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ABSTRACT

The 3-ball Newton’s cradle is used as a stepping stone to divulge the structure of impact laws. A

continuous cone-wise linear impact law which maps the pre-impact contact velocities to the post-

impact contact velocities is proposed for the 3-ball Newton’s cradle. The proposed impact law is

kinematically, kinetically, and energetically consistent. It reproduces the outcomes of experimental

observation. Moreover, it is in accordance with the outcome of the collision of three identical

linear-elastic thin rods for which the impact process is governed by the one-dimensional wave

equation. The proposed impact law is shown to be non-expansive. Therefore, the relationship

between the mean contact velocity and its dual, the impulsive force, is maximal monotone. A

counter-example to maximal cyclical monotonicity of this relationship allows to conclude that no

dissipation function exists for the proposed impact law.

Keywords: Newton’s cradle, unilateral constraints, impact, convex analysis, wave equation.

1 INTRODUCTION

In this paper, we present an impact law for Newton’s cradle with 3 balls. We construct a contin-

uous cone-wise linear impact law which is non-dissipative. The impact law provides the classical

outcomes of the 3-ball Newton’s cradle. The 3-ball Newton’s cradle can be modelled as three

identical linear-elastic thin rods which collide. The outcomes of the impact law are in accordance

with the results of this model, which is governed by the one-dimensional wave equation.

Our aim is to divulge the structure of impact laws in order to be able to formulate maximal mono-

tone impact laws for rigid multi-body systems that do not have the problems of existing impact

laws such as kinematic, kinetic, and energetic inconsistency [1]. It is interesting to consider New-

ton’s cradle because its phenomena cannot be described by the classical Newton’s or Poisson’s

instantaneous impact law (see Figure 1(b)).

The impenetrability of unilateral constraints, which requires that the post-impact contact velocities

γ+i are non-negative, is referred to in this paper as kinematic consistency. In view of numerical

integration, an impact-law should guarantee that arbitrary (also kinematically inadmissible) pre-

impact contact velocities are mapped to kinematically admissible post-impact contact velocities.

Finally, we show that the impact law enjoys the maximal monotonicity property. The interest in the

maximal monotonicity property stems from stability analysis and control of mechanical systems

with unilateral constraints [2]. The maximal monotonicity property often allows the formulation

of Lyapunov-based stability statements. In [3], the maximal monotonicity property is used for

the design of state observers for unilaterally constrained multibody systems. Since the maximal

monotonicity property implies dissipativity it might be a physically reasonable property for an

impact law.

2 THE 3-BALL NEWTON’S CRADLE

The 3-ball Newton’s cradle is shown in Figure 1(a). It consists of three balls of equal mass m with

horizontal positions q= (q1 q2 q3)
T and velocities q̇= u= (u1 u2 u3)

T. The contact distances are

given by g = (q2 −q1 q3 −q2)
T. The unilateral constraint g ≥ 000 expresses the fact that contacts
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(a) (b)

Figure 1. Left: Newton’s cradle with 3 balls of mass m. Right: An example of outcomes by
Newton’s and Poisson’s impact law.

can open but that the balls may not penetrate each other. The contact velocities are given by the
relative velocities between the balls γγγ = (γ1 γ2)T = (u2 −u1 u3 −u2)T. The pre- and post-impact
velocities are designated by u− and u+, respectively. Analogously, γγγ− and γγγ+ designate the pre-
and post-impact contact velocities.

The impact equations of the system can be written in the following matrix form

M(u+−u−) = WΛΛΛ, (1)

γγγ± = WTu±, (2)

where ΛΛΛ = (Λ1 Λ2)T are the impulsive contact forces during the impact. The impulsive force Λ1
acts between balls 1 and 2, while Λ2 occurs between balls 2 and 3. The matrix W is the matrix of
generalized force directions for which holds WT = ∂g

∂q
. For the 3-ball Newton’s cradle, the mass

matrix M and the matrix of generalized force directions W are

M =




m 0 0
0 m 0
0 0 m


 and W =



−1 0

1 −1
0 1


 . (3)

The impact equation (1) needs to be complemented by an impact law that has the mathematical
structure of a set-valued relationship [4]

−ΛΛΛ ∈H(γ̄γγ), (4)

where
γ̄γγ =

1
2
(
γγγ++ γγγ−

)
. (5)

The operator H : Rn ⇒ Rn is in general a set-valued operator. The combination of (1) and (2)
yields the impact equation in contact velocities

γγγ+− γγγ− = GΛΛΛ with G := WTM−1W. (6)

The matrix G is referred to as the Delassus operator.

Alternatively to the formulation as a set-valued relationship (4), the impact law can be expressed
by a mapping S from pre- to post-impact contact velocities

γγγ+ = S(γγγ−), (7)
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or by a mapping Z from pre- to post-impact generalized velocities

u+ = Z(u−). (8)

An impact law should be kinematically, kinetically, and energetically consistent:

- Pre-impact contact velocities γγγ− and post-impact contact velocities γγγ+ are called kinemati-
cally admissible or kinematically consistent if

γγγ− ≤ 000 and γγγ+ ≥ 000, (9)

respectively.

- Kinetic consistency is required by the unilateral character of non-adhesive contacts which

requires the contact forces to be non-negative

ΛΛΛ ≥ 000. (10)

The contact force vanishes if the contact is open, i.e. if g > 000. If g = 000 the contact is closed

and it can only transfer non-negative contact forces.

- Energetic consistency means that there is no increase in energy during the impact. Let the

kinetic energy before and after the impact be designated by T− = 1
2
u−TMu− and T+ =

1
2
u+TMu+, respectively. Energetic consistency then requires that

T+ ≤ T− ⇔ T+−T− ≤ 0, (11)

which can be expressed in terms of pre- and post impact velocities

u+TMu+−u−TMu− =
(
u++u−)T

M
(
u+−u−)≤ 0. (12)

The use of (1), (2), and (6) permits to rewrite (12) as

(
γγγ++ γγγ−

)T
G−1

(
γγγ+− γγγ−

)
= γγγ+TG−1γγγ+− γγγ−TG−1γγγ− ≤ 0. (13)

The conditions (12) and (13) for energetic consistency can be expressed using the norms

with metric M and G−1, respectively

∥u+∥2
M ≤ ∥u−∥2

M and ∥γγγ+∥2
G−1 ≤ ∥γγγ−∥2

G−1 . (14)

From [5, 4], it is known that the maximal monotonicity of the operator H in (4) is equivalent to

non-expansivity properties of the impact mappings (7) and (8).

Definition 1 (Maximal monotonicity [5]). A mapping T : Rn ⇒ Rn is called monotone if it has
the property that

(yyyA − yyyB)
T(xxxA − xxxB)≥ 0, (15)

whenever yyyA ∈ T (xxxA), yyyB ∈ T (xxxB). Moreover, T is called maximal monotone if it is monotone
and its graph cannot be enlarged without destroying this property.

Definition 2 (Non-expansivity [5, 4]). A mapping F : Rn ⇒ Rn is called non-expansive in the
metric P if it has the property that

∥yyyA − yyyB∥P ≤ ∥xxxA − xxxB∥P, (16)

whenever yyyA ∈ F(xxxA), yyyB ∈ F(xxxB).
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S : γγγ− �→ γγγ+

non-expansive in G−1

∥γγγ+A − γγγ+B ∥G−1 ≤ ∥γγγ−A − γγγ−B ∥G−1

−ΛΛΛ ∈H(γ̄γγ)
maximal monotone

−(ΛΛΛA −ΛΛΛB)T(γ̄γγA − γ̄γγB)≥ 0

Z : u− �→ u+

non-expansive in M

∥u+
A −u+

B ∥M ≤ ∥u−
A −u−

B ∥M

−ΛΛΛ ∈H(γ̄γγ) = ∂Φ(γ̄γγ)
cyclically maximal monotone

ΛΛΛT
A(γ̄γγB − γ̄γγA)+ΛΛΛT

B(γ̄γγC − γ̄γγB)+ . . .+ΛΛΛT
Z(γ̄γγA − γ̄γγZ)≥ 0

convex proper l.s.c. dissipation function Φ(γ̄γγ)

⇐
⇒

⇐
=

⇐⇒
⇐⇒

Figure 2. Interrelations of a maximal monotone impact law [4].

Furthermore, the set-valued operator H can be written as the subdifferential to a convex proper
lower semicontinuous (l.s.c.) dissipation function Φ such that

−ΛΛΛ ∈H(γ̄γγ) = ∂Φ(γ̄), (17)

if and only if H is maximal cyclically monotone.

Definition 3 (Cyclical monotonicity [5]). A mapping T : Rn ⇒ Rn is cyclically monotone if for
any cycle of m points xxxA, xxxB, . . . , xxxZ (for arbitrary m ≥ 2) and elements yyyi ∈ T (xxxi), one has

yyyT
A(xxxB − xxxA)+ yyyT

B(xxxC − xxxB)+ . . .+ yyyT
Z(xxxA − xxxZ)≤ 0. (18)

It is maximal cyclically monotone if it is cyclically monotone and its graph cannot be enlarged
without destroying this property.

Note that cyclical monotonicity is a stronger condition than monotonicity. Definition 3 reduces to
Definition 1 when m = 2. The relations between the non-expansivity and monotonicity properties
are shown in Figure 2.

3 THE SEQUENTIAL IMPACT LAW

We propose a continuous cone-wise linear impact mapping S : R2 → R2, γγγ− �→ γγγ+ for the 3-ball
Newton’s cradle. The impact mapping S takes the form

γγγ+ = S(γγγ−) = Qiγγγ−, (19)

where Qi ∈ R2×2 are 2-by-2 matrices which apply in a corresponding cone in the (γ−1 ,γ−2 )-plane.
We construct the matrices Qi together with their respective cones Ci by demanding the following
properties of the impact law:

P1 The mapping is continuous, i.e. Qivi = Qi+1vi with vi being the direction of the boundary
half-line between the cones Ci and Ci+1.

P2 Conservation of energy holds, i.e. ∥γγγ+∥G−1 = ∥Qiγγγ−∥G−1 = ∥γγγ−∥G−1 for all matrices Qi.
This implies energetic consistency.

P3 Each cone Qi is mapped to the entire first quadrant, i.e. the cone Ci is spanned by the columns
of Q−1

i . This implies kinematic consistency.
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(a) Cone CI (b) Cone CIIa

Figure 3. Construction steps of the impact mapping S.

We start with the first quadrant (see Figure 3(a)). Pre-impact contact velocities from the first

quadrant are positive which means that no impact occurs. Therefore, we set

QI =

(
1 0

0 1

)
, (20)

which means that γγγ+ = γγγ− for all γγγ− ∈CI . The cone CI is spanned by the columns of Q−1
I .

Next, we proceed to the cone CIIa on the left of CI as shown in Figure 3(b). The boundary between

the two cones is given by the positive γ−2 -axis. Continuity and conservation of energy (P1 and P2)

lead us to the matrix

QIIa =

(
−1 0

1 1

)
. (21)

The direction of the boundary to the next cone can be read from Q−1
IIa

(P3) as it is shown in

Figure 3(b), such that

vIIa =

(
−1

1

)
. (22)

We can proceed analogously to find all six cones Ci with i ∈ {I, IIa, IIb, III, IVa, IVb} together with

their corresponding matrices

QI =

(
1 0

0 1

)
, QIIa =

(
−1 0

1 1

)
, QIIb =

(
0 1

−1 −1

)
,

QIII =

(
0 −1

−1 0

)
, QIVa =

(
1 1

0 −1

)
, QIVb =

(
−1 −1

1 0

)
.

(23)

The repartition of the (γ−1 ,γ−2 )-plane into the six cones Ci with i ∈ {I, IIa, IIb, III, IVa, IVb} is de-

picted in Figure 4(a). The symmetry of the problem appears in the symmetry between the matrices

QIIa and QIVa as well as between QIIb and QIVb .

In the following, we will call the impact law (19) the Sequential Impact Law because it is equiva-

lent to a sequence of impacts between only two balls. This can be seen by the following properties

QIIb = QIVaQIIa ,

QIVb = QIIaQIVa ,

QIII = QIVaQIIaQIVa = QIIaQIVaQIIa ,

(24)

where QIIa and QIVa describe the impact between only two of the three balls as will be shown

below.
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(a) (b)

Figure 4. Left: The different cones in the (γ−1 ,γ−2 )-plane. The dot-dashed line marks the

symmetry line. Right: Idealized observations.

After having derived the Sequential Impact Law, we want to argue why it is a reasonable choice. In

the following, the implications of the Sequential Impact Law are discussed for the four quadrants

of the (γ−1 ,γ−2 )-plane.

The first quadrant is equal to the cone CI and it corresponds to two positive pre-impact contact

velocities such that no impact happens. The identity map is the only reasonable choice for the first

quadrant.

The third quadrant is equal to the cone CIII and it corresponds to both pre-impact contact veloci-

ties being negative and therefore kinematically admissible. Hence, the third quadrant contains all

the classical experimental outcomes which can be realized with a 3-ball Newton’s cradle. Fig-

ure 4(b) gives three examples of idealized observations from cone CIII . The Sequential Impact

Law provides these idealized experimental outcomes.

The second and the fourth quadrant correspond to one pre-impact contact velocity being positive

and the other being negative. Each one of these quadrants contains two different cones, because the

magnitude of the positive pre-impact contact velocity determines whether the corresponding outer

ball participates in the impact process or not. The cones CIIa and CIVa , which are adjacent to the

first quadrant, correspond to a single impact between only two of the three balls. In the cone CIIa ,

the right ball does not participate in the impact process because it has a positive pre-impact contact

velocity that prevents it from colliding with the middle ball. This can be seen by considering the

impact equation in the contact velocities (6) and the Sequential Impact Law (19) for pre-impact

velocities γγγ−∈CIIa

γγγ+− γγγ− = (QIIa − I)γγγ− = GΛΛΛ, (25)

where I denotes the identity matrix. Eq. (25) yields the impulsive force

ΛΛΛ =

(
−mγ−1

0

)
, (26)

from which it becomes apparent that the right ball does not participate in the impact process. In

CIVa , it is the left ball that is not subjected to any impact. For pre-impact velocities belonging

to the cones CIIa and CIVa , the Sequential Impact Law provides the same result as it is given by

the generalized Newton and by the generalized Poisson impact law for the non-dissipative impact

of two balls [6, 7]. The positive pre-impact contact velocity in the cones CIIb and CIVb does not

prevent the interaction between the three balls through wave effects.

The third quadrant basically completely describes the physics of Newton’s cradle as it covers all

physically realizable experiments with Newton’s cradle. Nevertheless, the first, the second, and the
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Figure 5. Collision of 3 identical thin rods. The lower part shows the stresses acting on a

differential element of the rod.

fourth quadrant are needed to deal with kinematically inadmissible pre-impact contact velocities,

which is important in view of numerical simulation. Small numerical errors may lead to positive

pre-impact contact velocities and an impact law should map these pre-impact contact velocities to

physically reasonable post-impact contact velocities.

In the next section, we provide a further argument for the validity of the Sequential Impact Law

by showing that it provides the same outcomes as the one-dimensional wave equation does for the

collision of three identical thin rods.

4 THIN ROD MODEL OF THE 3-BALL NEWTON’S CRADLE

Wave effects play a crucial role in the impact process of the 3-ball Newton’s cradle. We model the

system with three identical thin rods (see Figure 5). This leads us to a description of the impact

process that is governed by the one-dimensional wave equation.

The rods have cross-section A and density ρ . We consider the stresses acting on a differential

element of the rod as it is shown in Figure 5. The position of the differential element is denoted by

x. The displacement field is referred to as u(x, t). The balance of linear momentum in x direction

for the differential element is then given by

dmutt(x, t) = A(σ(x+dx, t)−σ(x, t)) . (27)

The mass element dm can be expressed in terms of dx as

dm = ρAdx. (28)

Further, we assume that the rods behave linear-elastically and thus obey Hooke’s law

σ = Eε = Eux, (29)

where E and ε designate the Young’s modulus and the strain, respectively. Using (28) and (29),

we can rewrite (27) as

ρAdxutt(x, t) = AE (ux(x+dx, t)−ux(x, t)) . (30)

Dividing (30) by ρAdx and letting dx → 0 yields the classical one-dimensional wave equation

utt(x, t) = c2uxx(x, t) with c2 =
E
ρ
, (31)

where c denotes the propagation velocity of longitudinal waves in the rod.
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Table 1. Transition properties of longitudinal waves in thin rods.

Type Diagram Transition conditions

Free end

u1,x = 0

u3,x = 0

u1,t +u3,t = 2u2,t

Impact between ends

u3,x =
1

2c
(u2,t −u1,t)

u3,t =
1

2
(u2,t +u1,t)

Crossing waves
u1,x +u4,x = u2,x +u3,x

u1,t +u4,t = u2,t +u3,t

Our aim is to investigate the impact effects in Newton’s cradle by considering colliding rods. An

impact between two colliding rods leads to discontinuities in the velocity and in the strain which

expand through the colliding rods with velocity c. These discontinuities can only propagate along

characteristics of the solution of the wave equation (31). The construction of a characteristics

diagram provides a way to investigate the wave propagation process. Detailed information about

waves in elastic solids can be found in [8, 9]. In order to be able to construct characteristics

diagrams, we first summarize some transition conditions of the longitudinal waves in Table 1.

4.1 Collision of two identical thin rods

We consider the collision of two identical thin rods. Before the impact, both rods are undeformed.

Initially, the left rod has a uniform velocity v while the right rod is at rest. We assume that the col-

liding ends of the rods have the same velocity as soon as they touch. The pre-impact configuration

can be seen in Figure 6(a). The initial conditions can be stated as

ux(x,0) = 0 if x ∈ [0,2l],

ut(x,0) =

{
v if x ∈ [0, l],
0 if x ∈ (l,2l].

(32)

Discontinuities in the velocity and in the strain can only propagate along their characteristics.

These characteristics of the wave equation (31) delimit regions inside which the strains and the

velocities are constant. Therefore, we state the strain and velocity for each region in the character-

istics diagram in Figure 6(a). The transition properties from Table 1 allow the construction of the

characteristics diagram and the calculation of the corresponding strains and velocities which are

prevalent in the different regions in the characteristics diagram

Region 1 : u1,x = 0, u1,t = v,

Region 2 : u2,x = 0, u2,t = 0,

Region 3 : u3,x =− v
2c

, u3,t =
v
2
,

Region 4 : u4,x = 0, u4,t = 0,

Region 5 : u5,x = 0, u5,t = v.

(33)

In A, the contact opens, the left rod is at rest and the right rod has the uniform velocity v.
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(a) Two rods (b) Three rods

Figure 6. Characteristics diagrams for colliding identical thin rods.

We can conclude that the collision of two identical thin rods leads to the same result as Newton’s

and Poisson’s impact law do for two balls in the non-dissipative case. Moreover, the Sequential

Impact Law also provides this outcome in the cones CIIa and CIVa which correspond to the present

situation of a single impact between two balls.

4.2 Collision of three identical thin rods

We now consider three identical thin rods. Initially, the middle rod is at rest. It is approached by

the left and by the right rod which have velocities 2v and −v, respectively. Again, the rods are

undeformed before the collision. The initial conditions can be written as

ux(x,0) = 0 if x ∈ [0,3l],

ut(x,0) =




2v if x ∈ [0, l],
0 if x ∈ (l,2l],

−v if x ∈ (2l,3l].

(34)

As in the previous case, we assume that the colliding ends of the rods have the same velocity

as soon as they touch. Again, a characteristics diagram is constructed (see Figure 6(b)) using

the transition properties from Table 1. The following velocities and strains are obtained for the

different regions in the diagram

Region 1 : u1,x = 0, u1,t = 2v,

Region 2 : u2,x = 0, u2,t = 0,

Region 3 : u3,x = 0, u3,t =−v,

Region 4 : u4,x =−v
c
, u4,t = v,

Region 5 : u5,x =− v
2c

, u5,t =− v
2
,

Region 6 : u6,x =−3v
2c

, u6,t =
v
2
,

Region 7 : u7,x = 0, u7,t = 0,

Region 8 : u8,x = 0, u8,t = 0,

Region 9 : u9,x =− v
2c

, u9,t =− v
2
,

Region 10 : u10,x =−v
c
, u10,t = v,

Region 11: u11,x = 0, u11,t = 0,

Region 12: u12,x = 0, u12,t =−v,

Region 13 : u13,x = 0, u13,t = 2v.

(35)
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In B and C, both contacts open simultaneously. The left rod has a post-impact velocity of v. The
middle rod is at rest and the right rod has a post-impact velocity of 2v. This corresponds exactly
to the outcome which is provided by the Sequential Impact Law as can be seen by calculating the
pre- and post-impact relative velocities of the rods

γγγ− =

(
−2v
−v

)
and γγγ+ =

(
v

2v

)
, (36)

for which indeed holds γγγ+ = S(γγγ−) = QIIIγγγ−. Note that Newton’s and Poisson’s instantaneous
impact law would give a different outcome.

5 CONTRACTION PROPERTIES OF THE SEQUENTIAL IMPACT LAW

Since we are interested in the mathematical structure of impact laws, we investigate which prop-
erties from Figure 2 hold for the Sequential Impact Law.

5.1 Non-expansivity of the Sequential Impact Law

In the following, we show that the Sequential Impact Law is non-expansive in the metric G−1.
This means that the set-valued relationship (4) between the dual variables γ̄γγ and ΛΛΛ is maximal
monotone.

Theorem 1. The impact mapping (19) is non-expansive in the metric G−1, i.e.

∥γγγ+A − γγγ+B ∥G−1 ≤ ∥γγγ−A − γγγ−B ∥G−1 ∀γγγ−A ,γγγ
−
B ∈ R2. (37)

Proof. The condition (37) needs to hold for arbitrary pairs of pre-impact contact velocities γγγ−A and
γγγ−B . The idea behind the proof is to decompose the line that connects the points γγγ−A and γγγ−B into a
series of segments which lie in a single cone respectively. This decomposition can be done using
telescopic expansion

∥γγγ+A − γγγ+B ∥G−1 = ∥γγγ+A − γγγ+∗1 + γγγ+∗1 − γγγ+∗2 + . . .+ γγγ+∗k − γγγ+B ∥G−1 , (38)

where the γγγ+∗i are the images of γγγ−∗i which lie on the boundaries between the cones. Figure 7(a)
shows an example of this decomposition. At the boundary between the cones Ci and Ci+1, we have
that γγγ+∗i = Qiγγγ−∗i = Qi+1γγγ−∗i due to continuity (P1). Therefore, eq. (38) can be written as

∥γγγ+A − γγγ+B ∥G−1 = ∥QA(γγγ−A − γγγ−∗1)+Q1(γγγ−∗1 − γγγ−∗2)+ . . .+QB(γγγ−∗k − γγγ−B )∥G−1 . (39)

From the triangle inequality, it follows that

∥γγγ+A − γγγ+B ∥G−1 = ∥QA(γγγ−A − γγγ−∗1)+Q1(γγγ−∗1 − γγγ−∗2)+ . . .+QB(γγγ−∗k − γγγ−B )∥G−1

≤ ∥QA(γγγ−A − γγγ−∗1)∥G−1 +∥Q1(γγγ−∗1 − γγγ−∗2)∥G−1 + . . .+∥QB(γγγ−∗k − γγγ−B )∥G−1 .
(40)

Due to the energy conservation property P2, it holds that ∥Qiγγγ−∥G−1 = ∥γγγ−∥G−1 . This leads to

∥γγγ+A − γγγ+B ∥G−1 ≤ ∥γγγ−A − γγγ−∗1∥G−1 +∥γγγ−∗1 − γγγ−∗2∥G−1 + . . .+∥γγγ−∗k − γγγ−B ∥G−1 . (41)

Each γγγ−∗i can be expressed in terms of γγγ−A and γγγ−B as the convex combination

γγγ−∗i = αiγγγ−A +(1−αi)γγγ−B with αi ∈ [0,1]. (42)

Eq. (42) allows to rewrite the terms of the right-hand side of (41) in the following way

∥γγγ−A − γγγ−∗1∥G−1 = (1−α1)∥γγγ−A − γγγ−B ∥G−1 ,

∥γγγ−∗1 − γγγ−∗2∥G−1 = (α1 −α2)∥γγγ−A − γγγ−B ∥G−1 ,

...

∥γγγ−∗k − γγγ−B ∥G−1 = αk∥γγγ−∗k − γγγ−B ∥G−1 .

(43)
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(a) (b)

Figure 7. Left: Exemplary decomposition of the path between γγγ−A and γγγ−B . Right: ABC-
cycle which provides a counter-example to the maximal cyclical monotonicity of the impact
mapping S.

Finally, we use the expressions from (43) to rewrite (41) as

∥γγγ+A − γγγ+B ∥G−1 ≤ (1−α1)∥γγγ−A − γγγ−B ∥G−1 +(α1 −α2)∥γγγ−A − γγγ−B ∥G−1 + . . .

+αk∥γγγ−∗k − γγγ−B ∥G−1

= ∥γγγ−A − γγγ−B ∥G−1 ,

(44)

which completes the proof.

5.2 A counter-example to maximal cyclical monotonicity

In order to give a counter-example to the maximal cyclical monotonicity of (4), we propose to con-
sider an ABC-cycle which leads to a contradiction to inequality (18) in Definition 3. We consider
the following ABC-cycle of pre-impact contact velocities

γγγ−A =
(
−2v v

)T
, γγγ−B =

(
−v 0

)T
, γγγ−C =

(
0 0

)T
. (45)

The cycle of pre-impact contact velocities (45) is shown in Figure 7(b). The Sequential Impact
Law (19) leads to the following post-impact contact velocities

γγγ+A =
(
v v

)T
, γγγ+B =

(
0 v

)T
, γγγ+C =

(
0 0

)T
. (46)

Using (5), (45), and (46), we obtain

γ̄γγA =
(
− v

2 v
)T

, γ̄γγB =
(
− v

2
v
2

)T
, γ̄γγC =

(
0 0

)T
, (47)

and from (6) follows the computation of the impulsive forces for the three impact cases

ΛΛΛA =
(
2mv mv

)T
, ΛΛΛB =

(
mv mv

)T
, ΛΛΛC =

(
0 0

)T
. (48)

Eq. (47) and (48) allow the evaluation of inequality (18) from Definition 3 for the ABC-cycle

ΛΛΛT
A(γ̄γγB − γ̄γγA)+ΛΛΛT

B(γ̄γγC − γ̄γγB)+ΛΛΛT
C(γ̄γγA − γ̄γγC) =

−mv2

2
≤ 0. (49)

Bearing in mind the minus sign from (4), we recognize that (49) is a contradiction to condition (18)
from Definition 3. Thus, we can conclude that the set-valued operator H in (4) is not maximal
cyclically monotone for the Sequential Impact Law. Therefore, the Sequential Impact Law cannot
be expressed by a convex proper lower semicontinuous dissipation function Φ(γ̄γγ).
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6 CONCLUSIONS

With the Sequential Impact Law a continuous cone-wise linear impact law has been formulated.

It can describe the wave-like phenomena in Newton’s cradle and reproduces the experimental ob-

servations. Moreover, the Sequential Impact Law is in accordance with the post-impact velocities

provided by the one-dimensional wave equation for the collision of three identical thin rods. The

Sequential Impact Law is kinematically, kinetically, and energetically consistent. The impact map-

ping S of the Sequential Impact Law is non-expansive. Accordingly, the corresponding operator

H is maximal monotone. The provided counter-example to maximal cyclical monotonicity lets us

conclude that no dissipation function exists for the Sequential Impact Law.
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