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Abstract
In this paper, we present results providing sufficient con-

ditions for the uniform convergence of measure differential
inclusions with certain maximal monotonicity properties.
The framework of measure differential inclusions allows
us to describe systems with state discontinuities, such as
e.g. mechanical systems with unilateral constraints. The
results are illustrated by application to such a mechanical
example.
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1 Introduction
In this paper, we show that measure differential inclusions

with certain maximal monotonicity conditions exhibit the
convergence property. A system, which is excited by an
input, is called convergent if it has a unique solution that
is bounded on the whole time axis and this solution is
globally asymptotically stable. Obviously, if such a so-
lution does exist, then all other solutions converge to this
solution, regardless of their initial conditions, and can be
considered as a steady-state solution (Demidovich, 1967;
Pavlovet al., 2004).
The property of convergence can be beneficial from sev-

eral points of view. Firstly, in many control problems it is
required that controllers are designed in such a way that
all solutions of the corresponding closed-loop system “for-
get” their initial conditions. Actually, one of the main tasks
of feedback is to eliminate the dependency of solutions on
initial conditions. In this case, all solutions converge to
some steady-state solution that is determined only by the
input of the closed-loop system. This input can be, for ex-
ample, a command signal or a signal generated by a feed-
forward part of the controller or, as in the observer design
problem, it can be the measured signal from the observed
system. Such a convergence property of a system plays
an important role in many nonlinear control problems in-
cluding tracking, synchronization, observer design, and the

output regulation problem, see e.g. (Pavlovet al., 2005b)
and references therein. Secondly, from a dynamics point
of view, convergence is an interesting property because
it excludes the possibility of different coexisting steady-
state solutions: namely, a convergent system excited by a
bounded (periodic) input has auniquebounded globally
asymptotically stable (periodic) solution.
In (Demidovich, 1967), conditions for the convergence

property were formulated for smooth nonlinear systems.
In (Yakubovich, 1964), Lur’e-type systems, possibly with
discontinuities, were considered and convergence condi-
tions proposed. Only recently, in (Pavlovet al., 2007)
sufficient conditions for both continuous (though non-
smooth) and discontinuous piece-wise affine (PWA) sys-
tems have been proposed. Here, we consider a class of sys-
tems described by measure differential inclusions, which
includes systems with discontinuities but also allows for
impulsive right-hand sides.
Systems which expose discontinuities in the state and/or

vector field can be described by measure differential
inclusions (Monteiro Marques, 1993; Moreau, 1988b;
Brogliato, 1999). The differential measure of the state vec-
tor does not only consist of a part with a density with re-
spect to the Lebesgue measure (i.e. the time-derivative of
the state vector), but is also allowed to contain an atomic
part. The dynamics of the system is described by an in-
clusion of the differential measure of the state to a state-
dependent set (similar to the concept of differential inclu-
sions). Consequently, the measure differential inclusion
concept describes the continuous dynamics as well as the
impulse dynamics with a single statement in terms of an
inclusion and is able to describe accumulation phenom-
ena. An advantage of this framework over other frame-
works is the fact that physical interaction laws, such as
friction and impact in mechanics or diode characteristics
in electronics, can be formulated as set-valued force laws
and be seamlessly incorporated in the formulation, see
e.g. (Glocker, 2001).
Stability properties of measure differential inclusions are

essential both in bifurcation analysis and the control of
such systems. In (Leine and van de Wouw, 2008), results



on the stability of stationary sets of measure differentialin-
clusions (with a special focus on mechanical systems with
unilateral constraints) are presented. In (Brogliato, 2004),
stability properties of an equilibrium of measure differen-
tial inclusions of Lur’e-type are studied. The nonlinear-
ities in the feedback loop are required to exhibit mono-
tonicity properties and, if additionally passivity condi-
tions on the linear part of the system are assured, then
stability of the equilibrium can be guaranteed. Further-
more, the Lagrange-Dirichlet stability theorem is extended
in (Brogliato, 2004) to measure differential inclusions de-
scribing mechanical systems with frictionless impact. Note
that this work does not address the convergence property
and only studies the stability of stationary solutions. How-
ever, many control problems, such as tracking control,
output regulation, synchronisation and observer design re-
quire the stability analysis of time-varying solutions. The
research on the stability properties of time-varying solu-
tions of non-smooth systems is still in its infancy and the
current paper should be placed in this context.
The paper is organised as follows. Section 2 provides a

brief introduction to measure differential inclusions. Sub-
sequently, we define the convergence property of dynam-
ical systems in Section 3 and state the associated proper-
ties of convergent systems. The essential contribution of
this paper lies in Section 4, in which we present sufficient
conditions for the uniform convergence of measure differ-
ential inclusions with certain maximal monotonicity prop-
erties. An illustrative example of a convergent mechanical
system with a unilateral constraint is discussed in detail in
Section 5. Finally, Section 6 presents concluding remarks.

2 Measure Differential Inclusions
In this section, we introduce the measure differential in-

clusion

dx ∈ dΓ (t,x(t)) (1)

as has been proposed by Moreau (Moreau, 1988a). The
concept of differential inclusions has been extended to
measure differential inclusions in order to allow for dis-
continuities inx(t), see e.g. (Monteiro Marques, 1993;
Moreau, 1988b; Brogliato, 1999).
With the differential inclusionẋ(t) ∈ F(t,x(t)), in

which F(t,x(t)) is a set-valued mapping, we are able
to describe a non-smooth absolutely continuous time-
evolution x(t). The solutionx(t) : I → R

n fulfills
the differential inclusion almost everywhere, becauseẋ(t)
does not exist on a Lebesgue negligible setD ⊂ I of time-
instancesti ∈ D related to non-smooth state evolution.
Instead of using the densitẏx(t), we can also write the
differential inclusion using the differential measure:

dx ∈ F(t,x(t)) dt, (2)

which yields a measure differential inclusion. The solu-
tion x(t) fulfills the measure differential inclusion (2)for
all t ∈ I because of the underlying integration process

being associated with measures. Moreover, writing the dy-
namics in terms of a measure differential inclusion allows
us to study a larger class of functionsx(t), as we can let
dx contain parts other than the Lebesgue integrable part.
In order to describe a time-evolution of bounded variation
which is discontinuous at isolated time-instances, we let
the differential measuredx also have an atomic part:

dx = ẋ(t) dt + (x+(t) − x−(t)) dη, (3)

wheredη is the atomic measure andx+(t) = limτ↓0 x(t+
τ), x−(t) = limτ↑0 x(t + τ). Therefore, we extend
the measure differential inclusion (2) with an atomic part
as well: dx ∈ F(t,x(t)) dt + G(t,x(t)) dη. Here,
G(t,x(t)) is a set-valued mapping, which is in general
dependent ont, x−(t) and x+(t). Following (Moreau,
1988a), we simply writeG(t,x(t)). More conveniently,
we write the measure differential inclusion as in (1), where
dΓ (t,x(t)) is a set-valued measure function defined as

dΓ (t,x(t)) = F(t,x(t)) dt + G(t,x(t)) dη. (4)

The measure differential inclusion (1) has to be under-
stood in the sense of integration and its solutionx(t)
is a function of locally bounded variation which fulfills
x+(t) = x−(t0) +

∫

I
f(t,x) dt + g(t,x) dη, for every

compact intervalI = [t0, t], where the functionsf(t,x)
and g(t,x) have to obeyf(t,x) ∈ F(t,x), g(t,x) ∈
G(t,x). Substitution of (3) in the measure differential in-
clusion (1), (4) givesẋ(t) dt + (x+(t) − x−(t)) dη ∈
F(t,x(t)) dt + G(t,x(t)) dη, which we can separate in
the Lebesgue integrable partẋ(t) dt ∈ F(t,x(t)) dt, and
atomic part(x+(t) − x−(t)) dη ∈ G(t,x(t)) dη from
which we can retrievėx(t) ∈ F(t,x(t)) and the jump
conditionx+(t) − x−(t) ∈ G(t,x(t)). It should be noted
that the statex of (1) may be confined to a so-called admis-
sible set, which we denote byX . Here, we will assume that
the measure differential inclusions under study are consis-
tent, where the consistency property implies that if the ini-
tial condition is taken in the admissible set, i.e.x0 = x(t0)
is such thatx0 ∈ X , then there exist a solution in forward
time that resides in the admissible domain, i.e.x(t) ∈ X
for almost allt ≥ t0 (Leine and van de Wouw, 2008).

3 Convergent Systems
In this section, we briefly discuss the definition of con-

vergence and certain properties of convergent systems. In
the definition of convergence, the Lyapunov stability of
solutions of (1) plays a central role. For definitions of
(uniform) stability and attractivity of measure differential
inclusions we refer to (Leine and van de Wouw, 2008).
The definitions of convergence properties presented here
extend the definition given in (Demidovich, 1967) (see
also (Pavlovet al., 2005a)).
We consider systems of the form

dx ∈ dΓ (x,w(t)), (5)



with statex ∈ R
n and inputw ∈ R

d. The right-hand side
of (5) is assumed to be continuous inw. In the following,
we will consider the classPCd of piecewise continuous
inputsw(t) : R → R

d which are bounded onR.
Let us formally define the property of convergence.

Definition 1
System (5) is said to be

• convergentif there exists a solution̄xw(t) satisfying
the following conditions, for every inputw ∈ PCd:

(i) x̄w(t) is defined and bounded for allt ∈ R,
(ii) x̄w(t) is globally attractively stable.

• uniformly convergentif it is convergent and̄xw(t) is
globally uniformly attractively stable, for every input
w ∈ PCd.
• exponentially convergentif it is convergent and
x̄w(t) is globally exponentially stable, for every input
w ∈ PCd.

The wording ‘attractively stable’ has been used instead
of the usual term ‘asymptotically stable’, because attrac-
tivity of solutions in (measure) differential inclusions can
be asymptotic or symptotic (finite-time attractivity) (Leine
and van de Wouw, 2008).
The solutionx̄w(t) is called asteady-state solution. As

follows from the definition of convergence, any solution
of a convergent system “forgets” its initial condition and
converges to some steady-state solution. In general, the
steady-state solution̄xw(t) may be non-unique (where the
subscript emphasizes the fact that the steady-state solution
depends onw(t)). But for any two steady-state solutions
x̄w,1(t) andx̄w,2(t) it holds that‖x̄w,1(t)− x̄w,2(t)‖ → 0
ast → +∞. At the same time, foruniformlyconvergent
systems the steady-state solution is unique, as formulated
below.

Property 1 ((Pavlov et al., 2005b; Pavlov et al., 2005a))
If system (5) is uniformly convergent, then, for any input
w(t) ∈ PCd, the steady-state solution̄xw(t) is the only
solution defined and bounded for allt ∈ R.

Uniformly convergent systems excited by periodic or con-
stant inputs exhibit the following property, that is particu-
larly useful in, for example, bifurcation analyses of period-
ically perturbed systems.

Property 2 ((Demidovich, 1967; Pavlovet al., 2005b))
Suppose system (5) with a given inputw(t) is uniformly
convergent. If the inputw(t) is constant, the correspond-
ing steady-state solution̄xw(t) is also constant; if the in-
putw(t) is periodic with periodT , then the corresponding
steady-state solution̄xw(t) is also periodic with the same
periodT .

4 Convergence of Maximal Monotone Systems
4.1 Maximal Monotonicity
Let us first define maximal monotone set-valued func-

tions.

Definition 2 (Maximal Monotone Set-valued Function)
• A set-valued functionF(x) : R

n → R
n is called

monotone if its graph is monotone in the sense that
for all (x,y) ∈ Graph(F) and for all (x∗,y∗) ∈
Graph(F) it holds that(y − y∗)T(x − x∗) ≥ 0. In
addition, if(y−y∗)T(x−x∗) ≥ α‖x−x∗‖2 for some
α > 0, then the set-valued map is strictly monotone.
• A monotone set-valued functionF(x) is called
maximal monotone if there exists no other monotone
set-valued function whose graph strictly contains the
graph ofF . If F is strictly monotone and maximal,
then it is called strictly maximal monotone.

In this section we will consider the dynamics of mea-
sure differential inclusions (5) with certain maximal mono-
tonicity conditions onΓ (x,w(t)). In particular, we study
systems for whichΓ (x,w(t)) can be split in a state-
dependent part and an input-dependent part. The state-
dependent part is, with the help of a maximal monotonicity
requirement, assumed to be strictly passive with respect
to the Lebesgue measure and passive with respect to the
atomic measure. Such kind of systems will be simply re-
ferred to as ‘maximal monotone systems’ in the following.
We first formalise maximal monotone systems in Sec-

tion 4.2, subsequently give sufficient conditions for the ex-
istence of a compact positively invariant set in Section 4.3
(which plays an important role in the proof for conver-
gence) and finally give sufficient conditions for conver-
gence in Section 4.4.

4.2 Maximal monotone systems
Letx ∈ R

n be the state-vector of the system andw ∈ R
m

be the input vector. Consider the time-evolution ofx to be
governed by a measure differential equation of the form

dx = −da − c(x) dt + db(w), (6)

wherec : R
n → R

n is a single-valued function andda

and db(w) are differential measures with densities with
respect todt and dη, i.e. da = a′

t dt + a′
η dη, and

db(w) = b′t(w) dt + b′η(w) dη. We assumexTb′
η(w)

to be bounded from above by a constantβ. Basically, this
gives an upper-bound on the energy input of the impulsive
inputs. Such an assumption makes sense from the physical
point of view, see the example in Section 5. The quanti-
tiesa′

t anda′
η, which are functions of time along solutions

of (6), obey the set-valued laws

a′
t ∈ A(x), (7)

a′
η ∈ A(x+), (8)

whereA is a set-valued mapping. The dynamics can be
decomposed in a Lebesgue measurable part and an atomic
part. The Lebesgue measurable part gives the differential
equationẋ(t) := x′

t = −a′
t(x(t)) − c(x(t)) + b′t(w(t)),

which forms with the set-valued law (7) a differential in-
clusionẋ ∈ −A(x) − c(x) + b′

t(w) a.e. The atomic part



gives the state-reset rulex+−x− := x′
η = −a′

η +b′
η(w).

In mechanics, the state-reset rule is called the impact equa-
tion. The above impact law (8), for whichA is only a func-
tion of x+, corresponds to a completely inelastic impact
equation. Because of the similarity between the laws (7)
and (8), we can combine these laws into the measure law

da ∈ dA(x+) = A(x+)( dt + dη). (9)

The equality of measures (6) together with the measure
law (9) constitutes a measure differential inclusion

dx∈−dA(x+)−c(x) dt+ db(w) := dΓ (x,w). (10)

The set-valued operatorA(x) models the non-smooth dis-
sipative elements in the system. We assume thatA(x)
is a maximal monotone set-valued mapping, see Defini-
tion 2. Moreover, we assume that0 ∈ A(0). This last
assumption together with the monotonicity assumption im-
plies the conditionxTa ≥ 0 for all a ∈ A(x) and for any
x ∈ X , i.e. the action ofA is passive. Furthermore, we
assume thatA(x) + c(x) is a strictly maximal monotone
set-valued mapping, i.e. there exists anα > 0 such that

(x2 − x1)
T (a2+ c(x2) − a1 − c(x1))

≥ α‖x2 − x1‖
2,

(11)

for all a1 ∈ A(x1), a2 ∈ A(x2) and for any two states
x1,x2 ∈ X .

4.3 Existence of a compact positively invariant set
The existence of a compact positively invariant set plays

an important role in the proof of convergence as will be-
come clear in Section 4.4. Clearly, if the impulsive inputs
are passive in the sense that(x+)Tb′

η(w(t)) ≤ 0 for all
t, then the system is dissipative for large‖x‖ and all so-
lutions must be bounded. In the following theorem, we
give a less stringent sufficient condition for the existence
of a compact positively invariant set of (10) based on a
dwell-time condition (Hespanha and Morse, 1999) on the
occurrence of the impulsive inputs.

Theorem 1
A consistent measure differential inclusion of the form (10)
has a compact positively invariant set if

1. A(x) is a maximal monotone set-valued mapping
with 0 ∈ A(0),

2. A(x) + c(x) is a strictly maximal monotone set-
valued mapping, i.e. there exists anα > 0 such
that (11) is satisfied,

3. there exists aβ ∈ R such that(x+)Tb′
η(w) ≤ β for

all x ∈ X , i.e. the energy input of the impulsive inputs
is bounded from above,

4. the time-instancesti for which the input is im-
pulsive are separated by the dwell-timeτ ≤
ti+1 − ti, with τ = δ

2(δ−1)α ln(1 + 2β
δ2γ2 ) and

γ := max(0, sup
t∈R,a′

t
(0)∈A(0)

−a′

t
(0)−c(0)+b′

t
(w(t))

α
)

for someδ > 1.

Proof. Consider the Lyapunov candidate functionW =
1
2xT x. The differential measure ofW has a densityẆ
with respect to the Lebesgue measuredt and a density
W+ − W− with respect to the atomic measuredη, i.e.
dW = Ẇ dt+(W+−W−) dη. We first evaluate the den-
sity Ẇ : Ẇ = xT(−a′

t − c(x) + b′
t(w)) = xT(−a′

t −
c(x)+a′

t(0)+c(0))+xT(−a′
t(0)−c(0)+b′

t(w)), with
a′

t ∈ A(x) anda′
t(0) ∈ A(0). Due to strict monotonicity

of A(x) + c(x), there exists a constantα > 0 such that

Ẇ ≤ −α‖x‖2 + xT(−a′
t(0) − c(0) + b′t(w)),

≤ −‖x‖
(

α‖x‖

− sup
t∈R,a′

t
(0)∈A(0)

{

−a′
t(0) − c(0) + b′

t(w(t))
}

)

.

(12)

Note thatẆ < 0 for x satisfying

‖x‖ > sup
t∈R,a′

t
(0)∈A(0)

−a′
t(0) − c(0) + b′

t(w(t))

α
.

(13)
For ‖x‖ > γ, with γ as defined in the theorem, we can
prove an exponential decay ofW (in between state jumps
at t = ti). Note that the functionf(x) = −(1 − 1

δ
)αx2 is

greater thang(x) = −αx2+γαx for x > δγ, whereδ > 1
is an arbitrary constant andγ > 0. It therefore holds that
Ẇ ≤ −(1 − 1

δ
)α‖x‖2 for ‖x‖ ≥ δγ, i.e.

Ẇ ≤ −2

(

1 −
1

δ

)

αW for ‖x‖ ≥ δγ. (14)

Subsequently, we consider the jumpW+ − W− of W :
W+−W−= 1

2 (x+ +x−)T (x+ − x−), with x+ −x− =
−a′

η + b′η(w) anda′
η ∈ A(x+). Elimination ofx− and

exploiting the monotonicity ofA(x) gives

W+ − W− =
1

2
(2x+ + a′

η − b′
η(w))T

(

−a′
η + b′

η(w)
)

= (x+)T
(

−a′
η + b′η(w)

)

−
1

2

∥

∥a′
η − b′

η(w)
∥

∥

2
≤ β,

(15)

in which we used the assumption that the energy input
of the impulsive inputsb′η(w) is bounded from above by
β (see condition 3 in the theorem) and the monotonic-
ity and passivity ofA. Then, due to (14), for the non-
impulsive part of the motion it holds that if‖x(t0)‖ ≤ γ

then ‖x(t)‖ ≤ γ for all t ∈ [t0, t
∗] (if no state resets

occur in this time interval). Moreover, as far as the state
resets are concerned, (15) shows that a state reset from a
statex−(ti) ∈ V with V = {x ∈ X | ‖x‖ ≤ δγ} can only
occur tox+(ti) such thatW (x+(ti)) := 1

2‖x
+(ti)‖

2 ≤



W (x−(ti)) + β ≤ 1
2δ2γ2 + β (note hereto the specific

form of W = 1
2xTx). During the following open time-

interval(ti, ti+1) for whichb′
η(w(t)) = 0, the functionW

evolves asW (x−(ti+1)) = W (x+(ti)) +
∫

(ti,ti+1)
dW ,

which may involve impulsive motion due to dissipative im-
pulsesa′

η. Let tV ∈ (ti, ti+1) be the time-instance for
which ‖x−(tV)‖ = δγ. The functionW will necessar-
ily decrease during the time-interval(ti, tV) due to (14)

andW+ − W− = −(x+)Ta′
η − 1

2

∥

∥a′
η

∥

∥

2
≤ 0 (the state-

dependent impulses are passive). It therefore holds that

W (x−(tV)) ≤ e−2(1− 1
δ
)α(tV−ti)W (x+(ti)), (16)

becausedW ≤ −2(1 − 1
δ
)αW dt + (W+ − W−) dη ≤

−2(1 − 1
δ
)αW dt for positive measures. Using

W (x−(tV)) = 1
2δ2γ2 and W (x+(ti)) ≤ 1

2δ2γ2 +
β in the exponential decrease (16) gives12δ2γ2 ≤

e−2(1− 1
δ
)α(tV−ti)( 1

2δ2γ2 +β) or tV − ti ≤
δ

2(δ−1)α ln(1+
2β

δ2γ2 ). Consequently, if the next impulsive time-instance
ti+1 of the input is aftertV , then the solutionx(t) has
enough time to reachV. Hence, if the impulsive time-
instance of the input are separated by the dwell-timeτ , i.e.
ti+1 − ti ≥ τ , with

τ =
δ

2(δ − 1)α
ln(1 +

2β

δ2γ2
), (17)

then the set

W =

{

x ∈ X |
1

2
‖x‖2 ≤

1

2
δ2γ2 + β

}

(18)

is a compact positively invariant set. �

Typically, we would like the invariant setW to be as small
as possible, as it gives an upper-bound for the trajectories
of the system. On the other hand, we also want the dwell-
time to be as small as possible. The constantδ > 1 plays in
interesting role in the above theorem. By increasingδ, we
allow the invariant setW to be larger, thereby decreasing
the dwell-timeτ . So, there is a kind of pay-off between the
size of the invariant set and the dwell-time. Anyfinitevalue
of δ is sufficient to prove the existence of acompactposi-
tively invariant set. We therefore can take the dwell-timeτ

to be an arbitrary small value, but not infinitely small. This
brings us to the following corollary:

Corollary 1
If the size of the compact positively invariant set is not of
interest, then Condition 4 in Theorem 1 can be replaced by
an arbitrary small dwell-timeτ > 0.

Proof. Taking the limit ofδ → ∞ gives the conditionτ >

0 for arbitraryγ andβ. �

It therefore suffices to assume that the impulsive inputs are
separated in time (which is not a strange assumption from
a physical point of view) and simply putτ equal to the (un-
known) minimal time-lapse between the impulsive inputs.

Then, we calculate the corresponding value ofδ and obtain
the size of the compact positively invariant set.

In this section, we have presented a sufficient condition
for the existence of a compact positively invariant set, but
the attractivity of solutions outsideW to W is not guaran-
teed. If in addition the system is incrementally attractively
stable, for which we will give a sufficient condition in Sec-
tion 4.4, then it is also assured that all solutions outsideW
converge toW.

4.4 Conditions for convergence

In the following theorem, it is stated that strictly maximal
monotone measure differential inclusions are uniformly
convergent.

Theorem 2
A consistent measure differential inclusion of the form (10)
is exponentially convergent if

1. A(x) is a maximal monotone set-valued mapping,
with 0 ∈ A(0),

2. A(x) + c(x) is a strictly maximal monotone set-
valued mapping,

3. system (10) exhibits a compact positively invariant set.

Proof. Let us first show that system (10) is incrementally
attractively stable, i.e. all solutions of (10) converge to
each other for positive time. Consider hereto two solu-
tions x1(t) andx2(t) of (10) and a Lyapunov candidate
functionV = 1

2‖x2 − x1‖
2. Consequently, the differen-

tial measure ofV satisfies: dV = 1
2 (x+

2 + x−
2 − x+

1 −

x−
1 )T ( dx2 − dx1), with dx1 = −da1 − c(x1) dt +

db(w), dx2 = −da2 −c(x2) dt+ db(w), whereda1 ∈
A(x+

1 ) and da2 ∈ A(x+
2 ). The differential measure ofV

has a densitẏV with respect to the Lebesgue measuredt

and a densityV +−V − with respect to the atomic measure
dη, i.e. dV = V̇ dt + (V + − V −) dη. We first evaluate
the densityV̇ :

V̇ = −(x2 − x1)
T(a′

t(x2) + c(x2) − b′t(w)

− a′
t(x1) − c(x1) + b′t(w))

= −(x2 − x1)
T(a′

t(x2) + c(x2) − a′
t(x1) − c(x1)),

(19)

wherea′
t(x1) ∈ A(x1) anda′

t(x2) ∈ A(x2), since both
solutionsx1 andx2 correspond to the same perturbation
w. Due to strict monotonicity ofA(x)+c(x), there exists
a constantα > 0 such thatV̇ ≤ −α‖x2 − x1‖

2. Subse-
quently, we consider the jumpV +−V − of V : V +−V − =
1
2 (x+

2 + x−
2 − x+

1 − x−
1 )T

(

x+
2 − x−

2 − x+
1 + x−

1

)

, with
x+

1 − x−
1 = −a′

η(x1) + b′
η(w), for a′

η(x1) ∈ A(x+
1 ),

andx+
2 −x−

2 = −a′
η(x2)+b′η(w), for a′

η(x2) ∈ A(x+
2 ).

Elimination ofx−
1 andx−

2 and exploiting the monotonicity



of A(x) gives

V + − V − =
1

2
(2x+

2 + a′
η(x2) − 2x+

1 − a′
η(x1))

T

(

−a′
η(x2) + a′

η(x1)
)

= −(x+
2 − x+

1 )T
(

a′
η(x2) − a′

η(x1)
)

−
1

2

∥

∥a′
η(x2) − a′

η(x1)
∥

∥

2

≤ 0.

(20)

It therefore holds thatV strictly decreases over every non-
empty compact time-interval as long asx2 6= x1. In turn,
this implies that all solutions of (10) converge to each other
exponentially (and therefore uniformly).
Finally we use Lemma 2 in (Yakubovich, 1964), which

formulates that if a system exhibits a compact positively in-
variant set, then the existence of a solution that is bounded
for t ∈ R is guaranteed. We will denote this ‘steady-state’
solution byx̄w(t). The original lemma is formulated for
differential equations (possibly with discontinuities, there-
with including differential inclusions, with bounded right-
hand sides). Here, we use this lemma for measure differ-
ential inclusions and would like to note that the proof of
the lemma allows for such extensions if we only require
continuous dependence on initial conditions. The latter is
guaranteed for monotone measure differential inclusions,
because incremental stability implies a continuous depen-
dence on initial conditions.
Since all solutions of (10) are globally exponentially sta-

ble, alsox̄w(t) is a globally exponentially stable solution.
This concludes the proof that the measure differential in-
clusion (10) is exponentially convergent. �

5 Illustrative Example: a One-way clutch
In this section, we present an example of a mechanical

system with a set-valued force law (modelling a one-way
clutch) that illustrates the power of the result in Theorem 2.

Figure 1. Mass with one-way clutch and impulsive actuation.

The time-evolution of the velocity of a massm subjected
to a one-way clutch, a dashpotb > 0 and an external input
(considering both bounded and impulsive contributions),
see Figure 1, can be described by the equality of measures

mdu = dp + ds − bu dt. (21)

We can decompose the differential measureds of the
one-way clutch inds = λ dt + Λdη, whereλ := s′t
is the contact force andΛ = s′η is the contact im-
pulse. The differential impulse measureds of the one-way
clutch obeys the set-valued force law−ds ∈ Upr(u+).
The set-valued functionUpr(x) is the unilateral primi-
tive (Glocker, 2001):

−y ∈ Upr(x) ⇐⇒ 0 ≤ x ⊥ y ≥ 0

⇐⇒ x ≥ 0, y ≥ 0, xy = 0,
(22)

being a maximal monotone operator.

The input consists of a bounded forcef and an impulse
F : dp = f dt + F dη. We assume that an impulsive input
F > 0 is transmitted by firing bullets with massm0 and
constant speedv ≤ vmax on the left side of the massm.
We assume a completely inelastic impact. Ifu ≥ v, then
the bullet is not able to hit the massm and then the impulse
F equals zero. Ifu+ < v, then the impulseF equals the
mass of the bullet multiplied with its velocity jump:F =
m0(v−u+). Similarly, we assume that an impulsive input
F < 0 is transmitted by firing on the right side of the mass
m with a speedv < 0, bounded by|v| ≤ vmax. The energy
inputu+F = m0u

+(v−u+) of the impulseF is maximal
whenu+ = 1

2v and is therefore bounded from above by
β := 1

4m0v
2
max ≥ |u+F |.

We first prove the existence of a compact positively in-
variant set with Theorem 1. Theorem 1 uses the Lyapunov
functionW (u) = 1

2u2, which we recognise to be the ki-
netic energy divided by the massm. The time-derivative
Ẇ gives, usinguλ = 0, Ẇ ≤ − b

m
u2 + u supt∈R

(f(t)),
and it therefore holds thatα = b

m
andγ = 1

b
supt∈R

(f(t))
with α andγ defined in Theorem 1. Theorem 1 states that
if the time-instancesti of the impulsesF are separated by
the dwell-timeτ = δ

2(δ−1)α ln(1 + 2β
δ2γ2 ), then the set

W =
{

u ∈ R
+ | 1

2u2 ≤ 1
2δ2γ2 + β

}

is a compact posi-
tively invariant set for arbitraryδ > 1. Following Corol-
lary 1, we conclude that the dwell-time can be made ar-
bitrary small by increasingδ. We therefore takeτ to be
smaller than the minimal time-lapse between two succeed-
ing impulsive time-instances, which gives a lower bound
for δ.

Just as in the proof of Theorem 2, we prove incremental
stability using the Lyapunov functionV = 1

2 (u2 − u1)
2.

First, we consider the time-derivativėV :

V̇ = (u2 − u1)(u̇2 − u̇1)

= (u2 − u1)
1

m
(λ2 − bu2 − λ1 + bu1)

= (u2 − u1)
1

m
(λ2 − λ1) −

b

m
(u2 − u1)

2,

with − λ1 ∈ Upr(u1), −λ2 ∈ Upr(u2)

≤ −
b

m
(u2 − u1)

2.

(23)



Subsequently, we consider a jump inV :

V + − V − =V (u+
1 , u+

2 ) − V (u−
1 , u−

2 )

=
1

2
(u+

2 − u+
1 )2 −

1

2
(u−

2 − u−
1 )2

=
1

2
(u+

2 + u−
2 − u+

1 − u−
1 )

(u+
2 − u−

2 − u+
1 + u−

1 ).

(24)

Following the proof of Theorem 2, we eliminateu−
1 and

u−
2 by substituting the impact equationm(u+

j − u−
j ) =

Λj + F , j = 1, 2:

V + − V − =
1

2
(2u+

2 −
1

m
Λ2−2u+

1 +
1

m
Λ1)

1

m
(Λ2−Λ1)

= (u+
2 −u+

1 )
1

m
(Λ2−Λ1)−

1

2m2
(Λ2−Λ1)

2 ≤ 0.

(25)

Hence, it holds for the differential measuredV that dV =
V̇ dt + (V + − V −) dη ≤ −α(u2 − u1)

2 dt, with α = b
m

.
Integration of dV over a non-empty time-interval there-
fore leads to a strict decrease of the functionV as long as
u2 6= u1. This proves incremental stability. Consequently,
the system is exponentially convergent (see Theorem 2).
This property implies, see Definition 1, that for any input,
with measuredp, with a bounded Lebesgue measurable
partf dt and the impulsive part relating to bounded energy,
the system exhibits a unique bounded steady-state solution
to which all other solutions converge exponentially.

6 Conclusions
In this paper, we have presented sufficient conditions for

the convergence property of a class of measure differential
inclusions with certain maximal monotonicity properties.
The results are illustrated by application to a mechanical
system with a unilateral constraint (a mass-damper system
with a one-way clutch and impulsive inputs). Future work
involves the exploitation of such convergence properties
to design tracking controllers for mechanical systems with
unilateral constraints.

References
Brogliato, B. (1999).Nonsmooth Mechanics. 2 ed.. Springer.

London.
Brogliato, B. (2004). Absolute stability and the Lagrange-

Dirichlet theorem with monotone multivalued mappings.
Systems & Control Letters51, 343–353.

Demidovich, B. P. (1967).Lectures on Stability Theory (in Rus-
sian). Nauka. Moscow.

Glocker, Ch (2001).Set-Valued Force Laws, Dynamics of Non-
Smooth Systems. Vol. 1 of Lecture Notes in Applied Me-
chanics. Springer-Verlag. Berlin.

Hespanha, J. P. and A. S. Morse (1999). Stability of switched
systems with average dwell-time.Proc. of the 38th Conf. on
Decision and Controlpp. 2655–2660.

Leine, R. I. and N. van de Wouw (2008).Stability and Conver-
gence of Mechanical Systems with Unilateral Constraints.
Vol. 36 ofLecture Notes in Applied and Computational Me-
chanics. Springer-Verlag. Berlin Heidelberg New-York.

Monteiro Marques, M. (1993).Differential Inclusions in Nons-
mooth Mechanical Systems. Birkhaüser. Basel.

Moreau, J. J. (1988a). Bounded variation in time. In:Topics in
Nonsmooth Mechanics(J. J. Moreau, P. D. Panagiotopoulos
and G. Strang, Eds.). pp. 1–74. Birkhäuser Verlag. Basel,
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