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Abstract—In this paper, we consider the robust set-point to e.g. changing environmental conditions such as lubaocat
stabilisation problem for motion systems subject to fricton.  conditions, temperature, wear, humidity etc. [1], [2]. ¢t i
Robustness aspects are particularly relevant in practicewhere therefore of the utmost importance to develop stabilising

uncertainties in the friction model are unavoidable. We prgose trollers that bust inst tainties in lictid
an impulsive feedback control design that robustly stabilses the controliers that are robust against uncertainties in n.

set-point for a class of position-, velocity- and time-depedent Here, we propose an impulsive feedback control strategy
friction laws with uncertainty. Moreover, it is shown that this ~ which guarantees the robust stability of the set-point in

control strategy guarantees the finite-time convergence tthe  the face of frictional uncertainties, where we consider a
set-point which is a favourable characteristic of the resuing large class of position-dependent, velocity-dependend, a
closed loop from a transient performance perspective. The . . o~ ! - e g
results are illustrated by means of an example. _tlme-vgrymg friction _ mod_els. The pract!c_al _fea5|b|I|tyf_o
impulsive force manipulation for the positioning of motion
[. INTRODUCTION control systems has been illustrated in [13], [14], [16]][1

In this paper, we consider the robust set-point stabiliMoreover, different impulsive feedback control strategie
sation problem for motion control systems with uncertaiftave been proposed in [15], [17]-[19]. However, rigorous
friction using an impulsive control strategy. It is well kup ~ stability analyses of the closed-loop system are rare, es-
that controlled motion systems with friction exhibit manypecially when accounting for uncertainties in the friction
undesirable effects such as stick-slip limit cycling, k&rg model. A notable exception is the recent work in [18] in
settling times and non-zero steady-state errors, seeld-g. [ Which an impulsive feedback law similar to the one proposed
[4]. In the literature many different approaches towards thin this paper has been studied. The common idea behind this
control of motion systems with friction have been proposedmpulsive control law is that, when the system reaches the
such as PID control design, friction compensation, ditigeri - Stick phase at a non-zero regulation error, an impulsiveefor
based approaches, adaptive techniques and impulsiveotonif applied, which kicks the system out of the stick phase
strategies. As shown e.g. in [1], PID control techniques magnd whose magnitude is dependent on the positioning error.
suffer from an instability phenomenon known as hunting he current work differs from and extends the work in [18]
limit cycling. Many friction compensation approaches arén the following ways. Firstly, in this paper we provide a
available in the literature (see, for example, [1]-[5]) &rae  proof for the robust set-point stability for a class of set-
successfully been applied in practice, although it is widelvalued Coulomb friction models where the friction coef-
recognised that the undercompensation and overcompenfigient may be position-dependent, velocity-dependent and
tion of friction (due to inevitable friction modelling enrs)  time-dependent, whereas in [18] only a stability analysis f
may lead to non-zero steady-state errors and limit cyclijig [ uncertain, butconstant friction coefficients is given. Given
[6], [7]. Examples of adaptive compensation approaches atee fact that position-dependencies, velocity-depenidenc
reported in [8], [9]. Dithering-based approaches, see[g]g. (think of e.g. the Stribeck effect) and time-dependent-fric
[10], [11], aim at smoothing the discontinuity induced bytional characteristics (due to e.g. changing temperature,
(Coulomb) friction by the introduction of high-frequencyhumidity or lubrication conditions) are always present in
excitations and thereby aim to avoid non-zero steady-staéactice, such an extension is very relevant for applicatio
errors. The basic idea behind impulsive control strategiggecondly, in [18] a combination of an impulsive controller
is the introduction of controlled impulsive forces when thevith a smooth linear position-error feedback controller is
system gets stuck at a non-zero steady-state error (due fsidered. In the current work, we consider an impulsive
stiction effect of friction), see e.g. [1], [12]-[18]. Ond o controller in combination with a more general linear state-
the key practical problems faced in any of those ‘frictionfeedback controller. As also stated in [18], such an extensi
beating’ strategies is the fact that friction is a phenonmends highly desirable from a performance perspective. Fnall
which is particularly hard to model accurately, especidlig  in the current paper we present conditions under whirdte-

time stability of the set-point can be achieved, as opposed to
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varying friction models. Secondly, we present conditions The impulsive and non-impulsive dynamics of the system
under which the robust finite-time stability of the set-goincan be represented by a (in general non-autonomous) first-
can be guaranteed in the face of uncertainties in the frictioorder measure differential inclusion [20], [21]:

The outline of the paper is as follows. In Section I,
the control problem tackled in this paper is formalised. In
Section lll, the impulsive control design is introduced.eTh d _ i 1

T2 € —gpu(x1, 22,1)Sign(z2) dt + — dp
robust (finite-time) stability analysis of the impulsiveséd- m
loop system is presented in Section IV. The effectiveness gfith the state vector = [z1 25]" := [z ]" and where
the control design and its robustness properties areritest
by means of an example in Section V. Finally, concluding dp=udi+Udn 3)
remarks are presented in Section VI.

dSCl = T2 de
)

is the differential measure of the control inputf is the
[I. CONTROL PROBLEM FORMULATION Lebesgue measure anth is a differential atomic measure

Consider a mechanical system consisting of an inertigonsisting of a sum of Dirac point measures [22]. The
with massm which is in frictional contact with a support decomposition of the control force as in (3) implies that the
(see Figure 1). We denote the position of the inertiazby differential measurelz of the state can be decomposed as
and its velocity byz. A friction force F; acts between the follows dz = @ dt + (z* —2~) dn. Such a decomposition,
mass and the support under the influence of a normal forg@plies thatz(t) is a special function of locally bounded
myg, With ¢ the gravitational acceleration. The control inputvariation [23]. The stater(t) admits at each time-instant
consists of a finite control force and an impulsive control ¢ a left and right limitz~(¢;) = limy; z(t), 7 (t;) =
force U. The dynamics of the control system is describedim: |, (t), asz(t) is of (special) locally bounded variation.
by the equation of motiomn? = u + Fj(z, #,t) and the The time-evolution ofz(t) is governed by the integration
impact equationn(:(t;) — 2~ (t;)) = U, which relates the processe™ (t1) =~ (to)+ [, ,, d@, wherelto, 1] denotes
difference between the post-impact velocity(¢;) and the the compact time-interval between and, > t,.

pre-impact velocity: ~(¢;) to the impulsive control forcé’ Now let us state the control problem considered in this
at timet;. paper.
The friction force Fy(z,%,t) is assumed to obey the
following set-valued force law: Problem 1
. . . Design a control law for, andU for system (2), (3) such
Fy(z,2,t) € —mgu(z, 2,1)Sign2), (1) thatz = 0 is a robustly globally uniformly attractively stable
where Sigit-) denotes the set-valued sign function equilibrium point of the closed-loop system for a class of
uncertain friction models of the form (1) satisfying Assump
i _J y/ll, y#0 ;
Sign(y) := ~1,1], y=0 tion 1.

Moreover,(z, 2, t) denotes the friction coefficient that may The controller proposed in this paper will induce stability
depend or, # and timet. Note that (1) represent a ratherand finite-time attractivity, i.e. symptotic stabiftty

large class of friction models including possibly position
dependent friction, velocity-dependent effects, suchhes t
Stribeck effect, and time-dependent friction (which caowc In order to solve Problem 1, we adopt a proportional-
in practice due to changing temperature/humidity of the-cortlerivative (state-)feedback control law farin (3):

tact, wear or changing lubrication conditions). Moreoyg},
represents a set-valued friction model to account for the

stiction effect induced by dry friction. In the remainder ofyogether with an impulsive feedback control law fin (3):
this paper, we adopt the following assumption on the frictio

Ill. I MPULSIVE FEEDBACK CONTROL DESIGN

u(z1,x2) = —k1z1 — kawe, ki,k2 >0, 4)

coefficient. if (2, = map
Assumption 1 0, else
The friction coefficienu(z, #,t) is lower bounded by and (5)

upper bounded by, i.e. it holds thaty < u(z,%,t)

< .
[i. Vi z i€ R, forsome) < j < i, where the constant&;, k2 and the functionks(z,) are

to be designed. The resulting closed-loop dynamics can be
formulated in terms of a measure differential inclusion:

d.%'l =9 dt

9 k k .
dxy € (—Elxl — EQIQ — gu(xl,xg,t)&gn(xg)) dt (6)

1
+ —U(z1,25 ) dn.
m

Fig. 1: Mechanical motion system with control input. 1For a definition of symptotic stability we refer to e.g. [21].



In between impulsive control actions, the non-impulsiveontrol actions than is provided by the impulsive control
dynamics is described by the differential inclusion action preceding this time-interval.
. In order to design the impulsive part of the controller
Xr1 = T2 . . . .
) ks(x1), we take the following perspective. Consider a time
iy € _ﬁxl _ @IQ — gulay, za, t)Sign(zs). instantt; for which == (¢t;) € &, i.e. an impulsive con-
m m trol action U = ks(x1(¢;)) will be induced by the con-
The state of the system may jump at impulsive time-instantsoller (3), (4), (5) att = ¢;. Note that an impulsive control
t; for which U # 0, i.e. for time instants at which; (¢;) = force results only in a jump of the velocity,(t) whereas
0, [z1(t;)] < 52, according to the state reset map the positionz, () is absolutely continuous, see (8). The
impulsive control action will cause™(¢;) ¢ €. Let t;4q
+ - + - k(21 () () denote the first time-instant for which(t) reaches again
xy (t;) = oy (), =3 (t;) = x5 () + : oo A . . ;
m &, i.e.z5 (tj+1) = 0. Now, we will designks(z1) in (5)
We denotex:(t;) = x7 (t;) = xf (t;), since the position such that the velocity will be reset to such a post-impact
z1(t) = z(t) is an absolutely continuous function of time,Velocity a3 (¢;) that the 50|Ut'0”+t0 (7), withu(z, 2,t) =
and use the following definitions,, := /k;/m and¢ := # and initial condition (Il(tj)lez (t5)), will_converge to
5 122 denote the undamped eigenfrequency and dampirige origin in finite timet; ,, without any impulses and/or
e : R o7
ratio of the closed-loop non-impulsive dynamics fort) Velocity reversals occurring in the time-interva;, ¢, ,J.
0, Al i= —wnC + w \/<2—_1 Ay i= —wn( — w \/Cg—_l The impulsive controller design will satisfy the condition

and ks(y)y <0, fory # 0, andks(0) = 0; (10)
mgp gp _._ Mmgp _ gp

T v Ci= o = (9) in other words,z = 0 is an equilibrium point of the
. 172 _ ! 172 controlled system and the impulsive control forée is
A. Impulsive Controller Design opposite to the position errar;(¢;). In Section IV, we

Let us first explain the rationale behind the design oill show that this control design also robustly stabiliskes
the controller (3), (4), (5). Hereto, consider the case th&losed-loop system with a time-varying and state-dependen
(1, x2,t) = p, With ;2 a constant, and consider the systendriction coefficientu(t) = u(z1(t), z2(t),t) satisfying As-
without the impulsive part of the controller (i.e3(z1) =0 sumption 1.
in (5)). In this case the closed-loop system is a PD-comtoll  Let us now design the impulsive control laks(z:)
inertia with Coulomb friction which exhibits an equilibriu  that has the above properties. Hereto, consider the case
set defined by{z € R? | || < mIL A 3y = 0} that z1(¢t;) < 0 (the casex;(t;) > 0 can be studied in
Clearly, the closed-loop system will then ultimately comee an analogous fashion). This implies thaf(x1(t;)) > 0,
to the equilibrium set and an undesirable non-zero stead§ee (10), and:3 (¢;) > 0. On the non-impulsive open time-
state error will result. Note that for (non-constant) fioet interval (¢;,2,,,), the dynamics of (2) fop(z1,22,t) = p
coefficientsy(x1, x4, t) satisfying Assumption 1, the closed- is therefore governed by the differential equation

loop system without impulsive control will exhibit a time- iy () = 2o (t)

varying stick se€ (t) that satisfie€ C £(¢t) C £ Vt, where o = 9 (11)
E={zeR||n] < 2% A2y =0} E = {weR? | (1) = —wpay (1) = 20wnzy(t) = gp

- _ — 1

|z1] < mk_‘i“ A z2 = 0} are the minimal and maximal stick We seek a solution curve of (11) \évith the boundary con-
sets, respectively. A point* = [+ x3]” € £ remains ditions z7(i;) = [21(t;) 23(t;)] and 27 (t;,,) =

stationary for all times and is therefore an equilibriummntoi [0 O}T. The initial positionz, (¢;) and initial timet; area

of the PD-controlled system. The time-varying nature opriori known. The initial velocityxz; (¢;) as well as the end
the stick setf(¢) may, however, destroy the stationarity oftimet,,, > t; are yet unknown. We therefore have to solve a
points in £(t)\E. The set&(t) therefore denotes the stick mixed boundary value problem for the unknowns(t;) and
set at timet and not an equilibrium set. The basic ideagjﬂ. Hereto, we express the solution fofx,, r2,t) = p in
behind the impulsive controller (3), (4), (5) is to apply anclosed form as follows

impulsive control force when the state of the system enters \ \

the maximal stick-se€, i.e. whenz~(t) € . Loosely gz (1) = (72&1@—%1) A prlt) 1>

)

speaking, the impulsive force kicks the system out of the A2 = A1 A2 = A1

stick phase allowing it to further converge (closer) to the s 2,(t) = ¢ A1z (em(tfzw) _ eAz(t%ﬁ]))

point. Clearly, the impulsive part of the controller preten — A=A

the existence of an equilibrium set (and the occurrence of (12)

non-zero steady-state errors). However, energy is addedfg} ¢ > 1 and withc given by (9). Subsequently, using (12)

the system at every time-instant on which an impulsivg e oo ire thatr, (t) at timet; equals thea priori known

conf[rol action is applied. In this paper, we wil prOV'deinitiaI position z1 (¢;). This yields a nonlinear real algebraic
design rules fork;, ke and ks(x;) such that more energy equation

is dissipated (through the derivative action of the coterol
and the friction) in a time-interval between two impulsive f(tj41) =0 (13)



for the unknown end time,  ;, where the functiorf(t) is
given by

B. Switching Impulsive Controller Design

We will consider the following switching impulsive con-

A2
f(t) —g<)\2 _/\16
— xl(tj).

Let us now study the following questions for the system
of equations (12), (13), (14):

 For which domain inr;(¢;) does a unique solution pair
(tj 11,23 (t;)) exist?

« If a such solution pair exists, can we show that both
the time lapset;,; —¢; and z3 (t;) are bounded for
boundedz, (t;) (i.e. the impulsive control law yields
bounded impulses and the resulting flowing response of
system (11) converges to the origin in finite time)?

In the following proposition, we propose the impulsive
control law that exhibits the above properties. Note that
the impulsive control actiorks(z1(t;)) can be computed
from (8) using the fact that; (¢;) = 0:

ks(z1(t;)) = mag (t;).

A1

A -t g
N — > (14)

Ai(tj—t) _

1)

2)

(15)

Proposition 1
Consider the impulsive control lavs(z1(t;)) for a given
x1(t;), witht; arbitrary, defined by15), where

1.t;,, Is the solution of(13), (14);
2. the value ofr3 (t;) is determined by the evaluation of
z,(t), given by (12) at = t;.

If ¢ > 1, then it holds thaks(x1) is uniquely defined and
bounded for al(x1, z3) € £.

Proof: For the sake of brevity we refer to [24] for a
detailed proof. ]
A schematic representation of the impulsive control law
ks(xq) for ¢ > 1 is given in Figure 2, where we recall that
it is only applied forz; € € := {@1 € R | |zy| < 2L}
(the solid part of the graph). Note that the impulsive cadntro
law (15) can be computedl priori given the plant properties,
the uncertainty bounds andz on the friction coefficient and

the gainsk; andk, of the PD-controller. 3)

ks(x1)

Fig. 2: Schematic repreggntation of the impulsive contralv |
ks(z1) for ¢ > 1 (£ ={x1 R ||z1]| < "L_?L})-

x(t

where t; 15 the smallest time instant;
1) € €.

trol law consisting of three phases:

The system starts at an arbitrary initial condition
x(ty) € R2. The parameterg; and k, of the PD-
controller are chosen such that the closed loop system
without friction is an undercritically damped oscillator
(i.e. ¢ < 1). We assume that the solutia(t) is at-
tracted in a finite time (denoted By) to £. In the next
section, we will formalise this assumption and provide
sufficient conditions under which this assumption is
satisfied, which will explicate the motivation for the
choice of < 1 in ensuring finite-time attractivity to
the stick-set.

The impulsive controller turns on at=t; > to, when
x~(t;) € € and thek, parameter of the PD controller
is increased, such thgt > 1. We opt for tuningk,
(for ¢ > t1) such that{ > 1 for the following reasons.
Firstly, certain key characteristics of the impulsive con-
trol law, see Proposition 1, hold far > 1. Secondly,
choosing > 1 (actually choosing large) is desirable
from a transient performance perspective. Thirdly, we
will show in Section V that the proposed impulsive
control law will guarantee the global uniform symp-
totic stability of the set-point for an arbitrarily large
uncertainty in the friction coefficient by choosing
sufficiently large, see Assumption 3 and Remark 1.
The impulsive controller induces a velocity jump to
x5 (t1) such that the following non-impulsive motion
results in

a) = (t2) =0 if u(t) = u, which defines the value
of xj(tl) and therefore the impulsive control
actionks(x1(t1)), see Section IlI-A,

b) = (t2) € £ for arbitrary u(t), which puts an
additional condition orz and p, see Assump-
tion 3 in Section IV, which can, however, always
be satisfied by choosing large enough.

We note that under Assumptions 1 ands3is finite
(we refer to [24] for a detailed proof).

The impulsive control is applied at each time-instant
t; for which = (t;) € €. It holds thatz~(t2) € £
and the control is such that™(t;) € £, j =2,3,....
Infinitely many impulsive actions will occur in a finite
time, i.e.to < 00, With x(ts) = 0, see Remark 2
after Theorem 1 in Section IV.

The resulting switching impulsive control law is now given
by (3), (5) and

u(xl,xg,t) = —k1I1 — kQ(t)SCQ, kl,kQ > O,
k to <t<t (16)
kQ(t) = { k21 t0>_t ! )
22 = U1
such thatk; > 0, 0 < 22— < 1 and ;%22 > 1, and

1m
> to such that



V. STABILITY ANALYSIS Stribeck effect). Moreover, the formulation of less steng
In this section, we will show that the control design Iore_conditions for the finite-time convergence to the stickset f

sented in Section 111, symptotically (finite-time) stabis the (e case of generic friction coefficientgy, 22, ¢) is, to the
set-pointz = 0. Consider the system (2) satisfying Assump-beSt of the authors’ knowledge, an open problem. Namely,
tion 1 and the impulsive feedback controller (3), (5), (16jt has been shown in [25], [26] that, even for constant
with ks(z,) satisfying (15) andr] (¢;) fulfilling the mixed manifolds in state space may exist for which solutions only
boundary value problem (see point 2 in Proposition 1). weonverge to the equilibrium set asymptotically (not in #nit
will call this the resulting closed-loop system and showjiMe). More precisely, in [25], it is sah;)wn that, under the
thatz = 0 is a globally uniformly symptotically stable conditions in Proposition 3 withy; + %52 (0) > 2y/mki,
equilibrium point of this system. Now, let us adopt thesSolutions exist that reach the equilibrium set in infinitaei

following assumption. Based on Propositions 2 and 3 and the work in [25], [26],
we conclude that the fact that the linearised dynamics is
Assumption 2 undercritically damped appears to be an essential conditio

Solutions of the resulting closed-loop system (2), (3), (5for the finite-time attractivity of the equilibrium set. Ehis
(16), satisfying Assumption 1, which start att,) € R? the reason for designing the switching controller as in (16)
reach the compact sétin a finite timet, (i.e.t; — ty < o). We do stress here that, although more generic sufficient
conditions for Assumption 2 are currently lacking, it has
We now formulate two sufficient conditions for Assump-been widely observed in the literature (both on a model
tion 2 in the following two propositions. level as in experiments), see e.g. [1], [3], [4], that soins
. in practice generally do converge to the stickset in finite
Proposition 2. N o time. In fact, this finite-time convergence to the stick set i
Suppose the friction coefficient(x.,zs,t) satisfies As- girectly related to the problems of stick-slip limit cyagjn
sumption 1. If the time-evolution of the friction coefficien 544 non-zero steady-state errors, which we are aiming to
pu(t) = p(xi(t), z2(t),t) along solutions of the closed-loop 5ckje with the control design in this paper and form the

system (2), (3), (16), withl = 0, is piecewise constant, cqre motivation for our work. Hence, from a practical point
such that it is constant during each time-interval for whichys \jie\w Assumption 2 is a very natural one.

x2(t) does not change sign, and the linear part of the closed-Next, we adopt the following assumption.

loop system is undercritically damped (i< 1), then the

stick set€ is reached in finite time for any initial condition Assumption 3

x(tg) € R2. We assume that one of the following two conditions holds:

Proof: In [25], Theorem 2(iii), finite-time attraction is W/ > 1 (17)

proven for a constant value @f(t). The proof can easily be 2
extended to a piecewise constarft) as in the proposition.
A1
Ao — AL

—ay
w/m>1- <%> , wherea; = — (18)
Proposition 3 ?

Consider the closed-loop system (2), (3), (16), with=  Remark 1

0. Consider a velocity-dependent friction law satisfying th We note that the conditiofl8) in Assumption 3 can always
decompositioiF’y (x2) € —mgu Sign(xzz) — Fyn (22) instead  be satisfied by choosing = ; \5;2_7” > 1 large enough.
of the friction law in (1), wherep is constant and satisfies Namely, it holds that, firstly, the 1functiob — (M A) M

i 1
Assumaegon LFn(-) € C andFy(z)zy < 0, Voo If s srictly decreasing for increasing (for ¢ > 1) and,
ko1 + e (0) < 2v/mky, i.e. the linearisation of the con- secondlylim¢ oo 1 — (A /X2)"" = 0. To validate the

tinuous part of the closed-loop dynamics (around the oigingster statement defing == \i/\a, p == 1 — q. We can
is undercritically damped, then the stick sets reached in  yaive thatim ' 1— (A /Ae) ™ : limg o(1 — qﬁ) _
finite time for any initial conditionc(ty) € R2. coee a

1 — limg0q? = 1 — limgpe?™? = 0. We stress here
Proof: Under the conditions in the proposition Theo-that this fact will allow us to guarantee robust stability fo

rem 2 in [25] can be directly employed to provide the proof@1Y uncertainty level in the friction by designing the non-
Impulsive part of the controller such thatis large enough

Given the rather generic class of friction laws considereffatisfying conditior(18)). . . 1y
in this paper, the conditions on the friction law in Propo- Still: we care to also provide conditidd7) (u/p > 3) in

sitions 2 and 3 can be considered to be restrictive. Not@ssumption 3, which is independentgfsince this condition

however, that (possibly asymmetric) Coulomb friction lawd® /€SS strict than conditio18) for ¢ close to 1. Namely,

e
with uncertain (though constant) friction coefficient foan lim¢); 1 — (i—;) = limg1 (1 — qﬁ) = limp)o(1 — (1 —
practically relevant subclass of friction models that s 22y gy FE(l-p) _ 1 1 063> L

the conditions in Proposition 2 and that the friction Iawp) 7 Hiplo e € ' 2

in Proposition 3 represents a general class of discontinu-Finally, the following theorem states the conditions under

ous, velocity-dependent friction laws (possibly incluglihe  which the origin of the resulting closed-loop system is



globally uniformly symptotically stable (i.e. Problem 1 isvelocity induced by the impulsive control action are clgarl

solved). visible. This figure also displays the time instafnfs= 3.55
and t; = 4.40 at which the response hits, for the first
Theorem 1 time, the sets€ (maximal stick set) an& (minimal stick

Consider the resulting closed loop system (2), (3), (5)) (1&et), respectively (see also Figure 6). Moreover, the respo
satisfying Assumptions 1, 2 and 3. The origin of the resgltincom,erges to the origin in the finite time, = 4.8707.
closed-loop system is globally uniformly symptoticallgle. e upper bound om., that can be computed using (19)

Proof: For the sake of brevity we refer to [24] for a IS too = _5'5162' This upper b_ound Oro is NOt pv_erly
detailed proof. conservative and can be considered to be a realistic bound

We note that Theorem 1 states that the proposed impulsi%‘ the time in which convergence to .the setpoint is .achieved.
control law can render the set-point globally uniformly We care tq stress that the |mpuIS|v§ CO””‘?' ‘?‘es'gn by no
symptotically stable for a very wide class of friction moslel M€ans exploits knowlc_edge on the particular fr|ct|o_n_ 'a"_VdJSE
Namely, Assumption 1 only requires the friction coefficient” this examP'e and m_deed gua_lranteebust stabll_|sz_;1t|on
to be bounded from above (and below) and Assumption ‘g @y position-, velocity- and time-dependent friction- ¢
can be satisfied for any level of uncertainty in the frictign b €fficient satisfying the same bounds.

appropriately tuning the non-impulsive part of the coriéol VI. CONCLUSIONS
i i koo
(.. by taking¢ = 2vkim large enough). In this paper, we have provided a solution to the robust

set-point stabilisation problem for motion systems sutjec
Remark 2 C . .
uncertain friction. A robust stability guarantee with resp

’tA szolutéon 5 Ofl 6 ”’?th rfgl,;{t/ng ?fl_o_sed-loop tsy S to frictional uncertainties is particularly relevant inagtice,
em (2), (3), (5). (16) with a friction coefficient(x1, 2, )g since uncertainties in the friction model are unavoida¥le.

satls;;y lngzhAssqnjp ?’On ]}'.?ntd initial conditiaer(t2) € propose an impulsive feedback control design, consisting
reaches the ongin in a finite time of a non-impulsive state-feedback and a state-dependent

\/@ 1 impulsive feedback, that robustly stabilises the set{foina
too —t2 < T (19)
gr 4 _ (1 u) 2 s
With yo = 21 (t2) andz(ts,) = 0 [24]. o8
V. ILLUSTRATIVE EXAMPLE ()Z:—_

In this section, we illustrate the effectiveness of the a0
proposed impulsive control strategy by means of an examples o02s;
Hereto, we consider a motion system as in Figure 1 with dy- ~ o2}

namics described by (2) with = 1 andg = 10. Moreover, 0.15}
the friction coefficient in (2) is of the formu(z, z2,t) = o1l
(1 — p2)/(1+0.5|z2|) 4+ po + us sin(Qt), wherep, = 0.4, 005

pe = 0.3, ug = 0.05 and 2 = 4. In this friction law

one can recognise a velocity-dependency with a pronounced
Stribeck effect and an explicit time-dependency. Note that
this friction law satisfies Assumption 1 with = 0.25 and  Fig. 3: Friction coefficient. Dashed lines indicate
7 = 0.45, which indicates a significant possible variation on bounds on and mean of the friction coefficient
the friction coefficient and which also implies the satitifae anéj f:it]:(tei oiogg elflf?g e'nntd:ﬁ%s ;hs%.ﬁtvig'r‘,”g?”th‘;f
of Assumption 3. The possible variation of the friction closed-loop system.

coefficient is also illustrated by the dashed lines in Figdire
Next, we employ the switching impulsive controller design
proposed in Section Il and described by (3), (5), (16). 10
Herein, the control parameters are designedkas= 1,

To

15

ko1 = 0.5, koo = 3, implying that0 < 2\512_771 =025<1 s
and 2\522_ = 1.5 > 1 as proposed in Section IlI-B, and the = |
impulsive control design (5) is designed using Proposition =

see Figure 4. =

We employ a numerical time-stepping scheme [23] to
numerically compute solutions of the impulsive closedploo
system. Figures 5 and 6 depict a simulated response of the |,
closed-loop system for an initial conditian (0) = —4 and A y
22(0) = —4. Figure 5 clearly shows that the response indeed
converges to the origin in finite time, while the jumps in the Fig. 4: Impulsive control law.
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Fig.

Fig.

class of position-, velocity- and time-dependent frictiaws

(7]

(8]

El
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5: Time history of the positionc1(¢) and the

velocity z2(t) for 1(0) = z2(0) = —4. [13]

I ] [14]

[15]

, | [16]

, | [17]

[Cn
Ol

(18]

4 [19]

6: Phase portrait depictiney (¢) versusz(t) for

1 (0) = T2 (O) = —4. [20]

[21]

with uncertainty. Moreover, this control strategy guaesst

the
ing

finite-time convergence to the set-point, thereby induc
favourable transient performance characteristicshim t [22]

resulting closed loop. The results are illustrated by mesdins

a representative motion control example.
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