of admissible combinationg ahd\y. The magnitude of the
contact force is denoted byy and the direction of the contact force is normal to the bqdlies
along the line 1-2 in Fig. 1.

The normal contact law, also called Signorini’s law, can kgressed by the subdifferential
(see [21]) of a non-smooth conjugate potendial (g )

—Ay € VL (gn) <= gn € OVcy (—Ay), 3)

gy =0A Ay >0 contact
gy > 0A Ay =0 no contact

3
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whereCy = {—Ay € R|Ay > 0} = R~ is the admissible set of negative contact forces
—Ay and¥q, is the indicator function of’y. The potential’ -, is depicted in the upper-left
figure of Fig. 2 and is the indicator function 6fy = R~. Taking the subdifferential of the
indicator function gives the set-valued relatign € 0V, (—Ay), depicted in the lower left
figure. Interchanging the axis gives the lower right figurechtexpresses (3) and is equivalent
to the lower-right graph of Fig. 2. Integration of the lattefation gives the support function
e (gn), which is the conjugate of the indicator function 6%. The normal contact law for

a number of contact poinis= 1, ..., ns can formally be stated as

—Ay € a\I/*CN(gN) <~ gn € 8\1101\,(—}\]\[), Cy = {—AN € Rn|)\N > 0}, (4)

wherey is the vector containing the normal contact forégs andg is the vector of nor-
mal contact distancegy;. Signorini’s law, which is a set-valued law for normal carttan
displacement level, can for closed contacts with= 0 be expressed on velocity level:

—AN € 8\I/*CN(7N) <~ YN € ENICN(—)\N), gy =0, (5)

where~y is the relative normal contact velocity, i-ey = gy for non-impulsive motion.

Coulomb’s friction law is another classical example of a étaw that can be described
by a non-smooth potential. Consider two bodies as depictédiginl with Coulomb friction
at the contact point. We denote the relative velocity of padinvith respect to point 2 along
their tangent plane by;. If contact is present between the bodigs & 0), then the friction
between the bodies imposes a force along the tangent plane of the contact point. If the
bodies are sliding over each other, then the friction forgdas the magnitude) y and acts in
the direction of—v7, i.e. —=Ar = pAy sign(yr) for v # 0, wherep is the friction coefficient
and )\ y is the normal contact force. If the relative tangential eélovanishes{; = 0), then
the bodies purely roll over each other without slip. Purdingl or no slip for locally flat
objects, is denoted bstick If the bodies stick, then the friction force must lie in tmeerval
—uAy < Ar < pAy. For unidirectional friction, the following three casesg @ossible:

=0 = [Ap] <pAy  sticking
yr <0 = Ap=+pdy negative sliding (6)
v >0 = Ap=—puly positive sliding

We can express the friction force by a potentia{~r), which we mechanically interpret as
a dissipation function, i.e-\r € dnp(vy7) with wr(vyr) = pAn|vyr|, from which follows the
set-valued force law which is depicted in the lower-rigtg@r of Fig. 3. A non-smooth convex
potential therefore leads to a maximal monotone set-vdioex law. The admissible values
of the negative tangential forcer form a convex seC'r = {—Ar | —puAy < Ar < +pdn}
which is bounded by the values of the normal force. Coulonmdvisdan be expressed with the
aid of the indicator function of'r asyr € 0V,.(—Ar) where the indicator functio® ... is
the conjugate potential of the support function(vr) = V¢, (vr) [10], see Fig. 3.

The classical Coulomb’s friction law for spatial contactmiates a two-dimensional fric-
tion forceAr € R? which lies in the tangent-plane of the contacting bodie® Jét of negative
admissible friction forces is a digky = {—Ar | |A7| < pAn} C R? for isotropic Coulomb
friction. Using the seC'r, the spatial Coulomb friction law can be formulated as

—Ar € 8\1”"0T (")’T) <~ VY1 € a\I’cT(—)\T), (7)

in which v € R? is the relative sliding velocity. Similarly, an elliptic ofce of C would
result in an orthotropic Coulomb friction law.

4
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Figure 2: Potential, conjugate potential and subdifféatiof the normal contact problei = Cy = R™.
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Figure 3: Potential, conjugate potential and subdiffeatiof the tangential contact proble@ = Cr.
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3 IMPACT LAWS

Signorini’s law and Coulomb’s friction law are set-valuedd® laws for non-impulsive
forces. In order to describe impact, we need to introducaashjaws for the contact impulses.
We will consider a Newton-type of restitution law,

% =—envn, 9gn =0, (8)

which relates the post-impact velocity; of a contact point to the pre-impact velocity; by
Newton’s coefficient of restitutioay. The casey = 1 corresponds to a completely elastic con-
tact, whereas,y = 0 corresponds to a completely inelastic contact. The impeuich causes
the sudden change in relative velocity, is accompanied byranal contact impulsé y > 0.
Following [9], suppose that, for any reason, the contacsdue participate in the impact, i.e.
that the value of the normal contact impulsg is zero, although the contact is closed. This
happens normally for multi-contact situations. For thisecave allow the post-impact relative
velocities to be higher than the value prescribed by Newitopsct law,y;; > —exy, in order

to express that the contact is superfluous and could be rehvatleout changing the contact-
impact process. We can therefore express the impact law mequnality complementarity on
velocity—impulse levelAy > 0, &y > 0, Anéy = 0, with &y = 7% +envy (see [9]). Similarly

to Signorini’s law on velocity level, we can write the impéatv in normal direction as

—An € 0Y¢, (En), gn =0. 9)

A normal contact impulsd y at a frictional contact leads to a tangential contact impuls
with || Ar|| < puAyx. We therefore have to specify a tangential impact law as Wk tangential
impact law can be formulated in a similar way as has been duortbé normal impact law:

—Ar € 0V, () (€r), 9N =0, (10)

with €7 = ~;- + er,. This impact law involves the tangential restitution cagéfinter, which
is normally considered to be zero, but can be used to modeatigential velocity reversal as
observed in the motion of the Super Ball, being a very elagticused on play grounds.

4 MODELLING OF SYSTEMSWITH DRY FRICTION AND IMPACT

In this section, we define the class of nonlinear time-autoous mechanical systems with
unilateral frictional contact for which the stability rdsuare derived in Section 5. We first
derive a measure differential inclusion describing theahgits of mechanical systems with
discontinuities in the velocity and, subsequently, we gtié equilibrium set.

41 Themeasuredifferential inclusion

We assume that the mechanical systems exhibit only bildtetanomic frictionless con-
straints and unilateral constraints in which dry frictiande present. Furthermore, we assume
that a set of independent generalised coordingtesR", for which these bilateral constraints
are eliminated from the formulation of the dynamics of thstegn, is known. The generalised
coordinategy(¢) are assumed to be absolutely continuous functions of tirAdso, we assume
the generalised velocities,(t) = q(t) for almost all¢, to be functions of locally bounded vari-
ation. At each time-instance it is therefore possible tondsdi left limitw~ and a right limitu™
of the velocity. The generalised accelerati@nare therefore not for all defined. The set of
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discontinuity points{t; } for which « is not defined is assumed to be Lebesgue negligible. We
formulate the dynamics of the system using a Lagrangianoagpr, resulting in

T
(5 (7o)~ TatUa) = F(@w) + Wal@hy + Wirla)rr, )

or, alternatively,
M(q)i — h(q,u) = Wy(q) Ay + Wr(q)Ar, (12)

which is a differential equation for the non-impulsive paftthe motion. HereinM (q) =
M7*(q) > 0 is the mass-matrix. The scaldr represents kinetic energy and it is assumed
that it can be written a§ = Lu"M(q)u. Moreover,U denotes the potential energy. The
column-vectorf° in (11) represents all smooth generalised non-conseevétixkces. The
state-dependent column-vectofq, v) in (12) contains all differentiable forces, such as spring
forces, gravitation, smooth damper forces and gyroscepig.

We introduce the following index sets:

I ={1,....nc} the set of all contacts

In ={i €1z |gni(q) =0} the setof all closed contacts (13)

and set up the force laws and impact laws of each contact asdlesiselaborated in Sections 2
and 3. The normal contact distanags (q) depend on the generalised coordinajesnd are
gathered in a vectayx(q).

During a non-impulsive part of the motion, the normal cohtarce—\ y; € Cy and friction
force —\r; € Cr; C RP of each closed contaéte I, are assumed to be associated with a
non-smooth potential, being the support function of a crse, i.e.

—Ani € OVe (7Ni), —Ar; € 0V, (Y1), (14)

whereCy = R~ and the seC; can be dependent on the normal contact forge > 0. The
normal and tangential contact forces of @l contacts are gathered in columhg = {\y;}
andAr = {Ar;} and the corresponding normal and tangential relative téscare gathered
in columnsyy = {yn;} and~vyy = {~vr;}, fori € I5. We assume that these contact velocities
are related to the generalised velocities through:

(g u) = Wi(@u,  vr(qu) =Wi(qu. (15)

It should be noted tha¥ . (q) = 5’(;’—5 for X = N,T. This assumption is very important as it
excludes rheonomic contacts.
Equation (12) together with the set-valued force laws (bdnfa differential inclusion

M(q)i— h(g,u) € =Y Wyi(q)dVy, (vvi) — Wri(Q)0¥5, (vri), ae.  (16)

ieln

Differential inclusions of this type are called Filippovstgms. The differential inclusion (16)
only holds for impact free motion.
Subsequently, we define for each contact point the corngétumpact laws

—Ani € 0VE (Eni), —Ari € OVE, sy (&ri); 1€ In, (17)

7
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with En; = v, + enivy; andér; = v, + eriyr,; in which ey; ander; are the normal and tan-
gential restitution coefficients respectively. The inans (17) form very complex set-valued
mappings representing the contact laws at the impulse. |&bel force laws for non-impulsive
motion can be put in the same form because = »~ holds in the absence of impacts and
because of the positive homogeneity of the support fun¢tiea [21]), i.e—Ay; € OVE (i)
and—M\p; € 8\IJETZ,(,\NZ.)(£T¢). We now replace the differential inclusion (16), which hefdr
almost all¢, by an equality of measures

M (q)du — h(q,u)dt = W y(q)dPy + Wr(q)dPr Vi, (18)

which holds for all time-instances The differential measure of the contact impulsiod3,d
and dPr contains a Lebesgue measurable paltand an atomic parAdn

dPy = Aydt + Apndp, dPr = Ardt + Ardp, (19)
which can be expressed as inclusions
—dPy; € 0V (&ni)(dt4-dn), —dPr; € 0V, (v (&) At +0VE (4, (€ri)dn. (20)
As an abbreviation we write
M (q)du — h(q,u)dt = W(q)dP Vi, (21)

using short-hand notation

A::{ii}, A;:[ﬁg}, I’:{iz}, W= [Wy Wy, ’y:{zg]. (22)

Furthermore we introduce the quantities
E=1"+Ey, d=v"-77, (23)

with E = diag({en;, er;}) from which we deducey™ = (I + E)~'(¢ + Eé) andy~ =

(I + E)~'(¢€ — §). The equality of measures (21) together with the set-valaex laws (20)
form a measure differential inclusion which describesitinetevolution of a mechanical system
with discontinuities in the generalised velocities. Suameasure differential inclusion does
not necessarily have existence and uniqueness of soldtoai admissible initial conditions.
Indeed, if the friction coefficient is large, then the coaglibetween motion normal to the
constraint and tangential to the constraint can causeeexistand uniqueness problem (known
as the Painle¥ problem [4, 15]). In the following, we assume existence anidjueness of
solutions in forward time. The contact laws guarantee thatgeneralised positiongt) are
such that penetration is avoideg{ > 0) and the generalised positions therefore remain within
the admissible set

K={qeR"|gni(q) >0Vie I}, (24)

for all . The conditiong(¢) € K follows from the assumption of existence of solutions. We
remark that the following theorems can be relaxed to systeithsion-uniqueness of solutions.
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4.2 Equilibrium set

The measure differential inclusion described by (21) arti) €nhibits an equilibrium set.
Note that the assumption of scleronomic contacts implies itmpliesy; = 0 for v = 0,
see (15). This means that every equilibrium implies stigkimall closed contact points. Every
equilibrium position has to obey the equilibrium inclusion

h(q,0) = > (Wri(q)0V;, (0) + Wri(q)0Vy, (0)) 50, (25)

i€lN

which, usingC' = 9V (0), simplifies toh(q,0) — i, (Wni(@)Cni + Wri(q)Cri) 2 0
An equilibrium set, being a simply connected set of equilifor points, is therefore given by

£ C {(q,u) € R" x Rn|( /\h q, + Z WNZ — WTz(q)OTz) > 0} (26)

and is positively invariant if we assume uniqueness of thaisms in forward time. With€ we
denote an equilibrium set of the measure differential isico in the state-spade, ), while
&, I1s reserved for the union of equilibrium positiogs, i.e.£€ = {(q,u) € R" xR" | q €
&4, u = 0}. Note that nonlinear mechanical systems without dry fititan exhibit multiple
equilibria. Similarly, a system with dry friction may exflitilonultiple equilibrium sets.

Let us now state some consequences of the assumptions ntade will be used in the next
section. Due to the fact that the kinetic energy can be destiby

1 1
T = §uTM(q)'u, = S Mu, (27)

with M (q) = M™*(q), we can write in tensorial language

or 1 [(0M.\ , | or ,
a—q’f:_ aq uu, %:Mkw,
d /oT , OMj, oTr OMy,  OM,
e - — M r s M 2— T _ rs r 8 28
dt(auk) fr U +(8q8) kru+ak+<aqs aqk)uu (28)
% (Ty) =u"M(q)+ 2T, — (f#")*  for aimost allt

with the gyroscopic forces

Oy (‘3MTS) u'u’ (29)

gYr _ [ f8yT gyr _ _
-f {fk }7 k (8q5 aqk

In the next section we will exploit that the gyroscopic fa¢e,, have zero power, i.es™ f&° =
uf £ = 0. In the same way as before, we can write the differential omeesf 7", as d(7',,) =
du M (q) + 2T ,dt — (f=~)Tdt for all . Comparison with (12) and (11) yields

h=f 4 f& - (Ta+Ug". (30)
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5 ATTRACTIVITY OF EQUILIBRIUM SETSFOR NONLINEAR SYSTEMS

In this section, we will investigate the attractivity profes of the equilibrium sets defined
in the previous section. We define the following nonlinearchionalsR” — R onu € R™:

o Di¢(u) := —u’ f*(q, u) is the dissipation rate function of the smooth non-consema
forces.
o D) (u) =3 ﬁ‘l’*@ ) (&ri(g, w)) is the dissipation rate function of the tan-

gential contact forces.

o DiT(u) =Y ,c;, %m\pénmm)(fﬂ(q’“)) is the dissipation rate function of the tan-

gential contact impulses.

For non-impulsive motion it holds thatr = ~v; = v, andér = (1 + er)yr. Due to the fact
that the support function is positively homogeneous il that

D/\T Z CTl (Ani) ’YTZ q,u Z ATz’YTz q,u 7 (31)

i€ln i€lny

from which we see that the dissipation rate function of threyéatial contact forces does not
depend on the restitution coefficient. The above dissipation rate functions are of course
functions of(q, u), but we write them as nonlinear functionals arfor every fixedg so that
we can speak of the zero sBf, ' (0) = {u € R" | Dg(u) = 0} of the functionalDg ().

As stated before, the type of systems under investigationerhibit multiple equilibrium
sets. Here, we will study the attractivity properties of adfic given equilibrium set. By. we
denote an equilibrium position of the system with unilatérationlesscontacts

M(q)u — h(q,u) — Wy(g)Ay =0, (32)

from which follows that the equilibrium positiog, is determined by the inclusioh(q., 0) —
> icr. Whi(ge)OVE, (gni(ge)) > 0 or

h’<qe7 0) - Z WNi(qe)a\Ijz'N (7Ni(Qe7 O)) >0, (33)
i€ln =0

which is equivalent tdh(g.,0) + W n(g.)RT > 0 with W = {Wy,}, i € Iy. Let the
potential)(q) be thetotal potential energy of the system

) + Z Ve (gni(q)) (34)

i€lg

which is the sum of the potential energy of all smooth potdiitirces and the support functions
of the normal contact forces. Moreover, we assume that thail@ium positiong. is a local
minimum of the total potential enerd@y(q). The subsél is assumed to enclose the equilibrium
set&, under investigation. Notice that the equilibrium podatof the system without friction
is also an equilibrium point of the system with frictidfg., 0) € £. If the system does exhibit
multiple equilibrium sets, then the attractivity &fwill be only local for obvious reasons. In
the following we will make use of the Lyapunov candidate fiimc

V=T(q,u)+Q(q) = T(q,u) + Ulg) + Y _ V¢, (9ni(q)), (35)

i€lg

10
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being the sum of kinetic and total potential energy. The fiancl” : R" x R" — R U {o0} is

an extended lower semi-continuous function. MoreoverftinetionV'(t) = V(q(t), u(t)) is

of locally bounded variation in time becaugé) is absolutely continuous and remains in the
admissible set” defined in (24)u € 1bv(I,R™), andT is a Lipschitz continuous function and
@ is an extended lower semi-continuous function but only depat ong(¢). In the following
we will make use of the differential measurg€ of V(¢). If it holds that d” < 0, then it follows
that

V) =V (ty) = dv <o, (36)

[tO 1t]

which means that’(¢) is non-increasing. Similarly,¥d < 0 implies a strict decrease &f(t).
We now formulate a technical result which states conditimmder which the equilibrium set
can be shown to be (locally) attractive.

Theorem 1 (Attractivity of the equilibrium set)
Consider an equilibrium sét of the system (21), with constitutive laws (14) and (20). If

1. T = tu" M (q)u, with M (q) = M*(q) > 0,

1
2

2. the equilibrium positiony. is a local minimum of the total potential ener@q) and
Q(q) has a non-vanishing generalised gradient foqat U\{q.}, i.e.0 ¢ 0Q(q)Vq €
U\{q.}, and the equilibrium sét, is contained i, i.e.E, C U,

3. D)(u) = —u"f* > 0, i.e. the smooth non-conservative forces are dissipativ,
fre=0foru=0,

4. there exists a non-empty det C I, and an open neighbourhoddC R"™ x R™ of the
equilibrium set, such thaty;(q,u) < 0 (a.e.) fovi € Ic\Iy and(q,u) € V,

5. D27L(0) N DYre T (0) Nker Wie(g) = {0} Vg € C with

gne = {gni}, Wie = {wy;} fori € I as defined in 4.

C= {q | QNC(Q) = 0}7 DQTC = Z \I/é‘Ti(ANi)(7Ti(Q>u))a

i€lcNiny
6. 0<en; <1, |epr| <1Vie€lg,
7. one of the following conditions holds
(a) the restitution coefficients are small in the sense fligt— < m Vg € C

whereG(q) := W(q)"M(q)"'W (q) ande,,., is the largest restitution coeffi-
cient, i.e.ep, > max(ey;, er;) Vi € Ig,

(b) all restitution coefficients are equal, iee= ey; = er;Vi € Ig,
(c) friction is absent, i.eu; = 0Vi € Ig,

11
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8. £ C I, inwhichthe set,., withZ, = {(q,u) € R" xR" | V(q,u) < p}, is the largest
level set o\, given by (35), that is containedihandQ = {(q,u) € R"xR" | g € U},
ie.

= max , 37
P {pZ,C(VNQ)} P ( )

9. each limit set irL,- is positively invariant,

then the equilibrium sef is locally attractive and - is a conservative estimate for the region
of attraction.

Proof: Note thatV is positive definite around the equilibrium poifg,w) = (g.,0) due to
conditions 1 and 2 in the theorem. Classically, we seek the-tisrivative ofl” in order to
prove the decrease df along solutions of the system. Howevaeris not defined for alt andu
can undergo jumps. We therefore compute the differentidsme & = d7" + d@. The total
potential energy, being an extended lower semi-continfoistion, is only a function of the
generalised displacemenjswhich are absolutely continuous, and it therefore holds th

d@ = dQ(q)(dq) = U 4dq + d¥x(q)(dg), (38)

wheredQ(q)(dq) is the subderivative (see [21]) ¢} at q in the direction ¢ = wdt. The
subderivativelV (q)(dq) of the indicator functionl'c(q) equals the indicator function on the
associated contingent cofé(q), i.e. d¥x(q)(dg) = Vg, (g (dg). It holds thatu € Ki(q)
due to the consistency of the system and the indicator foimctn the contingent cone therefore
vanishes, i.e¥ kg (udt) = 0. Consequently, the differential measurepsimplifies to

dQ = U7qdq + \IIK;C(q) (dq) = U7qudt. (39)

The kinetic energyl’(q,u) = %uTM(q)u Is a symmetric quadratic form in and has the
differential measure

dr = %(u+ +u" )M (q)du + T ,dq. (40)

The differential measure of the Lyapunov candiddtbecomes

(39)+(40) 1

dv (ut +u )T M(q)du + (T, + U,) dg

21) 1 ’ (41)
= St +u”)T (h(g, w)dt + WA) + (T + Ug) udk

A term%(uﬂru*)Tdt in front of a Lebesgue measurable term equdldt. Together with (30),
i.e.h = f 4+ fo — (T, + U, ", and (19) with (22) we obtain

1
dV = u’ fodt + ul £t + ut WAL + 5(u,+ +u”)TWAd,. (42)

12
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The gyroscopic forces have zero powerf&™ = (. Moreover, the constraints are assumed to
be scleronomic and according to (15) it therefore holds4hat W Tu, which gives
1
dV = uT fodt + yTadt + 5(7* +~7) T Adp

(23)

= ub frodt + T Adt + % (I+E)™" (26— (I - E)8))" Ady
=u' fdt + v Adt + ¢ (I + E) ' Ady — %6T(I — E)(I+E)'Ady (43)

1
PR T+ €71+ B)dP - 387 (1 - B)(I+ E) ' Ady

dPy;  &X.dPp 1 _
— uT Fregt SvidPyi i 2t ) _ Z8T(T — EN(I + E) " *Adn.
wprars Y (S0, SO srr - m) 4B ady

i€ln
Using (20) ande™z* = ¥, (x*), we obtain
EnidPyi = =g (Evi)(dE +dn) =0
EridPri = —VG, 0 (Er)dE = VG o (€ri)dn <0,

because ofvy, (&7:) > 0 andV¥g (Eni) = Yr+(§ni) = O for admissiblely; > 0. Moreover,

7

applying (15) to (23) gives

(44)

d=7"—y =Whu"—u ) =W M 'WA = GA, (45)

in which we used the abbreviatiad# := WTM W, which is known as the Delassus ma-
trix [19]. The matrixG is positive definite whe® has full rank, becaus®f > 0. The matrix
G is only positive semi-definite if the matrild” does not have full rank, meaning that the gen-
eralised force directions of the contact forces are liyedebendent. However, we assume that
the matrixW only contains the generalised force directions of unikdteonstraints, and that
these unilateral constraints do not constitute a bilayaktraint. It therefore holds that there
exists noA y # 0 such that¥y Ay = 0. The impact law requires thaty > 0. Hence, it holds
that ANz WIM Wy Ay > 0forall Ay # 0 with Ay > 0, even if the unilateral constraints
are linearly dependent. Moreoveky # 0 implies Ay # 0. The inequalityATGA > 0 there-
fore holds for allA # 0 which obey the impact law (9), even if dependent unilateoalstraints
are considered.

Using (45), we can put the last term in (43) in the followingadtatic form

%5T(I —E)I+E)'Ady = %ATG(I — E)(I+ E)'Ady. (46)

inwhichG(I — E)(I + E)~! is a square matrix. The matrif — E)(I + E)~' is a diagonal
matrix which is positive definite if the contacts are not pyrmastic, i.e.0 < ey; < 1 and
0 < eg; < 1foralli. The smallest diagonal elementdf — E)(I + E) ! is };g—mi Using

Proposition 1 in Appendix A, we deduce thatGfis positive definite and if condition 7a holds,
then the positive definiteness 6f{(I — E)(I + E)~! implies

%ATG(I —E)I+E)'A>0, VA#O. (47)

If the generalised force directions are linearly dependben the Delassus mat is singular
andcond(G) is infinity. Condition 7a can therefore not hold.

13
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If G is positive semi-definite (or even positive definite) andradtitution coefficients are
equal tae (condition 7b), then the produ¢\" G (I — E)(I + E)~' A simplifies to} ;=ATGA
which is in general non-negative. Again, we can show thax $4ll holds for dependent unilat-
eral constraints if we considéx ## 0 with A > 0.

If G is positive semi-definite (or even positive definite) andtfon is absent (condition 7c:
wi = OVi € I ), then it holds thah\™"G(I — E)(I + E)'A = (v — vy) (I — E)(I +
E)Y Ay =X ,(vas — yj;i)izxzjz\m. The impact law requires that}, + ex;vy; > 0 and
An; > 0. Moreover, the unilateral contacts did not penetrate leefoe impact and the pre-
impact relative velocitiesy,,, are therefore non-positive. The post-impact relative ciékes
Vi = —enivy,; are therefore non-negative for< ey; < 1. Furthermore, if\y; > 0, then it
must hold thatyy, < 0. Hence JATG(I — E)(I + E)~'A > 0 forall A # 0 with A > 0.

Looking again at the differential measure of the total endrsd), we realise that (under
conditions 6 and 7) all terms related to the contact forcesrapulses are dissipative or passive.
Moreover, if we consider not purely elastic contacts, thenzero contact impulses strictly
dissipate energy.

We can now decompose the differential measurdarda Lebesgue part and an atomic part

dvV = Vdt + (V* — V7 )dn, (48)
with (see (31) and abové) = u' fre -3, e Vo, 0w (Eri) = = Dif(u) = Dy (u) <0
andV*t -V~ = —D}7(u)—3ATG(I+E) '(I-E)A < 0. For positive differential measures

dt and d) we deduce that the differential measuré048) is non-positive, & < 0. There are
a number of cases forldto distinguish:

e Casewu = 0: It directly follows that d” = 0.

e Casegy; = 0and vy,, < 0for somei € Iy: One or more contacts are closing, i.e. there
are impacts. It follows from (47) that™ — V'~ < 0 and therefore thatld < 0.

e Casegne =0,u € ker Wy andu = u~ = ut with gye = {gn;} for i € I Itthen
holds that all contacts if- are closed and remain closdd, C 1. We now consideV as
a nonlinear operator oa and writeV = 0 for u € V,"1(0) andV < 0 for u ¢ V,}(0)
with V,71(0) = Di='(0) N DgT_l(O) C D2 '(0) N Dch_l(O). Condition 5 of the
theorem states that, if the contactdnare persistentW/«.u = 0), then dissipation can
only vanish ifu = 0,i.e. D3 '(0) N Dchfl(O) = {0}. In other words, if all contacts in
I are closed and remain closed and‘ 0 then dissipation is present. Using condition 5
andu € ker Wi \ {0}, it follows thatV,'(0) = {0} and hencé” = 0 for u = 0
andV < 0 for w # 0. Impulsive motion for this case is excluded. For a stricthgitive
differential measuretdve obtain the differential measure Bfas given in (48) and write
dV =0foru=0and d’ < 0andu # 0.

e Casegne = 0,u ¢ ker Wy \ {0} and Wy, u > 0 for somei € I¢: It then holds that
one or more contacts will open. All we can say is thit d 0.

e Casegy; > 0for somei € I: One or more contacts are open. All we can say is that
dv <0.

We conclude thatd = 0 for u = 0, dV < 0 for gy¢ # 0 and d/ < 0 for gy¢ = 0 and
u- # 0.
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(a) Falling block (b) Rocking bar

Figure 4: Example systems.

We apply a generalisation of LaSalle’s invariance prirgip¥hich is valid when every limit
set is a positively invariant set [8, 14]. A sufficient comalit for the latter is continuity of the
solution with respect to the initial condition, which is geally not satisfied by non-smooth
mechanical systems with multiple impacts. It is therefotplieitly stated in Condition 9 of
Theorem 1 that every limit set i, is positively invariant. Hence, under this assumption, the
generalisation of LaSalle’s invariance principle can belieg.

Let us consider the s&,- wherep* is chosen such that,- C (VN Q), see (37). Note that
7, is a positively invariant set due to the choicéafMoreover, the sef = {(q,u) | dV = 0}
generally has a nonzero intersection with= {(q, u) | gne # 0,gnc > 0}.

Consider a solution curve with an arbitrary initial conditim P for ¢t = ¢,. Due to condi-
tion 4 of the theorem, which requires thig; < 0 (a.e.) forvi € I-\Iy, at least one impact
will occur for somet > t¢,. The impact does not necessarily occur at a contaét inin any
case, the impact will causé/d< 0 at the impact time. Therefore, there exists no solutioneurv
with initial condition in’P that remains in the intersectidnN S. Hence, it holds that the inter-
section” N S does not contain any invariant subset. We therefore sedhittest invariant set
in7 = {(q,u) | gnc(g) = 0,u = 0} which clearly is the equilibrium sef. Consequently,
we can conclude that the largest invariant sefirs the equilibrium se€. Hence, it can be
concluded from LaSalle’s invariance principle tl§ais an attractive set. OJ

Remark: If no conditions on the restitution coefficients exist (othlegan0 < ey; < 1 and
ler;| < 1¥i) and if friction is present, then the impact laws (20) candemcircumstances,
lead to an energy increase. Such an energetic inconsistexscheen reported by Kane and
Levinson [12]. In the proof of Theorem 1, we derived suffitieanditions for the energetical
consistency (dissipativity) of the adopted impact laws.

6 EXAMPLES

In this section we show how the above theorems can be usedve fire attractivity of an
equilibrium set of two mechanical systems.
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6.1 Falling block

Consider a planar rigid block (see Fig. 4a) with massinder the action of gravity (gravi-
tational acceleration), which is attached to a vertical wall with a spring. The lllean freely
move in the vertical direction but is not able to undergo ation. The coordinates andy
describe the position of the block. The spring is unstreésed = 0. The block comes into
contact with a horizontal floor when the contact distagj¢e= y becomes zero. The constitutive
properties of the contact are the friction coefficierand the restitution coefficients< ey < 1
ander = 0. The equations of motion for impact free motion read as

mx + kxr = M
.. ! 4
my = —mg + An. (49)

Using generalised coordinatgs= [z y]T, we describe the system in the form (18) with

= A R

0 m —mg

The system fop: = 0 admits a unique equilibrium positiop, = 0. For . > 0 there exists
an equilibrium se€ = {(z,y,%,9) | klz| < wmg,y = 0, & = y = 0} and it holds that
(ge, 0) € £. The total potential energy function used in condition 2 bé®rem 1 reads as

Q(q) =U(q) + 9, (9n(q) = Lpa? 4 mgy + Vi (y) = %kx? +mgy + Vg (y). (51)

2
Notice that the termngy + Y+ (y) is a positive definite term ip. It holds that() is a positive
definite function ing, because it is above or equal to another positive definitetiomQ(q) >
%ka +mgly|. Moreover, the minimum of) is located at the equilibrium poit. = 0, because
0Q(q.) > 0 and is unique because of the convexitybfCondition 2 of Theorem 1 is therefore
fulfilled for all ¢ € R™. The system does not contain smooth non-conservativedoree
¢ = 0, which fulfills condition 3 of Theorem 1. Denote the contaetiween block and floor
as contact and takel- = I = {1}. It holds thatyy = —g for gx = y > 0, which guarantees
the satisfaction of condition 4 of Theorem 1. Furthermoréoids thathC‘l(O) = R™ and

Dchfl(O) = ker W. Because the vecto#®’y andWr are linearly independent it holds that
ker W N ker W = {0} and condition 5 of Theorem 1 is therefore fulfilled. Consedjyen
Theorem 1 proves that the equilibrium geis globally attractive.

6.2 Rocking bar

Consider a planar rigid bar with massand inertia/s around the centre of mass which
is attached to a vertical wall with a spring (Fig. 4b). Thewgational acceleration is denoted
by g. The position and orientation of the bar are described bygtmeralised coordinates
q= [x Yy go}T, wherez andy are the displacements of the centre of m&ssith respect
to the coordinate fram(aei,eé) and ¢ is the inclination angle. The spring is unstressed for
x = 0. The bar has lengtha and two endpoints which can come into contact with the floor.
The contact between bar and floor is described by a fricti@fficeent . > 0 and a normal
restitution coefficient) < ey < 1 which is equal to the tangential restitutien = ey. The
contact distances, indicated in Fig. 4b, axe = y — a sin p andgy2 = y+ asin ¢, whereas the
relative velocities of contact points 1 and 2 with respec¢h®floor read as;; = & + a@ sin ¢
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and~yre = & — ay sin . We can describe the system in the form (18) with

m 00 —ka 0 1 —acos 1 0 asin
M =10 m 0}, h=|-mg ’WEZ[O 1 acos 80}’ E:[l 0 —asingol
0 0 Js 0 7 7
(52)
The system contains a number of equilibrium sets. We wilkaigr the equilibrium set
E={(z,y,9,2,9,¢) | klz| < pmg, y =0, =0, & =5 = ¢ =0}, (53)
for which gy1 = gn2 = 0. The total potential energy function (usiig,_ (gn1) = g+ (gn1))
* * 1
Q(q) =U(q)+9¢, (gni(@) +V¢, (gn2(q)) = §k932+mgy+q’n£+(gm)+‘I’R+(9N2) (54)

contains a quadratic term in, a linear term iny and two indicator functions on the contact
distances. Notice thap(q) = 0 for ¢ = 0. Moreover, it holds that ifjy; > 0 andgys > 0
theny > 0 anda|sinp| < y. We therefore deduce thatghy; > 0 A gyo > 0thenQ(q) =
ska? +mgy = ska? + 22 (|y| +y) and if gy1 < 0V gn2 < 0thenQ(q) = +oo. The function
f(q@) = ska*+22(|y|+a| sin ¢]) is locally positive definite in the sét = {g € R" | |¢| < Z}.
Consequently, the total potential energy functigfy) > f(q) is locally positive definite in the
set/ as well. It can be easily checked that the generalised gradig(q) can only vanish in
the set/ for g = q., i.e.0 ¢ 0Q(q)Vq € U\{q.} and0 € 9Q(q.).

Smooth non-conservative forces are absent in this systenf'f = 0 and D;°(u) = 0. We
now want to prove that condition 4 of Theorem 1 holds with= {1,2}. Consider the open
subsetV = {(q,u) € R" x R" | u|tan | < 1,a¢* < g} which contains the equilibrium set,
i.e.£ C V. We consider the following cases with, u) € V:

e Iy = (): both contacts are open, ig@y; > 0 andgy» > 0. It holds for(q,u) € V that

ANt = 1 — apcos o + ap?sinp = —g + ap?sinp < 0

S Lo Ty 0 Ty (55)
N2 = U+ apcosp —apsinp = —g — ap”sinp < 0.

e Iy = {1}: contact 1 is closed and contact 2 is open,g8. = 0 andgy- > 0. We con-
sider contact 1 to be closed for a nonzero time-interval. Adrenal contact acceleration
of the closed contact 1 must vanish:

ANt = i — ap cos p 4+ ap?sin @
1 a? 9 a? . 22
O:—g—f—E/\Nl—i—J—SCOS gpx\Nl—J—ScongSlngD)\ﬂ—l—ago sin (56)
( 1 a? . ) .
0=—g+ | —+ ——cosp(cosp — asiny) | An1 + ap” sin p,
m JS
with A\py = A1, .. 0 € —pSign(vy71). It follows from (56) that the normal con-
tact force)y; is a function ofp andp. The contact acceleration of contact 2 therefore

becomes
AN2 = 1 + ap cos o — ag?sin @
2 2
=—g+ —An1 — a—COSQQO)\Nl + a—cosgosingp)\Tl — ap?sinp
g m JS JS (57)
_ 9y GQ% cos p(cos p — fisin p) 2a? sin

1+ a2J—”; cos p(cos ¢ — fisin ) 1+ a2T—S cos p(cos p — fisin )
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Using|i| < pand(q,w) € Vit follows that+y, < 0.

e [y = {2}: contact 1 is open and contact 2 is closed,d8. > 0 andgy, = 0. Similar to
the previous case we can prove that < 0.

Hence, there exists a non-empty get= {1, 2}, such thatyy;(q,u) < 0 (a.e.) forvi € Io\In
andv¥(q,u) € V. Condition 4 of Theorem 1 is therefore fulfilled.

It holds thatD2e~'(0) = R and it follows thathT_l(O) = ker W/ (q). Furthermore, for
qgcC={qeR"| gy = gne = 0} follows the implicationW\ (qg)u =0 =y =0A¢ =0
and similarlyW}(qg)u = 0 = & = 0. We conclude that there is always dissipation when
both contacts are closed and# 0 becauséer Wr(q) nker W (q) = {0} for all g € C, and
condition 5 of Theorem 1 is therefore fulfilled. The largestdl set oft’ = T'(q,u) + Q(q)
which lies entirely inQ = {(q,u) € R"xR" | g € U} is given by (q,u) < mga. The largest
level set ofi” which lies entirely inV is determined by’ (¢, u) < $Js2 andV (g, u) < —A£=

v/ 1+p? )

We therefore choose the st as

. 1
T, ={(g,u) € R" x R" | V(q,u) < p*}, with p* = min (-JSQ, %> . (58)
2 Ta /14 p?

If additionally %% < p* then it holds that C Z,.. We conclude that Theorem 1 proves
conditionally the local attractivity of the equilibriumts&and thatZ - is a conservative estimate
of the region of attraction. Naturally, the attractivitydsly local, because the system has also
other attractive equilibrium sets far = nz with n € Z and unstable equilibrium sets around
p =3 +nm.

7 CONCLUSIONS

In this paper conditions are given under which the equiliforiset of a multi-degree-of-
freedom nonlinear mechanical system with an arbitrary remd$ frictional unilateral con-
straints is attractive. The theorems for attractivity amevpd by using the framework of mea-
sure differential inclusions together with a Lyapunoveygtability analysis and a generalisation
of LaSalle’s invariance principle for non-smooth systemie total mechanical energy of the
system, including the support function of the normal cotfiarces, is chosen as Lyapunov func-
tion. It has been proved that, under some conditions, tlierdiitial measure of the Lyapunov
function is non-positive, which is basically a dissipagvargument. Sufficient conditions for
the dissipativity of frictional unilateral constraintseagiven. If we do not consider dependent
constraints, then the restitution coefficients must eitleesmall enough, or, be all equal to each
other. The latter condition has also been stated in [20]ra8tivity of the equilibrium set is
proved in Theorem 1 under a number of conditions. Conditianaddondition which is difficult
to satisfy and check. It guarantees that there exists noiamtaset when one or more contacts
are open. Still, we are able to use Theorem 1 to prove thecatity of equilibrium sets in the
example systems of Section 6. Moreover, we provide congseevestimates for the region of
attraction of the equilibrium set.

The theorems presented in this paper have been proved sipalise systems and form the
stepping stone to the analysis of non-dissipative systemw/fiich the equilibrium set might
still be attractive due to the dissipation of the frictiomabacts (see also [23]). The results of
this paper will be used in further research to develop contethods for systems with unilateral
constraints.
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A A RESULT ON POSITIVE DEFINITE MATRICES
Proposition 1 (see[17])
Let A € R™*™ be a symmetric positive definite matrix aifitl € R"*" be a diagonal positive
definite matrix with the diagonal elemerts which fulfil 1 > b;; > by, > 0,0 =1,...,n. If
1

1 — bpin < ond(A) then it holds that the matriA B is positive definite.

Proof: The matrixA = AT > 0 has real positive eigenvalues and it therefore holds that
T Az > A\uin||||?, Wherel,, is the smallest eigenvalue . Moreover, it holds that

x'A(I - B)z < |z" A(I - B)z| < |A||I - Bl ||#* < Amax(1 = buin)l|l]|*, (59)

where\,,... is the largest eigenvalue ¢f andb,,,;, is the smallest diagonal elementBf Using
the above inequalities, we deduce that

x'ABx = 2" (A — A(I — B))x > (Amin — Amax(1 — b)) || ]2 (60)
Hence, if it holds thal — b,,;, < jmf; = Con(}(A), then it follows thate™ ABx > 0 holds for
allz # 0. O
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