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Abstract output regulation problem, see e.g. (Pavéial, 200%)

In this paper, we present results providing sufficient con- and references therein. Secondly, from a dynamics point
ditions for the uniform convergence of measure differéntia of view, convergence is an interesting property because
inclusions with certain maximal monotonicity properties. it excludes the possibility of different coexisting steady
The framework of measure differential inclusions allows state solutions: namely, a convergent system excited by a
us to describe systems with state discontinuities, such asbounded (periodic) input has uniquebounded globally
e.g. mechanical systems with unilateral constraints. Theasymptotically stable (periodic) solution.
results are illustrated by application to such a mechanical In (Demidovich, 1967), conditions for the convergence
example. property were formulated for smooth nonlinear systems.
In (Yakubovich, 1964), Lur'e-type systems, possibly with
discontinuities, were considered and convergence condi-
tions proposed. Only recently, in (Pavi@t al, 2007)
sufficient conditions for both continuous (though non-
smooth) and discontinuous piece-wise affine (PWA) sys-
tems have been proposed. Here, we consider a class of sys-
1 Introduction tems described by measure differential inclusions, which

In this paper, we show that measure differential inclusions includes systems with discontinuities but also allows for
with certain maximal monotonicity conditions exhibit the impulsive right-hand sides.
convergence property. A system, which is excited by an Systems which expose discontinuities in the state and/or
input, is called convergent if it has a unique solution that vector field can be described by measure differential
is bounded on the whole time axis and this solution is inclusions (Monteiro Marques, 1993; Moreau, 1B88
globally asymptotically stable. Obviously, if such a so- Brogliato, 1999). The differential measure of the state vec
lution does exist, then all other solutions converge to this tor does not only consist of a part with a density with re-
solution, regardless of their initial conditions, and can b spect to the Lebesgue measure (i.e. the time-derivative of
considered as a steady-state solution (Demidovich, 1967the state vector), but is also allowed to contain an atomic
Pavlovet al, 2004). part. The dynamics of the system is described by an in-

The property of convergence can be beneficial from sev- clusion of the differential measure of the state to a state-
eral points of view. Firstly, in many control problems itis dependent set (similar to the concept of differential inclu
required that controllers are designed in such a way thatsions). Consequently, the measure differential inclusion
all solutions of the corresponding closed-loop system-“for concept describes the continuous dynamics as well as the
get” their initial conditions. Actually, one of the maintes  impulse dynamics with a single statement in terms of an
of feedback is to eliminate the dependency of solutions oninclusion and is able to describe accumulation phenom-
initial conditions. In this case, all solutions converge to ena. An advantage of this framework over other frame-
some steady-state solution that is determined only by theworks is the fact that physical interaction laws, such as
input of the closed-loop system. This input can be, for ex- friction and impact in mechanics or diode characteristics
ample, a command signal or a signal generated by a feedin electronics, can be formulated as set-valued force laws
forward part of the controller or, as in the observer design and be seamlessly incorporated in the formulation, see
problem, it can be the measured signal from the observede.g. (Glocker, 2001).
system. Such a convergence property of a system plays Stability properties of measure differential inclusiome a
an important role in many nonlinear control problems in- essential both in bifurcation analysis and the control of
cluding tracking, synchronization, observer design, &edt such systems. In (Leine and van de Wouw, 2008), results
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on the stability of stationary sets of measure differential being associated with measures. Moreover, writing the dy-
clusions (with a special focus on mechanical systems with namics in terms of a measure differential inclusion allows
unilateral constraints) are presented. In (Brogliato, P0 us to study a larger class of functiom$t), as we can let
stability properties of an equilibrium of measure differen da contain parts other than the Lebesgue integrable part.
tial inclusions of Lur'e-type are studied. The nonlinear- In order to describe a time-evolution of bounded variation
ities in the feedback loop are required to exhibit mono- which is discontinuous at isolated time-instances, we let
tonicity properties and, if additionally passivity condi- the differential measuréx also have an atomic part:

tions on the linear part of the system are assured, then
stability of the equilibrium can be guaranteed. Further-
more, the Lagrange-Dirichlet stability theorem is extehde
in (Brogliato, 2004) to measure differential inclusions de
scribing mechanical systems with frictionless impact.éNot - wheredp is the atomic measure and (t) = lim, o z(t+
that this work does not address the convergence propertyr), z=(t) = lim,ox(t + 7). Therefore, we extend
and only studies the stability of stationary solutions. How the measure differential inclusion (2) with an atomic part
ever, many control problems, such as tracking control, gs well: dz < F(t,x(t))dt + G(t,xz(t))dn. Here,
output regulation, synchronisation and observer design re G(t,z(t)) is a set-valued mapping, which is in general
quire the stability analysis of time-varying solutions.€Th  dependent on, x~(t) andz*(¢). Following (Moreau,
research on the stability properties of time-varying solu- 198&), we simply writeG(t, z(t)). More conveniently,
tions of non-smooth systems is still in its infancy and the we write the measure differential inclusion as in (1), where
current paper should be placed in this context. dI'(t,z(t)) is a set-valued measure function defined as
The paper is organised as follows. Section 2 provides a

brief introduction to measure differential inclusions.bSu

sequently, we define the convergence property of dynam- dIr'(t, 2(t)) = F(t, (1)) dt + G(¢,2(t)) dn.  (4)

ical systems in Section 3 and state the associated proper-

ties of convergent systems. The essential contribution of The measure differential inclusion (1) has to be under-
this paper lies in Section 4, in which we present sufficient stooq in the sense of integration and its solutieft)
conditions for the uniform convergence of measure differ- i a function of locally bounded variation which fulfills
ential inclusions with certain maximal monotonicity prop- z+() = z=(¢,) + [, F(t,z)dt + g(t, ) dn, for every
erties. An illustrative example of a convergent mechanical compact interval = [to, ], where the functiong (¢, z)
system with a unilateral constraint is discussed in detail i ang g(¢, 2) have to obeyf(t,z) € F(t,z), g(t,x) €
Section 5. Finally, Section 6 presents concluding remarks. g (¢ ). Substitution of (3) in the measure differential in-
clusion (1), (4) givese(t)dt + (z*(t) — =~ (¢))dn €
F(t,z(t))dt + G(t,xz(t)) dn, which we can separate in
the Lebesgue integrable pairft) dt € F (¢, «(t)) dt, and
atomic part(xz*(t) — = (t))dn € G(t,z(t))dn from
which we can retrievez(t) € F(¢,z(t)) and the jump
conditionz ™ (¢t) — ~ (t) € G(t, z(t)). It should be noted
dx e dI'(t,x(t)) (1) that the state: of (1) may be confined to a so-called admis-
sible set, which we denote by. Here, we will assume that
the measure differential inclusions under study are censis
tent, where the consistency property implies that if the ini

dx = &(t)dt + (T (t) — z~ (t))dny, (3)

2 Measure Differential Inclusions
In this section, we introduce the measure differential in-
clusion

as has been proposed by Moreau (Moreau, 488 he
concept of differential inclusions has been extended to

measure differential inclusions in order to allow for dis- F'al Comlr?og IS ti\'je?hmtr:ﬁ adm|§3|tble s?t,t@._: :fv(to) d
continuities inx(¢), see e.g. (Monteiro Marques, 1993; IS such thateo € 4, then there exist a solution In forwar

Moreau, 1988; Brogliato, 1999). ]tcimelthat treT,lidis in It_he_: admijsibleddoVT/ain, 1:2(93)086 X
With the differential inclusionz(t) € F(t,z(t)), in or almostalit > o (Leine and van de Wouw, )-

which F(t,z(t)) is a set-valued mapping, we are able
to de;cribe a non—smoo'gh absolutely continuou; time—3 Convergent Systems
evolution z(t). The solutionz(t) : Z — R™ fulfills
the differential inclusion almost everywhere, becaisg
does not exist on a Lebesgue negligibleBet 7 of time-
instances;; € D related to non-smooth state evolution.
Instead of using the density(t), we can also write the
differential inclusion using the differential measure:

In this section, we briefly discuss the definition of con-
vergence and certain properties of convergent systems. In
the definition of convergence, the Lyapunov stability of
solutions of (1) plays a central role. For definitions of
(uniform) stability and attractivity of measure differeit
inclusions we refer to (Leine and van de Wouw, 2008).
The definitions of convergence properties presented here
dz € F(t,z(t))dt, (2) extend the definition given in (Demidovich, 1967) (see
also (Pavlowet al., 2005)).

. . . . . We consider systems of the form
which yields a measure differential inclusion. The solu- y

tion x(t) fulfills the measure differential inclusion (2r
all ¢ € I because of the underlying integration process de € dI'(z,w(t)), (5)



with statex € R” and inputw € R?. The right-hand side
of (5) is assumed to be continuousuin In the following,
we will consider the clas®C, of piecewise continuous
inputsw(t) : R — R4 which are bounded oR.

Let us formally define the property of convergence.

Definition 1
System (5) is said to be

e convergentf there exists a solutiom., (t) satisfying
the following conditions, for every inpab € PC,:

(i) =, (t) is defined and bounded for alE R,
(i) z.,(t) is globally attractively stable.

o uniformly convergentff it is convergent anét.,(t) is
globally uniformly attractively stable, for every input
w € Wd.

e exponentially convergenif it is convergent and
&, (t) is globally exponentially stable, for every input

w € PCy.

Definition 2 (Maximal Monotone Set-valued Function)
o A set-valued functionF(x) : R™* — R" is called
monotone if its graph is monotone in the sense that
for all (x,y) € Graph(F) and for all (z*,y*) €
Graph(F) it holds that(y — y*)T(x — *) > 0. In
addition, if(y—y*)T (x—x*) > a||z—=x*||? for some
a > 0, then the set-valued map is strictly monotone.
e A monotone set-valued functiofF (x) is called
maximal monotone if there exists no other monotone
set-valued function whose graph strictly contains the
graph ofF. If F is strictly monotone and maximal,
then it is called strictly maximal monotone.

In this section we will consider the dynamics of mea-
sure differential inclusions (5) with certain maximal meno
tonicity conditions onl" (x, w(t)). In particular, we study
systems for whichI'(z,w(t)) can be split in a state-
dependent part and an input-dependent part. The state-
dependent part is, with the help of a maximal monotonicity
requirement, assumed to be strictly passive with respect
to the Lebesgue measure and passive with respect to the

The wording ‘attractively stable’ has been used instead atomic measure. Such kind of systems will be simply re-
of the usual term ‘asymptotically stable’, because attrac- ferred to as ‘maximal monotone systems’ in the following.

tivity of solutions in (measure) differential inclusionarc
be asymptotic or symptotic (finite-time attractivity) (bei
and van de Wouw, 2008).

The solutionz,, (t) is called asteady-state solutionAs
follows from the definition of convergence, any solution
of a convergent system “forgets” its initial condition and

We first formalise maximal monotone systems in Sec-
tion 4.2, subsequently give sufficient conditions for the ex

istence of a compact positively invariant set in Section 4.3
(which plays an important role in the proof for conver-

gence) and finally give sufficient conditions for conver-

gence in Section 4.4.

converges to some steady-state solution. In general, the

steady-state solutioh,, (¢) may be non-unique (where the
subscript emphasizes the fact that the steady-state@oluti
depends onw(t)). But for any two steady-state solutions
T, 1(t) andz,, o(t) it holds thatl|z., 1 (t) — . 2(t)|| — 0
ast — +oo. At the same time, founiformly convergent

systems the steady-state solution is unique, as formulated

below.

Property 1 ((Pavlovet al., 200%; Pavlov et al., 2005))

If system (5) is uniformly convergent, then, for any input
w(t) € PCy, the steady-state solutiai, (t) is the only
solution defined and bounded for ak R.

Uniformly convergent systems excited by periodic or con-
stant inputs exhibit the following property, that is pauntic
larly useful in, for example, bifurcation analyses of pdrio
ically perturbed systems.

Property 2 ((Demidovich, 1967; Pavlowt al., 2005))
Suppose system (5) with a given inputt) is uniformly
convergent. If the inputv(t) is constant, the correspond-
ing steady-state solutian,,(t) is also constant; if the in-
putw(t) is periodic with period’, then the corresponding
steady-state solution,, (t) is also periodic with the same
periodT'.

4 Convergence of Maximal Monotone Systems

4.1 Maximal Monotonicity

Let us first define maximal monotone set-valued func-
tions.

4.2 Maximal monotone systems

Letx € R™ be the state-vector of the system and R™
be the input vector. Consider the time-evolutioruab be
governed by a measure differential equation of the form

de = —da — ¢(x) dt + db(w), (6)
wherec : R” — R" is a single-valued function anda

and db(w) are differential measures with densities with
respect todt and dy, i.e. da a;dt + a; dn, and
db(w) = bj(w)dt + b) (w)dn. We assumer™b; (w)

to be bounded from above by a constantBasically, this
gives an upper-bound on the energy input of the impulsive
inputs. Such an assumption makes sense from the physical
point of view, see the example in Section 5. The quanti-
tiesa; anda;,, which are functions of time along solutions
of (6), obey the set-valued laws

a; € A(z), (7)

a, € Ax™), (8)
where A is a set-valued mapping. The dynamics can be
decomposed in a Lebesgue measurable part and an atomic
part. The Lebesgue measurable part gives the differential
equationk(t) := x} = —a}(x(t)) — c(x(t)) + b (w(t)),
which forms with the set-valued law (7) a differential in-
clusionz € —A(x) — c(z) + b;(w) a.e. The atomic part



gives the state-reset rule" —x~ := x, = —a; + b (w).

In mechanics, the state-reset rule is called the impactequa

tion. The above impact law (8), for whicH is only a func-
tion of z*, corresponds to a completely inelastic impact

equation. Because of the similarity between the laws (7)

and (8), we can combine these laws into the measure law

da € dA(z*) = A(z*)(dt + d). 9)

The equality of measures (6) together with the measure

law (9) constitutes a measure differential inclusion
drze—dA(z") —c(z)dt + db(w):= dI'(z,w). (10)

The set-valued operatod(z) models the non-smooth dis-
sipative elements in the system. We assume t#ét)

is a maximal monotone set-valued mapping, see Defini-

tion 2. Moreover, we assume thate .A(0). This last
assumption together with the monotonicity assumption im-
plies the conditioncTa > 0 for all a € .A(x) and for any

x € X, i.e. the action ofA is passive. Furthermore, we
assume thatd(x) + c(x) is a strictly maximal monotone
set-valued mapping, i.e. there existseap- 0 such that

(x2 — 1) " (a2+ c(x2) — a1 — c(x1)) (11)
> afzy — x4,

for all a; € A(xy), as € A(xs) and for any two states
X, T € X.

4.3 Existence of a compact positively invariant set

The existence of a compact positively invariant set plays

an important role in the proof of convergence as will be-
come clear in Section 4.4. Clearly, if the impulsive inputs
are passive in the sense that™)"b; (w(t)) < 0 for all

t, then the system is dissipative for larfje| and all so-
lutions must be bounded. In the following theorem, we
give a less stringent sufficient condition for the existence
of a compact positively invariant set of (10) based on a
dwell-time condition (Hespanha and Morse, 1999) on the
occurrence of the impulsive inputs.

Theorem 1
A consistent measure differential inclusion of the form)(10
has a compact positively invariant set if

1. A(x) is a maximal monotone set-valued mapping

with 0 € A(0),

A(x) + c(x) is a strictly maximal monotone set-

valued mapping, i.e. there exists an > 0 such

that (11) is satisfied,

. there exists & € R such tha(z ") b (w) <  for
allx € X, i.e. the energy input of the impulsive inputs
is bounded from above,

. the time-instances$; for which the input is im-
pulsive are separated by the dwell-time <

— ti, with 7 = 505 In(1 + %) and

2.

tiv1

—a;<0)—c<0)+bi(w<t>>)

max(0, S

v sup

teR,a’,(0)c.A(0)
for somes > 1.

Proof. Consider the Lyapunov candidate functigin =
1zTz. The differential measure d has a densityi’
with respect to the Lebesgue measuteand a density
W+ — W~ with respect to the atomic measudg), i.e.
dW = W dt+ (W+ — W) dn. We first evaluate the den-
sity W: W = & (—a} — c(z) + b(w)) = =T (—a} —
c(z)+a}(0)+¢(0))+=xT(—a}(0) — c(0) +b;(w)), with
a; € A(x) anda;}(0) € A(0). Due to strict monotonicity
of A(x) + c(x), there exists a constaat> 0 such that

W < —afl@|? + 2" (~a}(0) - c(0) + bj(w)),
< ~llall(af=]
{~ai(0) - ¢(0) + B (w(1)} ).
(12)

sup
teR,a}(0)c.A(0)

Note thatl¥’ < 0 for « satisfying

—a;(0) — c(0) + bj(w(t))

] > -

sup
teR,a}(0)€.A(0)

(13)
For ||z|| > ~, with v as defined in the theorem, we can
prove an exponential decay @f (in between state jumps
att = t;). Note that the functiorf(z) = —(1 — })az? is
greater thag(z) = —ax? +~yax for x > §v, wheres > 1
is an arbitrary constant and > 0. It therefore holds that
W < —(1 - Hallz|?for |z > v, i.e.

W< -2 (1 - ;) oW for ||| >dvy.  (14)

Subsequently, we consider the juip™ — W~ of W:
WH—w-=i(zt+z)T (@" —ax7),witha™ -z~ =
—a,, + b} (w) anda;, € A(x"). Elimination ofz~ and
exploiting the monotonicity ofA(x) gives

_ 1 T
Wt —w- = 5(2;2+ + a; — b;('w)) (—a% + bln(w))

()" (—a,+ b (w)) — 5 [|af, — by () < 5,
(15)

in which we used the assumption that the energy input
of the impulsive inputs; (w) is bounded from above by

08 (see condition 3 in the theorem) and the monotonic-
ity and passivity ofA. Then, due to (14), for the non-
impulsive part of the motion it holds that fitc (¢o)|| < ~
then ||x(t)]] < ~ for all t € [to,t*] (if no state resets
occur in this time interval). Moreover, as far as the state
resets are concerned, (15) shows that a state reset from a
statex(t;) e VwithV = {x € X' | ||z|| < dv} can only
occur tox™ (t;) such thatW (z ™ (t;)) := $lle™(;)]? <



W(z~(t;)) + B < 6% + B (note hereto the specific  Then, we calculate the corresponding valué ahd obtain
form of W = 1aTx). During the following open time-  the size of the compact positively invariant set.

2
interval(t;, ¢+, for which b%(w(i)) = 0, the functionV/ In this section, we have presented a sufficient condition
evolves asV (@~ (tiv1)) = W(@"(t:) + fi, 1.,y W, for the existence of a compact positively invariant set, but
which may involve impulsive motion due to dissipative im-  the attractivity of solutions outsideé’ to WV is not guaran-

pulsesa;. Letty € (t;,ti41) be the time-instance for  teed. If in addition the system is incrementally attradgive

which [z~ (ty)|| = dy. The functionV will necessar-  stable, for which we will give a sufficient condition in Sec-
ily decrease during the tlme—mterv(adi,ztv) due to (14)  tjon 4.4, thenitis also assured that all solutions out¥ile
andW+t — W~ = —(z")Taj, — & ||a|” <0 (the state-  converge to.

dependent impulses are passive). It therefore holds that

Wz~ (ty)) < e 20-Datv—tdyr(z+t,)), (16 44 Conditions for convergence
In the following theorem, it is stated that strictly maximal
monotone measure differential inclusions are uniformly

_ _ 1 + _W-
becausedW < —2(1 — 5)aW dt + (W* — W™)dn < convergent.

—2(1 — §)aWdt for positive measures. Using
Wz~ (ty)) = 30292 and W(zt(t;)) < 26292 +
B in the exponential decrease (16) giveés?y? <
672(1%)04@1,41»)(%5272Jrﬁ) orty —t; < s~ In(1+ Theorem 2

23 . : 2(0-L)er A consistent measure differential inclusion of the form)(10
5%2). Consequently, if the next impulsive time-instance is exponentially convergent if

t;+1 of the input is afterty, then the solutionz(t) has
enough time to reacl. Hence, if the impulsive time-
instance of the input are separated by the dwell-timiee.
tiv1 —t; > T, with

1. A(x) is a maximal monotone set-valued mapping,
with 0 € A(0),

2. A(x) + c(x) is a strictly maximal monotone set-
valued mapping,

Y 26 ), (17) 3. system (10) exhibits a compact positively invariant set.

T= 6 -Ta In(1+ 322

then the set Proof. Let us first show that system (10) is incrementally
attractively stable, i.e. all solutions of (10) converge to
each other for positive time. Consider hereto two solu-

5292 + ﬁ} (18) tions () and x,(t) of (10) and a Lyapunov candidate
functionV' = 1|z — x,||>. Consequently, the differen-

. S tial measure ol satisfies:dV = 1(z3 + z; — ] —

is a compact positively invariant set. O 27T (das — day), with dzy = —day — e(z)dt +

Typically, we would like the invariant sé¥ to be as small db(“jr)’ dzz = —das _f("’2) dt + db(w), whereda, €
as possible, as it gives an upper-bound for the trajectories’A(®1) and da, € A(z;'). The differential measure 6f
of the system. On the other hand, we also want the dwell- "2 @ density” with respect to the Lebesgue measidte
time to be as small as possible. The consfantl playsin  &nd adensity’” — V'~ with respect to the atomic measure
interesting role in the above theorem. By increasinge 4 -8 dV = V.dt + (V7 — V™) dn. We first evaluate
allow the invariant setV to be larger, thereby decreasing 1€ densitV:
the dwell-timer. So, there is a kind of pay-off between the
size of the invariant set and the dwell-time. Afimitevalue T ,
of § is sufficient to prove the existence otampactposi- V= —(®2 — @) (ay(®2) + c(x2) — by (w)
tively invariant set. We therefore can take the dwell-time —aj(x1) — c(x1) + b (w))
fobe an arbivary smal valle, but notnfinelysmall. THS  — _(z, )" af ) + laz) — 1) - eler)

) (29)

1 1
W:{w€X|2||a:||2§2

Corollary 1
If the size of the compact positively invariant set is not of
interest, then Condition 4 in Theorem 1 can be replaced by wherea;(z1) € A(x1) anda;(x2) € A(x2), Since both

an arbitrary small dwell-time- > 0. solutionsx; andx, correspond to the same perturbation
, o . . w. Due to strict monotonicity ofd(x) +c(x), there exists

Proof. Tgkmg the limit ofé — oo gives the condition > a constanty > 0 such thatl’ < —a|zs — x1||?. Subse-

0 for arbitraryy andj3. = quently, we consider the jumipt —V - of V: VT -V~ =

It therefore suffices to assume that the impulsive inputs ares(®s @y —xf —a)" (25 —x; —af +=27), with

separated in time (which is not a strange assumption from®1 — &1 = —a; (1) + by (w), for aj (z1) € A(zy),

a physical point of view) and simply putequal to the (un- ~ andzj —x; = —a;,(z2)+b),(w), fora; (z,) € A(z3).

known) minimal time-lapse between the impulsive inputs. Elimination ofx; andz; and exploiting the monotonicity



of A(x) gives We can decompose the differential measure of the
one-way clutch inds = Adt + Adn, whereX = s}

_ 1 is the contact force andh = s/ is the contact im-
+ _ . + / _ + T n
v v 2 (23 + ay(@2) = 221 — ay(@1)) pulse. The differential impulse measute of the one-way
(—a(x2) + a (x1)) clutch obeys the set-valued force lawds € Upr(u™).

The set-valued functiofUpr(z) is the unilateral primi-

= —(z5 —a)" (a;(22) — @) (1)) tive (Glocker, 2001);

n n
5 lai (@) — @)’

=0. U 0<zly>0

(20) —yeUpr(z) <= 0<z Ly> 22)
< x>0,y>0, 2y =0,

It therefore holds thal” strictly decreases over every non-

empty compact time-interval as long as # x1. In turn,

this implies that all solutions of (10) converge to each bthe being a maximal monotone operator.

exponentially (and therefore uniformly).

Finally we use Lemma 2 in (Yakubovich, 1964), which : L
formulgtes that if a system exh(ibits a compact pos)itively in £ dp - fdt+ F.dn' we assume that an impulsive input
variant set, then the existence of a solution that is boundedF > 0is transmitted by firing bUHEtS. with mass, and
fort € R is guaranteed. We will denote this ‘steady-state’ constant speed < “lwl"r_‘ thle IEf‘ﬁ .S'de of ”E maﬁa.
solution byz,,(t). The original lemma is formulated for :/r\]/g t?jl?gtr?senitc:t;?éotgtﬁi%/t;]neema:\g(;;wg?ﬁ;z Itﬁeli}nt Slr;e
differential equations (possibly with discontinuitielsete- L . P
with including differential inclusions, with bounded righ £ €duals zero. [ < v, then the impulsé” equals the
hand sides). Here, we use this lemma for measure differ-MaSS of the bullet multiplied with its velocity jump” =

T : L
ential inclusions and would like to note that the proof of mo(v — ™). Similarly, we assume that an impulsive input
the lemma allows for such extensions if we only require [ < 0is transmitted by firing on the right side of the mass

continuous dependence on initial conditions. The latter is _mW'th aspeed < 0, bounded byv| < vmax. The energy

guaranteed for monotone measure differential inclusions,mpuwiF :1m°u+(1f —u”) of the impulsel” is maximal
because incremental stability implies a continuous depen-Whenlu :2 2 and+|s therefore bounded from above by
dence on initial conditions. B = gmovmax 2 [uTF.

Since all solutions of (10) are globally exponentially sta- We first prove the existence of a compact positively in-
ble, alsoz,,(¢) is a globally exponentially stable solution. variant set with Theorem 1. Theorem 1 uses the Lyapunov
This concludes the proof that the measure differential in- function W (u) = 1u?, which we recognise to be the ki-
clusion (10) is exponentially convergent. O netic energy divided by the mass. The time-derivative
W gives, usinguh = 0, W < —L42 + usup,cr(f(t)),
and it therefore holds that = 2 andy = 7 sup,cr(f(t))
jwith o and~y defined in Theorem 1. Theorem 1 states that
if the time-instances; of the impulsed” are separated by
the dwell-timer = 550 In(1 + %), then the set
W = {ueR"|iu? <1622+ 3} is a compact posi-
tively invariant set for arbitrary > 1. Following Corol-

L lary 1, we conclude that the dwell-time can be made ar-

g=u bitrary small by increasing. We therefore take to be
smaller than the minimal time-lapse between two succeed-

g ing impulsive time-instances, which gives a lower bound
for 6.

The input consists of a bounded foréeand an impulse

5 lllustrative Example: a One-way clutch

In this section, we present an example of a mechanica
system with a set-valued force law (modelling a one-way
clutch) that illustrates the power of the result in Theorem 2

&
o

Just as in the proof of Theorem 2, we prove incremental
stability using the Lyapunov functiol = %(UQ —up)?.
N First, we consider the time-derivativé&

Figure 1. Mass with one-way clutch and impulsive actuation.
V = (UQ — ul)(’llg — 1),1)
1

The time-evolution of the velocity of a mass subjected = (uz — ul)E(AQ = buz — Ay +bus)

to a one-way clutch, a dashppt> 0 and an external input 1 b 9 23
(considering both bounded and impulsive contributions), = (u2 — ul)E(AQ - M) - E(“Q —u1)”, (23)
see Figure 1, can be described by the equality of measures with — A; € Upr(uy), —Xo € Upr(us)
b
mdu = dp + ds — budt. (22) < ——(ug —up)*

m



Subsequently, we consider a jumplin

Vvt —v- :V(u;’_,u;‘) - V(u1_7u2_)

1 1 _ _

S CRTIS R
1 _ _

:i(“;‘*‘uz —uf —uy)

(ug —uy —uf +uy).

Following the proof of Theorem 2, we eliminatg and
uy by substituting the impact equation(uj —uy) =
Aj+F,j=12

Monteiro Marques, M. (1993Differential Inclusions in Nons-

mooth Mechanical SystenBirkhaliser. Basel.

Moreau, J. J. (1989. Bounded variation in time. InTopics in

Nonsmooth Mechanidd. J. Moreau, P. D. Panagiotopoulos
and G. Strang, Eds.). pp. 1-74. Biddser Verlag. Basel,
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Moreau, J. J. (198§. Unilateral contact and dry friction in finite

freedom dynamics. InNon-Smooth Mechanics and Appli-
cations(J. J. Moreau and P. D. Panagiotopoulos, Eds.). \Vol.
302 of CISM Courses and Lecturepp. 1-82. Springer.
Wien.

Pavlov, A., A.Y. Pogromsky, N. van de Wouw and H. Nijmeijer

(2007). On convergence properties of piecewise affine sys-
tems.International Journal of Contro80(8), 1233-1247.

Pavlov, A., N. van de Wouw and H. Nijmeijer (2004). Conver-

1 1 1 1 gent dynamics, a tribute to B.P. Demidovi@ystems and
Vt-vT = 3 (2uf —— Ay —2uf +—Ay)—(Ay—Ay) Control Letters52(3-4), 257—261.
1 m 1 m m Pavlov, A., N. van de Wouw and H. Nijmeijer (2085 Conver-
= (u;r—uf)—(Ag—Al)—j(Ag—Al)Q <0. gent systems: Analysis and design. I@ontrol and Ob-
m 2m (25) server Design for Nonlinear Finite and Infinite Dimensional

Hence, it holds for the differential measud®” that dV =
Vdt+ (Vt —V7)dn < —a(ug — uy)?dt, with o = L
Integration of dV' over a non-empty time-interval there-
fore leads to a strict decrease of the functiémas long as
ug # wp. This proves incremental stability. Consequently,

SystemgT. Meurer, K. Graichen and D. Gilles, Eds.). Vol.
332 ofLecture Notes in Control and Information Sciences
Stuttgart, Germany. pp. 131-146.

Pavlov, A., N. van de Wouw and H. Nijmeijer (2085 Uniform

Output Regulation of Nonlinear Systems: A Convergent Dy-
namics ApproachBirkhauser. Boston. In Systems & Con-
trol: Foundations and Applications (SC) Series.

the system is exponentially convergent (see Theorem 2)_Yakubovich, V.A. (1964). Matrix inequalities method in stability

This property implies, see Definition 1, that for any input,
with measuredp, with a bounded Lebesgue measurable
partf dt and the impulsive part relating to bounded energy,
the system exhibits a unique bounded steady-state solution
to which all other solutions converge exponentially.

6 Conclusions

In this paper, we have presented sufficient conditions for
the convergence property of a class of measure differential
inclusions with certain maximal monotonicity properties.
The results are illustrated by application to a mechanical
system with a unilateral constraint (a mass-damper system
with a one-way clutch and impulsive inputs). Future work
involves the exploitation of such convergence properties
to design tracking controllers for mechanical systems with
unilateral constraints.
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