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Abstract— : In this paper we present conditions under which
an equilibrium set of a multi-degree-of-freedom nonlinear
mechanical system, with set-valued friction and an arbitrary
number of frictional bilateral constraints, is attractive. These
systems form an important class of hybrid engineering systems.
The attractivity results are obtained using the framework of
differential inclusions together with a Lyapunov-type stability
analysis and LaSalle’s invariance principle. The special struc-
ture of mechanical systems allows for a natural Lyapunov
function candidate and a generic result for a large class
of systems. Moreover, an instability theorem for assessing
the instability of equilibrium sets of differential inclusions is
presented. These results are illustrated by means of an example
of a nonlinear mechanical system exhibiting both attractive and
unstable equilibrium sets.

I. INTRODUCTION

Most stability studies of discontinuous (hybrid) systems
have focussed on isolated equilibrium points (or periodic or-
bits). However, in many systems discontinuities may induce
the existence of entire connected sets of equilibria (called
stationary sets or equilibrium sets), which can dramatically
influence the dynamics. For a wide range of both controlled
and uncontrolled (electro-mechanical) systems, dry friction
can seriously affect the performance through the presence
of such equilibrium sets. More specifically, the stiction phe-
nomenon in friction can induce the presence of equilibrium
sets, see for example [1]. The stability properties of such
equilibrium sets is of major interest when analysing the
global dynamic behaviour of these systems.

The aim of the paper is to present theoretical results which
can be used to rigourously prove the conditional attractivity
or instability of the equilibrium sets of nonlinear mechanical
systems with frictional bilateral constraints.

The dynamics of mechanical systems with set-valued fric-
tion laws are described by differential inclusions of Filippov-
type, see [2], [3] and references therein. Filippov systems,
describing systems with friction, can exhibit equilibrium sets,
which correspond to the stiction behaviour of those systems.
Many publications deal with stability and attractivity prop-
erties of (sets of) equilibria in differential inclusions [4],
[5], [6], [7], [8]. For example, in [4], [5] the attractivity of
the equilibrium set of a dissipative one-degree-of-freedom
friction oscillator with one switching boundary (i.e. one dry
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friction element) is discussed. Moreover, in [5], [6], [7] the
Lyapunov stability of an equilibrium point in the equilibrium
set is shown. Most papers are limited to either one-degree-of-
freedom systems or to systems exhibiting only one switching
boundary. Very often, the stability properties of an equilib-
rium point in the equilibrium set is investigated and not the
stability properties of the set itself. In this context, it is worth
mentioning that in the more general scope of discontinuous
systems, a range of results regarding stability conditions
for isolated equilibria are available, see for example [9] in
which conditions for stability are formulated in terms of
the existence of common quadratic or piece-wise quadratic
Lyapunov functions. In [10], extensions are given of the
absolute stability problem and the Lagrange-Dirichlet theo-
rem for systems with monotone multi-valued mappings (such
as for example Coulomb friction). In the absolute stability
framework, strict passivity properties of a linear part of the
system are required for proving the asymptotic stability of
an isolated equilibrium point, which may be rather restrictive
for mechanical systems in general. Moreover, certain stability
properties of equilibria in discontinuous systems of Lur’e
type are studied in [11]. In a previous publication [12], we
provided conditions under which the equilibrium set of a
multi-degree-of-freedom linear mechanical system with an
arbitrary number of Coulomb friction elements is attrac-
tive using Lyapunov-type stability analysis and LaSalle’s
invariance principle. Moreover, dissipative as well as non-
dissipative linear systems have been considered.

In this paper we will give conditions under which an equi-
librium set of a multi-degree-of-freedom nonlinear mechan-
ical system with an arbitrary number of frictional bilateral
constraints is attractive. The theorem for attractivity is proved
using the framework of differential inclusions together with
a Lyapunov-type stability analysis and LaSalle’s invariance
principle. The special structure of mechanical multi-body
systems allows for a natural choice of the Lyapunov function
and a systematic derivation of the proof for this large class
of systems.

The modelling of nonlinear mechanical systems with set-
valued dry friction laws by differential inclusions is discussed
in Section II. Subsequently, the attractivity properties of
an equilibrium set of a system with friction are studied in
Section III-A. Moreover, the attractivity analysis provides
an estimate for the region of attraction of the equilibrium
set. In Section III-B, an instability theorem for differential
inclusions is presented. These results are illustrated by an
example in Section IV. Finally, concluding remarks are given
in Section V.
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II. MECHANICAL SYSTEMS WITH SET-VALUED FRICTION

LAWS

We consider nonlinear mechanical systems with n degrees
of freedom and m bilateral constraints with set-valued dry
friction (frictional sliders). These kind of systems are very
common in engineering practice (think for example of indus-
trial robots, automotive drivelines and many others) and form
an important class of hybrid engineering systems. We assume
that a set of independent generalised coordinates q ∈ R

n is
known, for which the m bilateral constraints are eliminated
from the formulation of the dynamics of the system. We
formulate the dynamics of the system using a Lagrangian
approach, resulting in(

d

dt
(T,q̇) − T,q + U,q

)T

= f nc(q, q̇)+W T (q)λT , (1)

or, alternatively,

M(q)q̈ − h(q, q̇) = W T (q)λT . (2)

Herein, M(q) = MT(q) > 0 is the mass-matrix and T =
1
2 q̇TM(q)q̇ represents kinetic energy. Moreover, U denotes
the potential energy. The column-vector f nc in (1) represents
all smooth generalised non-conservative forces. The state-
dependent column-vector h(q, q̇) in (2) contains all dif-
ferentiable forces (both conservative and non-conservative),
such as spring forces, gravitation, smooth damper forces
and gyroscopic terms. Moreover, the friction forces λT are
assumed to obey Coulomb’s set-valued force law:

λT ∈

⎧⎪⎨
⎪⎩
−µ|λN |, γT > 0,

[−1, 1]µ|λN |, γT = 0,

µ|λN |, γT < 0.

(3)

Herein, λN is the normal force in the frictional contact,
µ ≥ 0 is the friction coefficient and γT is the relative sliding
velocity between the bodies involved in the frictional contact
(γT = 0 in case of stick). The admissible values of the
friction force λT form a convex set CT which is bounded by
the values of the normal force [13]: CT = {λT | −µ|λN | ≤
λT ≤ +µ|λN |}. Now, the friction force λTi ∈ CTi in each
frictional contact i ∈ {1, . . . , m}, is described by Coulomb’s
set-valued force law (3). Note that the sets CTi generally
depend on the normal contact force λNi ∈ R. The normal
and frictional contact forces of all m contacts are gathered
in columns λN = {λNi} and λT = {λTi}, respectively,
and the relative sliding velocities are gathered in the column
γT = {γTi}, for i = 1, . . . , m. We assume that these relative
sliding velocities are related to the generalised velocities
through:

γT (q, q̇) = W T
T (q)q̇. (4)

It should be noted that W T
T (q) = ∂γT

∂q̇
. This assumption is

very important as it excludes rheonomic contacts.
The equation (1) or (2) together with the set-valued

force law (3) for every frictional contact i ∈ {1, . . . , m}
represent a differential inclusion on force-acceleration level.

This differential inclusion exhibits an equilibrium set given
by

E=

{
(q, q̇) |q̇ = 0 ∧ h(q,0) +

m∑
i=1

W Ti(q)CTi � 0

}
, (5)

with W Ti(q) the i-th column of W T (q). It should be
noted that due to the fact that nonlinear mechanical systems,
without dry friction, can exhibit multiple equilibria, the
system with dry friction may exhibit multiple (disconnected)
equilibrium sets.

Let us now state some consequences of the assumptions
made, which will be used in the next section. Due to the
fact that the kinetic energy can be described by T =
1
2 q̇TM(q)q̇ = 1

2

∑
r

∑
s Mrsq̇

r q̇s, with M(q) = MT(q),
we can write in tensorial language

T,q̇k =
∑

r

Mkr q̇
r, T,qk =

1

2

∑
r

∑
s

(
∂Mrs

∂qk

)
q̇r q̇s,

d

dt

(
T,q̇k

)
=

∑
r

Mkr q̈
r +

∑
r

∑
s

(
∂Mkr

∂qs

)
q̇r q̇s

=
∑

r

Mkr q̈
r + 2T,qk

+
∑

r

∑
s

(
∂Mkr

∂qs
−

∂Mrs

∂qk

)
q̇r q̇s

⇒
d

dt
(T,q̇) = q̈TM(q) + 2T,q − (f gyr)T, (6)

with the gyroscopic forces [14] f gyr =
{
f gyr

k

}
, f gyr

k =

−
∑

r

∑
s

(
∂Mkr

∂qs − ∂Mrs

∂qk

)
q̇r q̇s. Comparison with (1)

and (2) yields

h(q, q̇) = f nc(q, q̇) + f gyr(q, q̇) − (T,q + U,q)
T

. (7)

For the stability analysis pursued in this paper it is important
to note that the gyroscopic forces have zero power [14], i.e.

q̇Tf gyr = −
∑

k

∑
r

∑
s

(
∂Mkr

∂qs
−

∂Mrs

∂qk

)
q̇r q̇sq̇k = 0.

(8)

III. STABILITY PROPERTIES OF EQUILIBRIUM SETS

In Section III-A, we propose sufficient conditions for the
attractivity of the equilibrium set and, in Section III-B, an
instability theorem for differential inclusions is proposed,
which can be used to prove the instability of an equilibrium
set.

A. Attractivity of an Equilibrium Set

In this section, we will investigate the attractivity proper-
ties of the equilibrium sets defined in the previous section.

We define the following nonlinear functionals, R
n → R,

on q̇ ∈ R
n:

• Dnc
q (q̇) := −q̇Tf nc(q, q̇) is the dissipation rate function

of the smooth non-conservative forces f nc.
• DλT

q (q̇) :=
∑m

i=1 −λTiγTi(q, q̇) = −γT
T λT is the

dissipation rate function of the frictional forces λT .
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These dissipation rate functions are functions of (q, q̇), but
we write them as nonlinear functionals on q̇ so that we can
speak of the zero-set of the functional Dq(q̇): D−1

q (0) =
{q̇ ∈ R

n | Dq(q̇) = 0}.
As stated before, the type of systems under investigation

may exhibit multiple equilibrium sets. Here, we will study
the attractivity properties of a specific given equilibrium set
Ẽ . By qe we denote an equilibrium point of the system
dynamics with bilateral frictionless contacts (M(q)q̈ −
h(q, q̇) = 0), from which follows that the equilibrium is
determined by h(qe,0) = 0. We assume the potential energy
U(q) to be a locally positive definite function with respect
to qe with a non-vanishing gradient in a subset U of the
generalised coordinate space, i.e.

U(q) =

{
0 q = qe

> 0 ∀q ∈ U\{qe}
and U,q 	= 0,∀q ∈ U\{qe}. (9)

The subset Q = {(q, q̇) ∈ R
n × R

n | q ∈ U} is assumed
to enclose the equilibrium set Ẽ . Notice that the equilibrium
point qe of the system without friction is also an equilibrium
point of the system with friction: (qe,0) ∈ Ẽ . In case the
system does exhibit multiple equilibrium sets, the attractivity
of Ẽ will be only local for obvious reasons. In the following
we will use the Lyapunov candidate function

V (q, q̇) = T (q, q̇) + U(q), (10)

being the sum of kinetic and potential energy. We now
formulate a technical result which states conditions under
which the equilibrium set can be shown to be (locally)
attractive and provides an estimate for its region of attraction.

Theorem 1 (Attractivity of an Equilibrium Set)
Consider system (2), or alternatively system (1) with friction
law (3). If

1) T = 1
2 q̇TM(q)q̇, with M(q) = MT(q) > 0,

2) the potential energy satisfies (9) and the equilibrium set
Ẽ is the largest stationary set contained in Q; so Ẽ ⊂ Q,

3) Dnc
q (q̇) = −q̇Tf nc ≥ 0, i.e. the smooth non-

conservative forces are dissipative, and f nc = 0 for
q̇ = 0,

4) Dnc
q

−1(0)
⋂

DλT

q

−1
(0) = {0} ∀q,

5) Ẽ ⊂ Ic∗ in which the set Ic∗ , with Ic = {(q, q̇) ∈ R
n×

R
n | V (q, q̇) < c}, is the largest level set of V , given

by (10), that is contained in Q, i.e. c∗ = max{c:Ic⊂Q} c,

then the equilibrium set Ẽ is locally attractive and Ic∗ is a
conservative estimate for its region of attraction.

Proof: Note that V is positive definite around the
equilibrium point (q, q̇) = (qe,0) due to conditions 1 and 2
in the theorem. The time-derivative of V satisfies

V̇ = q̇TM(q)q̈ + (T,q + U,q) q̇

(2)
= q̇T (h(q, q̇) + W T (q)λT ) + (T,q + U,q) q̇

(7)
= q̇T (f nc + f gyr + W T λT )

(4),(8)
= q̇Tf nc + γT

T λT .

(11)

Due to conditions 3 and 4 of the theorem and the fact that
DλT

q (q̇) ≤ 0, given the Coulomb friction law (3), it holds
that V̇ = −Dnc

q (q̇)−DλT

q (q̇) ≤ 0. We now consider V̇ as a
nonlinear functional on q̇ and write

V̇ = 0 for q̇ ∈ V̇ −1
q (0) and V̇ < 0 for q̇ /∈ V̇ −1

q (0), (12)

with V̇ −1
q (0) = Dnc

q
−1(0)∩DλT

q

−1
(0). Using condition 4 of

Theorem 1, it follows that V̇ −1
q (0) = {0} and hence

V̇ = 0, for q̇ = 0 and V̇ < 0, for q̇ 	= 0. (13)

We now apply LaSalle’s invariance principle, which is valid
when every limit set is a positively invariant set (see the
remark below). Let us hereto consider the set Ic∗ where c∗

is chosen as in condition 5 of the theorem. Note that Ic∗ is
a positively invariant set due to the choice of V . Moreover,
the set S is defined as S = {(q, q̇) | V̇ = 0} = {(q, q̇) |
q̇ = 0}. On S, the dynamics (2) of the system is described
by h(q,0) + W T (q)λT = 0 and hence by the following
inclusion:

h(q,0) +

m∑
i=1

W Ti
(q)CTi

� 0. (14)

Consequently, we can conclude that the largest invariant set
in S ∩Q is the equilibrium set Ẽ (see (5) and condition 2 of
the theorem). Therefore, it can be concluded from LaSalle’s
invariance principle that Ẽ is a locally attractive set and Iρ∗

is an estimate for its region of attraction.
Remark 1: LaSalle’s invariance principle is valid when every
limit set is a positively invariant set [15]. A sufficient con-
dition for the latter is continuity of the solution with respect
to initial conditions. The system under consideration is a
differential inclusion of Filippov-type, for which continuity
with respect to the initial condition is guaranteed. Under the
above assumptions, it therefore holds that every limit set is
a positively invariant set and LaSalle’s invariance principle
can be applied.
Remark 2: The attractivity result in this section can be
exploited to design controllers for robotic manipulators with
frictional joints that guarantee attractivity of a target equilib-
rium set (one may have to revert to such a control objective
when exact friction compensation is not possible). The con-
trol law, e.g. a simple PD controller as in [16], should, firstly,
guarantee that in all generalised force directions dissipative
(friction or control) forces are active (condition 3 and 4 of the
theorem) and, secondly, guarantee the existence of a positive
definite ‘effective’ potential energy function that is positive
definite around the equilibrium set (conditions 2 and 5 of the
theorem).

B. Instability of Equilibrium Sets

We aim at proving the instability of equilibrium sets of me-
chanical systems with dry friction, under certain conditions,
by showing that these equilibrium sets do not comply with
the definition of Lyapunov stability, i.e. by showing that we
can not find for every ε-environment of the equilibrium set
a δ-neighbourhood of the equilibrium set such that for every
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initial condition in the δ-neighbourhood the solution will
stay in the ε-environment. We aim to do so by generalising
the instability theorem for equilibrium points of smooth
vectorfields (see e.g. [17]) to an instability theorem for
equilibrium sets of differential inclusions1:

Theorem 2 (Instability Theorem for Equilibrium Sets)
Let Ẽ be a bounded connected equilibrium set of the differen-
tial inclusion

ẋ ∈ f(x), almost everywhere, (15)

with x ∈ R
n, f : R

n → R
n and where f(x) is bounded

and upper semi-continuous with a closed and (minimal) con-
vex image. Let V be a continuously differentiable function
such that V (x0) > VE > 0 for some x0, for which
dist(x0, Ẽ) is arbitrarily small, and where VE = max

x∈Ẽ
V (x).

Define a set W = {x ∈ Dr | V (x) ≥ 0}, where Dr ={
x ∈ R

n | dist(x, Ẽ) ≤ r
}

is an environment of Ẽ and

choose r > 0 such that Ẽ ⊂ Dr is the largest stationary set in
Dr. Now, three statements can be made:

1) If V̇ (x) > 0 in W\Ẽ , then Ẽ is unstable;
2) If V̇ (x) ≥ 0 in W\Ẽ and Ẽ ⊂ int(W), then Ẽ is not

attractive;
3) If V̇ (x) ≥ 0 in W\Ẽ and in a bounded environment

of Ẽ solutions of (15) can not stay in S\Ẽ with S ={
x ∈ R

n | V̇ = 0
}

, then Ẽ is unstable.

Proof: The point x0 is in the interior of W and
V (x0) = VE + δV with δV > 0. The continuity of V (x)
implies that V (x) attains its maximum VE in Ẽ for a point
x∗ ∈ bdryẼ , because V (x0) > VE with x0 arbitrarily close
to Ẽ .

Let us first prove statement 1 (instability) using the fact
that V̇ (x) > 0 in W\Ẽ : The trajectory x(t) starting in
x(t0) = x0 must leave the set W . To prove this, notice that
as long as x(t) is inside W , V (x(t)) > VE + δV ∀t > t0
since V̇ > 0 in W\Ẽ . Note that V̇ = 0 in Ẽ since it is an
equilibrium set. Define

γ = min
x∈W,V (x)≥VE+δV

V̇ (x).

The function V̇ (x) = ∂V
∂x

ẋ ∈ ∂V
∂x

f(x) (a.e.) has a minimum
on the compact set {x ∈ R

n| (x ∈ W) ∧ (V (x) ≥ VE +
δV )} = {x ∈ R

n| (x ∈ Dr) ∧ (V (x) ≥ VE + δV )}. Then,
γ > 0 since V̇ (x) > 0 in W\Ẽ and

V (x(t)) = V (x0) +

∫ t

t0

V̇ (x(s)) ds

≥ VE + δV +

∫ t

t0

γ ds ∀ t > t0,

⇒ V (x(t)) ≥ VE + δV + γ(t − t0) ∀ t > t0,

(16)

because the set of time-instances for which V̇ (t) is not
defined is of Lebesgue measure zero. This inequality shows

1Note that (2) and (3) together constitute a differential inclusion of the
form (15).

that x(t) can not stay forever in W because V (x) is bounded
on W . As a consequence, x(t) must leave W through the
surface {x ∈ R

n| dist(x, Ẽ) = r}. Namely, x(t) can not
leave W through the surface V = 0, since V (x(t)) >
VE + δV > 0, ∀ t > t0. Since this can occur for x0 such
that dist(x0, Ẽ) is arbitrarily small, the equilibrium set Ẽ is
unstable.

Let us now prove statement 2 (exclusion of attractivity)
using the fact that V̇ (x) ≥ 0 in W\Ẽ : repeat the reasoning
above and realise that now γ ≥ 0 and thus V (x(t)) ≥ VE +
δV, ∀ t > t0. This excludes the possibility of x(t) ultimately
converging to Ẽ since, firstly, V ≤ VE∀x ∈ Ẽ and, secondly,
the fact that Ẽ is enclosed in the interior of W . Since this
is true for x0, for which dist(x0, Ẽ) is arbitrarily small, no
neighbourhood of Ẽ exists such that for any initial condition
in this neighbourhood the solution will ultimately converge
to Ẽ as t → ∞, i.e. Ẽ is not attractive.

Finally, let us prove statement 3. Since solutions can not
stay in S\Ẽ , ∃t > t0 such that x(t) 	∈ S. Moreover, every
solution x(t) of (15) is an absolutely continuous function
of time and x(t) /∈ S for some small open time domain
(t0, t1). Therefore, for t ∈ (t0, t1), V̇ > 0. Consequently,∫ t1

t0
V̇ (s) ds > 0. This implies that V (t) is strictly increasing

for (t0, t1). As t → ∞, the positive contributions to V (t)
will ensure that the solution will be bounded away from the
equilibrium set for an initial condition arbitrarily close to the
equilibrium set. As a consequence, Ẽ is unstable.

IV. ILLUSTRATIVE EXAMPLE

We study a nonlinear mechanical system with multiple
bilateral frictional constraints. Consider a rod with mass
m, length 2l and moment of inertia JS around its centre
of mass S, see Figure 1. The gravitational acceleration
is denoted by g. The rod is subject to two holonomic
bilateral constraints: Point 1 of the rod is constrained to the
vertical slider and Point 2 of the rod is constrained to the
horizontal slider. Coulomb friction is present in the contact
between these endpoints of the rod and the grooves (friction
coefficient µ1 in the vertical slider and friction coefficient µ2

in the horizontal slider). It should be noted that the realised
friction forces depend on the constraint (normal) forces in
the grooves, which in turn depend on the realised motion,
i.e. on (q, q̇). The dynamics of the system will be described
in terms of the (independent) coordinate θ, see Figure 1. The
corresponding nonlinear equation of motion is given by(

ml2 + JS

)
θ̈+mgl sin θ = 2l sin θλT1

−2l cos θλT2
, (17)

where λT1
and λT2

are the friction forces in the vertical and
horizontal sliders, respectively. Equation (17) can be written
in the form (2), with

M(q) = ml2 + JS , h(q, q̇) = −mgl sin θ,

W T (q) =
[
2l sin θ −2l cos θ

]
.

(18)

The equilibrium set of (17) is given by (5), with CTi
=

{λTi
| −µi|λNi

| ≤ λTi
≤ +µi|λNi

|}, i = 1, 2. Note that
CTi

, i = 1, 2, depend on the normal forces λNi
, i = 1, 2,
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which in turn may depend on the friction forces. The static
equilibrium equations of the rod yield:

λN1
+ λT2

= 0,

λN2
+ λT1

− mg = 0,

l cos θλN1
− l sin θλN2

+ l sin θλT1
− l cos θλT2

= 0.

(19)

Based on the first two equations in (19) and Coulomb’s
friction law (3) for both frictional sliders, the following
algebraic inclusions for the friction forces in equilibrium can
be derived:

λT1
∈ [−µ1|λT2

|, µ1|λT2
|] ,

λT2
∈ [−µ2|λT1

− mg|, µ2|λT1
− mg|] .

(20)

The resulting set of friction forces in equilibrium is depicted
schematically in Figure 2. The equilibrium set E in terms
of the independent generalised coordinate θ now follows
from the equation of motion (17): mgl sin θ = 2l sin θλT1

−
2l cos θλT2

. For values of θ such that cos θ 	= 0 (we assume
that, for given values for m, g and l, the friction coefficients
µ1 and µ2 are small enough to guarantee that this assumption
is satisfied in equilibrium) we obtain:

θ = arctan

(
λT2

−mg
2 + λT1

)
+ kπ, k = 0, 1, (21)

Figure 1: Rod with two frictional constraints.

Figure 2: Attainable friction forces in equilibrium.

for values of λT1
and λT2

taken from (20). Equation (21)
describes the fact that there exist two isolated equilibrium
sets (an equilibrium set E1 around θ = 0 and E2 around
θ = π) for small values of the friction coefficients. The
equilibrium sets are given by

Ek =
{

(θ, θ̇) | θ̇ = 0,−θ̂ ≤ θ − (k − 1)π ≤ θ̂
}

, (22)

with θ̂ = arctan
(

2µ2

1−µ1µ2

)
and for k = 1, 2 and µ1µ2 < 1.

Note that for µ1µ2 ≥ 1 these isolated equilibrium sets merge
into one large equilibrium set, such that any value of θ can
be attained in this equilibrium set. We will consider the case
of two isolated equilibrium sets here.

Firstly, we will study the stability properties of the equi-
librium set E1 around θ = 0. Let us hereto apply Theorem 1
and check the conditions stated therein. Condition 1 of this
theorem is clearly satisfied since the kinetic energy is given
by: T = 1

2

(
ml2 + JS

)
θ̇2. Condition 2 is also satisfied.

Namely, take the set U = {θ | |θ| < π} and realise that
indeed the potential energy U = mgl(1 − cos θ) is positive
definite in U and ∂U/∂θ = mgl sin θ satisfies the demand
∂U/∂θ 	= 0,∀θ ∈ U\{0}. Since there are no smooth non-
conservative forces Dnc

q (q̇) = 0, condition 3 is satisfied.

Finally, we note that Dnc
q

−1(0) = R and DλT

q

−1
(0) = {0},

which implies that condition 4 of Theorem 1 is satisfied.
Note, however, that the set Q = {(θ, θ̇)| |θ| < π} contains
the equilibrium set E1 and part of the equilibrium set E2 (see
Figure 4). Therefore, we consider the largest level set V < c∗

for which the set E1 is the only equilibrium set within this
level set of V = T + U . This level set is an open set and
the value

c∗ = mgl

(
1 −

1 − µ1µ2√
4µ2

2 + (1 − µ1µ2)2

)
(23)

is chosen such that its closure touches the equilibrium set
E2. Consequently, we can conclude that the equilibrium set

Figure 3: Phase plane and the set Ic
∗ in which V = T + U < c

∗.
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E2

W

θ − π

θ̇

Figure 4: Schematic representation of the set W in which V ≥ 0

(V as in (24)).

E1 is locally attractive. The phase plane of the constrained
rod system is depicted in Figure 3 for the parameter values
m = 1 kg, JS = 1

3 kg m2, l = 1 m, µ1 = µ2 = 0.3,
g = 10 m/s2. The trajectories in Figure 3 have been obtained
numerically using the time-stepping method (see [3] and
references therein). The equilibrium sets E1 and E2 are
indicated by thick lines on the axis θ̇ = 0. It can be seen
in Figure 3 that the level set V < c∗ is a fairly good
(though conservative) estimate for the region of attraction
of the equilibrium set E1.

Secondly, we will study the stability properties of the
equilibrium set E2 around θ = π. We apply Theorem 2 and
check the conditions stated therein. The function V in this
theorem is chosen as follows:

V = −
1

2

(
JS + ml2

)
θ̇2 + mgl (1 + cos θ) , (24)

and the set W = {(θ, θ̇)|V ≥ 0 ∧ |θ| > θ̂} is de-
picted schematically in Figure 4. The time-derivative of
V obeys V̇ = −θ̇W T λT = −γT

T λT , with W T =[
2l sin θ −2l cos θ

]
, λT =

[
λT1

λT2

]
and γT = θ̇W T =[

2lθ̇ sin θ −2lθ̇ cos θ
]

are the sliding velocities in the two

frictional sliders. Note that V̇ ≥ 0 for all
(
θ, θ̇

)
∈ W

and V̇ = 0 if and only if θ̇ = 0. Using the equation of
motion (17), we can easily show that solutions can not stay
in S\E2, with S = {(θ, θ̇) | θ̇ = 0}, since E1 ∩W = ∅. The
conditions of statement 3 of Theorem 2 are satisfied and it
can be concluded that the equilibrium set E2 is unstable.

The equilibrium set E2 becomes a saddle point for µ1,2 =
0. This saddle structure in the phase plane (see Figure 3)
remains for µ1,2 > 0, but E2 is a set instead of a point.
Interestingly, the stable manifold of E2 is ‘thick’, i.e. there
exists a bundle of solutions (depicted in dark grey) which are
attracted to the unstable equilibrium set E2. Put differently:
the equilibrium set E2 has a region of attraction, where the
region is a set with a non-empty interior. The unstable half-
manifolds of E2 originate at the tips of the set E2 and are
heteroclinic orbits to the stable equilibrium set E1.

V. CONCLUSIONS

In this paper, a class of hybrid engineering systems,
namely nonlinear mechanical systems with set-valued fric-
tion, are considered. Conditions are given under which
an equilibrium set of a multi-degree-of-freedom nonlinear
mechanical system, with set-valued friction and an arbitrary
number of frictional bilateral constraints, is attractive. The
attractivity result is obtained by using the framework of dif-
ferential inclusions together with a Lyapunov-type stability

analysis and LaSalle’s invariance principle. Moreover, we
provide a conservative estimate for the region of attraction
of the equilibrium set. Moreover, a result on the instability of
equilibrium sets of differential inclusions is proposed. This
result allows us to investigate the instability of equilibrium
sets of nonlinear mechanical systems with frictional bilateral
constraints. An example concerning a nonlinear system with
two frictional bilateral constraints is studied in Section IV
and the attractivity and instability of its equilibrium sets are
assessed using these results.

The theorems presented in this paper have been proved
for dissipative systems and form the stepping stone to the
analysis of non-dissipative systems for which the equilibrium
set might still be attractive due to the dissipative nature of
the frictional forces (see also [12]). Future work will also
involve systems with impacts (i.e. state jumps) and using the
obtained results in the scope of control design for systems
with set-valued friction and impact.
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