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ABSTRACT
Several numerical approaches have been developed to cap-

ture nonlinear effects of dynamical systems. In this paper we
present a mixed shooting-harmonic balance method to solve
large mechanical systems with local nonlinearities efficiently.
The Harmonic Balance Method as well as the shooting method
have both their pros and cons. The proposed mixed shooting-
HBM approach combines the efficiency of HBM and the accuracy
of the shooting method and has therefore advantages of both.

INTRODUCTION
Finding periodic solutions of mechanical systems is a very

important task in the design process of machines and mechanical
devices. For instance, knowledge on the response of the system
on harmonic excitation is essential to obtain information about
high cycle fatigue behaviour. In numerous systems local nonlin-
earities are present due to contact or coupling elements. These
local nonlinearities can have a strong impact on the global system
behaviour. Therefore, the nonlinearities have to be considered in
the design process and must be modeled accurately as well as in
a computationally efficient way.
The most popular methods to find steady-state responses of non-
linear differential equations are the Harmonic Balance Method
(HBM) [4] [5] and the Shooting Method [6]. The standard
HBM approximates the periodic solution in frequency domain
and is very popular as it is well suited for large systems with
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many states. Local nonlinearities cannot be evaluated directly in
the frequency domain. The standard HBM performs an inverse
Fourier transformation, and then calculates the nonlinear force
in time domain and subsequently the Fourier coefficients of the
nonlinear force. This procedure is often denoted as the Alter-
nating Frequency Time Method (AFT) [3]. The disadvantage of
the HBM is that strong nonlinearities are poorly represented by
a truncated Fourier series. In contrast, the shooting method op-
erates in time-domain and relies on numerical time-simulation.
Set-valued force laws such as dry friction or other strong nonlin-
earities can be dealt with if an appropriate numerical integrator is
available. The shooting method, however, becomes infeasible if
the system has many states. The proposed mixed shooting-HBM
approach combines the efficiency of HBM and the accuracy of
the shooting method and has therefore many advantages.
In this paper the mixed shooting-HBM approach is introduced
as a novel method to calculate periodic solutions of forced me-
chanical systems. Two different variants of the mixed shooting-
HBM approach, which are called Method 1 and Method 2 in the
following, are presented. Depending on the position of the lo-
cal nonlinearities within the mechanical system, the one or the
other is better suitable. The more general Method 2 is tested on
a multi-mass oscillator with dry friction at the end of the paper
and is compared to the full HBM and full shooting method.
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FIGURE 1: Three DOF oscillator with dry friction.

Mixed shooting-HBM approach
The mixed shooting-HBM approach uses the local character

of the nonlinearities to find periodic solutions of mechanical sys-
tems efficiently. Therefore the system must be divided into lin-
ear and nonlinear subsystems. This can be done in two different
ways which are defined in this paper as Method 1 and Method 2.
First the system description is given and subsequently both meth-
ods are discussed.

System description
We consider a Lagrangian system

MMMq̈qq(t)+CCCq̇qq(t)+KKKqqq(t) = fff ex(t)+ fff nl(qqq(t), q̇qq(t)) (1)

where fff nl contains the nonlinear forces and fff ex(t) = fff ex(t +T )
is the periodic forcing. We assume that the system consists of
three subsystems with

qqq =

qqq1
qqq2
qqq3

 , (2)

that the nonlinear forces only act on subsystem 1, and that the
system matrices MMM, CCC and KKK have the following structure

MMM =

MMM11 MMM12 MMM13
MMM21 MMM22 MMM23
MMM31 MMM32 MMM33

 , fff nl(qqq, q̇qq) =

 fff nl1(qqq1, q̇qq1)
000
000

 . (3)

Subsystem 1 is subjected to nonlinear forces, which only de-
pends on its own positions and velocities, and is connected to
subsystem 3 through subsystem 2, e.g. the three DOF oscillator
shown in Figure 1.

Method 1
This first approach can only be applied for systems which

satisfy the condition

MMM31 = MMM13 = KKK31 = KKK13 =CCC31 =CCC13 = 000 (4)

and is suitable for the following relation of the dimensions of the
subsystems:

dim(qqq1)> dim(qqq2)
dim(qqq3)� dim(qqq1)
dim(qqq3)� dim(qqq2)

For subsystem 2 and 3 we use a harmonic balance approach and
impose (as a numerical approximation) perfect constraints on the
system which force the response to be harmonic of the form

qqq2(t) = q̂qq0
2 +

nH

∑
k=1

q̂qqc,k
2 coskωt + q̂qqs,k

2 sinkωt =VVV+(t)
Tq̂qq2, (5)

qqq3(t) =VVV+(t)
Tq̂qq3, (6)

with

VVV+(t) =
(
III cos(ωt)III sin(ωt)III . . . cos(nHωt)III sin(nHωt)III

)
.
(7)

The Fourier coefficients are obtained from

q̂qqi =
2
T

∫ T

0
VVV−(t)qqqi(t)dt, VVV−(t) =



1
2 III

cos(ωt)III
sin(ωt)III

...
cos(nHωt)III
sin(nHωt)III


, (8)

with ω = 2π

T and nH denotes the number of considered harmon-
ics. The identity matrix III has here the dimension dim(qqqi). The
motion qqq1(t) of subsystem 1 is described in time domain and is
not constrained to be harmonic. The equations of motion of sub-
system 2 and 3 can therefore be expressed in frequency domain
as

HHH21q̂qq1 +HHH22q̂qq2 +HHH23q̂qq3 = f̂ff ex2,

HHH32q̂qq2 +HHH33q̂qq3 = f̂ff ex3,
(9)

where q̂qq1 are the Fourier coefficients of qqq1(t) and HHH i j are the
dynamic stiffness matrices

HHH i j = diag(JJJi j,0,JJJi j,1, . . .JJJi j,n) (10)

with

JJJi j,k =

(
−MMMi j(kω)2 +KKKi j CCCi jkω

−CCCi jkω −MMMi j(kω)2 +KKKi j

)
. (11)
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The Fourier coefficients q̂qq3 can be expressed in q̂qq2 as

q̂qq3 = HHH−1
33 ( f̂ff ex3−HHH32q̂qq2) (12)

and can therefore be eliminated from the equations of motion in
frequency domain, i.e.

HHH21q̂qq1 +(HHH22−HHH23HHH−1
33 HHH32)q̂qq2 = f̂ff ex2−HHH23HHH−1

33 f̂ff ex3. (13)

The equations of motion of subsystem 1 are nonlinear and
are simulated in time-domain. For known q̂qq2 one can calculate
its time-domain representation qqq2(t) and its derivatives and solve
the differential equation for qqq1(t)

MMM11q̈qq1(t)+CCC11q̇qq1(t)+KKK11qqq1(t) =−(MMM12q̈qq2(t)

+CCC12q̇qq2(t)+KKK12qqq2(t))+ fff ex1(t)+ fff nl1(qqq1(t), q̇qq1(t))
(14)

using numerical integration techniques. In particular, if the non-
linear force fff nl1 is a dry friction force or described by another
set-valued force law, then dedicated time-integration schemes
such as time stepping methods [1] [2] have to be used. Here
it should be noted, that the system (1) turns into a differential
inclusion if a set-valued force law is considered.

A periodic solution of the system can be represented by the
trajectory qqq1(t) on the interval 0≤ t ≤ T and by the Fourier co-
efficients q̂qq2, as q̂qq3 is expressed by (12). The initial condition
qqq1(0) and q̇qq1(0) together with qqq2(t) = VVV+(t)

Tq̂qq2 allow to con-
struct qqq1(t) over one period. The vector of unknowns

xxx =

 q̂qq2
qqq1(0)
q̇qq1(0)

 (15)

therefore fully represents a periodic solution of the system. Sim-
ilar to a shooting method, we require for subsystem 1 the peri-
odicity conditions qqq1(T )− qqq1(0) and q̇qq1(T )− q̇qq1(0), where the
state at t = T is obtained through numerical integration of (14).
The periodicity conditions of subsystems 2 and 3 are given in
frequency domain by (13) and (12). Hence, we seek a periodic
solution by finding a zero of the nonlinear function

fff R(xxx)=

HHH21q̂qq1+(HHH22−HHH23HHH−1
33 HHH32)q̂qq2− f̂ff ex2 +HHH23HHH−1

33 f̂ff ex3
qqq1(T )−qqq1(0)
q̇qq1(T )− q̇qq1(0)

 .

(16)
The zeros of fff R(xxx) can be solved with a Newton-type method by
iterating

xxxi+1 = xxxi−
(

∂ fff RRR

∂xxx

)−1

fff R(xxx
i). (17)

Method 2
Alternatively, we can divide the system only into two parts,

a linear and a nonlinear subsystem, where

qqqL =

(
qqq2
qqq3

)
, qqqN = qqq1. (18)

Then the system matrices MMM, CCC, KKK and the nonlinear forces have
the following structure

MMM =

(
MMMNN MMMNL
MMMLN MMMLL

)
, fff nl(qqqN , q̇qqN) =

(
fff nlN
000

)
. (19)

This approach is more general than Method 1. Subsystem 1 and 3
don’t have to be uncoupled since the system is not restricted to
condition (4). The use of Method 2 can reduce the computational
effort for systems where the relationship dim(qqqL) � dim(qqqN)
between the dimensions of the subsystems holds. Similar to
Method 1 the linear subsystem is approximated with a truncated
Fourier series

qqqL(t) = q̂qq0
L +∑

n
k=1 q̂qqc,k

L cos(kωt)+ q̂qqs,k
L sin(kωt)

=VVV+(t)
T q̂qqL.

(20)

Substituting this approximation into (1), the Fourier coefficients
q̂qqL of the linear subsystem can be expressed in the Fourier coef-
ficients q̂qqN of the nonlinear subsystem

q̂qqL = HHH−1
LL ( f̂ff ex,L−HHHLN q̂qqN). (21)

The equation of motion of the linear subsystem is therefore com-
pletely described by (21) and only the equation of motion of
the nonlinear subsystem has to be described in the time domain.
Using (21) together with (20), the time-evolution qqqL(t) and its
derivatives are given by q̂qqN . Hence, a differential equation with
a reduced dimension

MMMNN q̈qqN +CCCNN q̇qqN +KKKNNqqqN =

MMMNLq̈qqL +CCCNLq̇qqL +KKKNLqqqL− fff ex,N + fff fric
(22)

has to be solved for qqqn(t) using numerical integration.

With (21) and (22) it is possible to represent a periodic solu-
tion of the full system in the unknowns

xxx =

 q̂qqN
qqqN(0)
q̇qqN(0)

 , (23)
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FIGURE 2: Calculation scheme of Method 2.

where xxx is a zero of the residuum

fff R(xxx) =

q̂qqN−FFT(qqqN(t))
qqqN(T )−qqqN(0)
q̇qqN(T )− q̇qqN(0)

 . (24)

Note that FFT(qqqN(t)) is the Fourier transformation of the
solution of the differential equation (22) and q̂qqN are the Fourier
coefficients which represent the dynamical behaviour of the
linear subsystem through (21). If q̂qqN − FFT(qqqN(t)) = 000 holds,
then the linear subsystem is oscillating in correspondence to the
movement of the nonlinear subsystem.

The iteration scheme of the mixed shooting-HBM approach
(Method 2) with a Newton-type method is depicted in Figure 2.
Note that, if dimqqqL = 0, then the method reduces to the standard
shooting approach.

Numerical comparison
The three DOF-oscillator (Figure 1) is used as a numeri-

cal benchmark to compare the mixed shooting-HBM approach
(Method 2) with the full shooting method and the full HBM, in

both computation effort as well as accuracy. The used parame-
ters for the following calculations are summarized in Table 1.
Since the full and the mixed shooting-HBM approach solve the
nonlinear subsystem as a nonlinear differential inclusion, mod-
ern time-stepping methods with a set-valued Coulomb friction
law are used for both methods. In contrast to the full and mixed
shooting-HBM, the standard HBM with alternating frequency
time approach only calculates the nonlinear force in time domain
which makes it impossible to use the same friction model. To
compare the methods in a most suitable way, the friction force
for the HBM is calculated using the arctangent function. The
friction force

fnl = µλN
2
π

arctan(κ q̇N) (25)

is described with the smoothing parameter κ . The Parameters µ

and λN are the friction coefficient and normal load, respectively.
Note, that for limκ→∞ the smooth friction law tends to the
set-valued Coulomb friction law.

In Figure 3 the displacements of the system calculated with
all three methods for the period T = 10s are shown. During this
period the first mass shows a pronounced stick-slip behaviour.
Though for the Harmonic Balance Method 20 harmonics and for
the mixed shooting-HBM only 3 harmonics are considered, the
mixed method approximates much better the results of the full
shooting method. The smoothing parameter is chosen preferably
high (κ = 800). The mixed and full shooting method employ a
set-valued description of the friction law and can therefore de-
scribe stiction precisely. The HBM, however, not only uses a
smoothed friction law but also uses harmonic shape functions
to approximate the friction force which leads to a poor descrip-
tion of this force. Contrary the mixed shooting-HBM describes
the whole nonlinear subsystem in time domain and approximates
only the coupling between both subsystems with harmonic shape
functions.

The mixed shooting-HBM approach becomes only ad-
vantageous than the full shooting method if the dimension of
the linear subsystem is much larger than that of the nonlinear
subsystem. To demonstrate this, the linear subsystem is extended
with additional masses. This expanded model is used to compare
the full HBM, the full shooting and the mixed approach. The
excitation force is chosen as fexi = 0 for i = 1 . . .n− 1 and
fexn = 5cos(ωt). The approximation methods are compared for
one excitation frequency in computation effort and accuracy.
To start the calculation for a specific excitation frequency, a
starting guess for the first iteration is needed. However, the
methods iterate in different unknowns and the same starting
guess can therefore not be given. To provide comparable starting
guesses, solutions for an excitation frequency close to the actual
frequency are used as starting vectors for the iterative loops of
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FIGURE 3: Displacement and friction force for a periodic solu-
tion with period time T = 10s of the three DOF oscillator.

the respective approximation methods.

In Figure 4 the relative error of the amplitude of the first and
nth mass and the calculation effort is shown for different num-
bers of considered harmonics nH . Both ratios are with respect
to the full shooting method, which is chosen as reference as it is
almost exact.
The results show that the computation effort for a moderate ac-
curacy can be reduced drastically by using the mixed shooting-
HBM approach. Compared to the HBM, the mixed approach
shows for all values of nH more accurate results. The horizontal
plateau of the relative error of the mixed method can be explained
by the limited resolution of the used Fourier transformation and
the integration schemes. Therefore, the increasing number of
considered harmonics reduces the error only to a specific value.

Concluding Remarks
The presented mixed shooting-HBM approach shows good

characteristics in accuracy as well as in calculation effort, at least
for the investigated benchmark system. Depending on the sys-
tem size and the nonlinear characteristics the method can be a
good alternative to the commonly used methods like HBM and
shooting. It should be noted, that the numerical efficiency of
the methods are hard to compare and that there exist alternative
HBM methods to compute periodic solutions of systems with dry
friction. Further research will focus on providing a better com-

FIGURE 4: Work-precision-diagram of the HBM and the mixed
shooting-HBM approach in relation to full shooting for a system
of n = 30 masses and different numbers of considered harmonics
(nH = 1,3, . . . ,25).

parison of the mixed shooting-HBM method with the existing
methods.

TABLE 1: Selected parameters

parameter mi ki ci µ ω fex,30

value 1 1 0 0.8 1
5 π 5cos(ωt)
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