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Summary

Physical phenomena such as dry friction, impact and backlash in mechanical systems
or diode elements in electrical circuits are often studied by means of mathematical
models with some kind of discontinuity. Filippov systems form a subclass of discon-
tinuous dynamical systems which can be described by a set of �rst-order ordinary
di�erential equations with a discontinuous right-hand side.

Mechanical systems with dry friction constitute an important example of Filip-

pov systems. The presence of dry friction-induced self-sustained vibrations can be
highly detrimental to the performance of mechanical systems. Many other practical
problems in engineering are related to vibrations caused or inuenced by discontinu-
ous characteristics of physical phenomena. It is therefore desirable to know whether
periodic solutions of a system with dry friction (or Filippov systems in general) exist
for a certain parameter set and how these periodic solutions change for a varying
parameter of the system. Such parameter studies are usually conducted by means of
path-following techniques where a branch of �xed points or periodic solutions is fol-
lowed while varying a parameter. A branch of �xed points or periodic solutions can
fold or can split into other branches at critical parameter values. This qualitative
change in the structural behaviour of the system is called `bifurcation'. Bifurcations
in smooth systems are well understood but little is known about bifurcations in
discontinuous systems.

The objective of the thesis is to investigate di�erent aspects of bifurcations of
�xed points in non-smooth continuous systems and of periodic solutions in Filippov
systems. Filippov systems expose non-conventional bifurcations called `discontin-
uous bifurcations', being di�erent from the conventional bifurcations occurring in
smooth systems. In this thesis, Filippov theory, generalized derivatives and Floquet
theory are combined, which leads to new insight into bifurcations in discontinuous
systems.

First, Filippov's solution concept for di�erential equations with discontinuous
right-hand side is reviewed. Systems with dry friction require special attention. Dif-
ferential equations with discontinuous right-hand side are extended to di�erential
inclusions with Filippov's convex method. Existence of solutions to di�erential in-
clusions is guaranteed under additional conditions but no uniqueness of solutions is
guaranteed. Non-uniqueness plays an important role in the bifurcation behaviour of
Filippov systems.

The local stability of a periodic solution is governed (for the hyperbolic case) by
the fundamental solution matrix. The fundamental solution matrix is also essential
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for the understanding of bifurcations of periodic solutions. Discontinuities of the
vector �eld in Filippov systems cause jumps in the fundamental solution matrix.
The discontinuous behaviour of the fundamental solution matrix is explained and
elucidated in mechanical examples.

The jumps in the fundamental solution matrix can be analyzed by the linear
approximation method which approximates a discontinuous system by a non-smooth
continuous system. The linear approximation method replaces a discontinuity in the
vector �eld by a boundary layer with a vector �eld that varies linearly between the
left and right limit on the edges of the boundary layer. It is found that the jump of
the fundamental solution matrix can be expressed as a convex combination of the
fundamental solution matrices before and after the jump. The linear approximation
method as well as the relation to non-smooth analysis and generalized di�erentials
are discussed in the thesis.

For Filippov systems di�erent de�nitions for the term bifurcation exist in litera-
ture and it is shown that they can be inconsistent with one another. One particular
de�nition, which is applicable to Filippov systems, has been chosen in this thesis as
de�nition for bifurcation.

As a stepping stone to the study of bifurcations of periodic solutions in Filippov
systems (being one of the objectives of the thesis), �rst bifurcations of �xed points
in non-smooth continuous systems are studied. The Poincar�e map relates the bifur-
cations of �xed points in non-smooth continuous systems to bifurcations of periodic
solutions in Filippov systems.

Bifurcations of �xed points of non-smooth continuous systems are treated and it
is shown that discontinuous bifurcations of �xed points occur in non-smooth continu-
ous systems. Explicit expressions are found for the bifurcation points of the simplest
types of non-smooth continuous systems. The encountered elementary discontinuous
bifurcations are compared with their smooth counterpart.

Some important fundamental questions about bifurcations of �xed points in non-
smooth systems are addressed. It is shown that a bifurcation in non-smooth con-
tinuous systems can be discontinuous in the sense that an eigenvalue jumps over
the imaginary axis under the variation of a parameter. A discontinuous counterpart
is found for the saddle-node, transcritical, pitchfork and Hopf bifurcation. Also, a
bifurcation is found which cannot directly be interpreted as a discontinuous coun-
terpart of a bifurcation in a smooth system. A conjecture about the existence of
discontinuous bifurcations of �xed points is formulated and an attempt to a partial
classi�cation of those bifurcations is made.

Finally we have the important ingredients to study bifurcations of periodic so-
lutions in discontinuous systems of Filippov-type. Branches of periodic solutions in
Filippov systems expose discontinuous bifurcations. The basic idea is that Floquet
multipliers (eigenvalues of the fundamental solution matrix) of periodic solutions in
Filippov systems can jump when a parameter of the system is varied. Such a jump
can occur if a periodic solution becomes tangential to the tip of a non-smooth hyper-
surface on which the vector �eld is discontinuous. If a Floquet multiplier jumps over
the unit circle in the complex plane, a discontinuous bifurcation is encountered. We
explore how the discontinuous bifurcations arise through jumps of the fundamental
solution matrix and show how discontinuous bifurcations are related to conventional
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bifurcations in smooth systems.
Several mechanical examples are discussed which show discontinuous fold, ip

and symmetry-breaking bifurcations. It is shown that in a stick-slip system a bi-
furcation exists which connects a branch of stable periodic solutions to a branch
of unstable periodic solutions with a Floquet multiplier at in�nity. Filippov the-
ory turns out to be essential for the understanding of this type of bifurcation as it
is caused by the non-uniqueness of solutions. A combined discontinuous fold{ip
bifurcation is investigated and it is explained how it can be described by the tent
map. The observations from the preceding examples help to discuss fundamental
questions about bifurcations of periodic solutions in discontinuous systems.





Samenvatting

Fysische fenomenen zoals droge wrijving, botsing en speling in mechanische sys-
temen of dioden in elektrische circuits worden vaak bestudeerd door middel van
mathematische modellen met een discontinu karakter. Filippov-systemen vormen
een deelklasse van discontinue dynamische systemen, die worden beschreven door
een stelsel eerste-orde gewone di�erentiaalvergelijkingen met een discontinu rechter-
lid.

Mechanische systemen met droge wrijving vormen een belangrijk voorbeeld van
Filippov-systemen. Droge wrijving kan zich-zelf-in-stand-houdende trillingen veroor-
zaken die zeer schadelijk kunnen zijn voor mechanische systemen. Echter ook andere
praktische problemen in de ingenieurspraktijk zijn gerelateerd aan trillingen die wor-
den veroorzaakt of beinvloed door het discontinue karakter van fysische fenomenen.
Het is daarom wenselijk te weten of er periodieke oplossingen van een systeem met
droge wrijving (of Filippov-systemen in het algemeen) bestaan voor een bepaalde
parameter-set en hoe deze periodieke oplossingen veranderen voor een veranderende
systeemparameter. Dit soort parameterstudies wordt meestal uitgevoerd door mid-
del van continueringsmethoden waarmee een tak van evenwichtspunten of periodieke
oplossingen wordt gevolgd voor een veranderende systeemparameter. Een tak van
evenwichtspunten of periodieke oplossingen kan omvouwen of vertakken bij een kri-
tische waarde van de systeemparameter. Deze kwalitatieve verandering in het dyna-
mische gedrag van het systeem wordt `bifurcatie' genoemd. Bifurcaties die optreden
in gladde systemen zijn goed begrepen maar weinig is bekend over bifurcaties in
discontinue dynamische systemen.

Het doel van dit proefschrift is om verschillende aspecten te onderzoeken van bi-
furcaties van evenwichtspunten in niet-gladde continue systemen en van periodieke
oplossingen in Filippov-systemen. In Filippov-systemen komen niet-conventionele
bifurcaties voor die we `discontinue bifurcaties' noemen. Deze verschillen van de
conventionele bifurcaties die in gladde systemen optreden. In dit proefschrift wor-
den de theorie van Filippov, gegeneraliseerde afgeleiden en de theorie van Floquet
gecombineerd, wat leidt tot nieuwe inzichten in bifurcaties in discontinue systemen.

Eerst wordt een overzicht gegeven van Filippov's oplossingsconcept voor di�eren-
tiaalvergelijkingen met een discontinu rechterlid. Systemen met droge wrijving vra-
gen om speciale aandacht. Di�erentiaalvergelijkingen met een discontinu rechterlid

worden door middel van de convexe methode van Filippov uitgebreid naar di�erentiaal-
inclusies. De existentie van oplossingen van di�erentiaal-inclusies is onder bepaalde
voorwaarden gegarandeerd maar de uniciteit van oplossingen is niet gegarandeerd.
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Niet-uniciteit speelt een belangrijke rol in het bifurcatiegedrag van Filippov-systemen.

De lokale stabiliteit van een periodieke oplossing wordt bepaald (voor het hy-
perbolische geval) door de fundamentaalmatrix. De fundamentaalmatrix is ook van
belang voor het begrip van bifurcaties van periodieke oplossingen. Discontinuiteiten
in het vectorveld van Filippov-systemen veroorzaken sprongen in de fundamentaal-
matrix. Het discontinue gedrag van de fundamentaalmatrix wordt behandeld en
verduidelijkt door middel van mechanische voorbeelden.

De sprongen in de fundamentaalmatrix kunnen worden onderzocht door middel
van de lineaire approximatie-methode, die een discontinu systeem benadert door
een niet-glad continu systeem. De lineaire approximatie-methode vervangt een dis-
continuiteit in het vectorveld door een dunne laag waarin het vectorveld lineair
vari�eert tussen de linker en rechter limiet op de randen van de dunne laag. Het
blijkt dat een sprong in de fundamentaalmatrix kan worden uitgedrukt als een con-
vexe combinatie van de fundamentaal matrices voor en na de sprong. De lineaire
approximatie-methode en de relatie tussen niet-gladde analyse en gegeneraliseerde
afgeleiden worden behandeld in het proefschrift.

Verschillende de�nities voor de term bifurcatie bestaan in de literatuur en deze
de�nities kunnen inconsistent zijn voor Filippov-systemen. In dit proefschrift is
gekozen voor een de�nitie die toepasbaar is op Filippov-systemen.

Als opstap naar de studie van bifurcaties van periodieke oplossingen in Filippov-
systemen (hetgeen een doel is van het proefschrift) worden eerst bifurcaties van even-
wichtspunten in niet-gladde continue systemen bestudeerd. De Poincar�e-afbeelding
relateert bifurcaties van evenwichtspunten in niet-gladde continue systemen aan bi-
furcaties van periodieke oplossingen in Filippov-systemen.

Bifurcaties van evenwichtspunten in niet-gladde continue systemen worden be-
handeld en aangetoond wordt dat discontinue bifurcaties bestaan in niet-gladde con-
tinue systemen. Expliciete uitdrukkingen worden gevonden voor de bifurcatiepunten
in de eenvoudigste typen niet-gladde continue systemen. De elementaire discontinue
bifurcaties worden vergeleken met hun gladde tegenhanger.

Een aantal belangrijke fundamentele vragen over bifurcaties in niet-gladde con-
tinue systemen wordt besproken. Bifurcaties in niet-gladde continue systemen blij-
ken discontinu te kunnen zijn, in de zin dat een eigenwaarde over de imaginaire
as springt bij variatie van een systeemparameter. Een discontinue tegenhanger is
gevonden voor de zadel-knoop-, transkritische-, stemvork- en Hopf-bifurcatie. Ook
is er een bifurcatie gevonden die niet direct kan worden geclassi�ceerd als een dis-
continue tegenhanger van een bifurcatie in een glad systeem. Een vermoeden wordt
uitgesproken over de existentie van discontinue bifurcaties van evenwichtspunten en
een poging wordt gedaan tot gedeeltelijke classi�catie van deze bifurcaties.

Belangrijke ingedi�enten voor de bestudering van bifurcaties van periodieke op-
lossingen in discontinue Filippov-systemen zijn nu voorradig. Op takken van perio-
dieke oplossingen in Filippov-systemen doen zich discontinue bifurcaties voor. De
achterliggende gedachte is dat er zich sprongen voordoen in de Floquet-multipli-
catoren (die de eigenwaarden zijn van de fundamentaalmatrix) van een periodieke

oplossing in een Filippov-systeem onder invloed van een veranderende systeempa-
rameter. Deze sprongen treden op als de periodieke oplossing een tip raakt van
een niet-glad hypervlak dat de discontinuiteit de�ni�eert in het vectorveld. Als een
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Floquet-multiplicator over de eenheidscirkel springt in het complexe vlak, dan treedt
er een discontinue bifurcatie op. In het proefschrift wordt uitgelegd hoe discontinue
bifurcaties ontstaan door sprongen in de fundamentaalmatrix, terwijl voorts de re-
latie tussen discontinue bifurcaties en conventionele bifurcaties in gladde systemen
wordt beschouwd.

Een aantal mechanische voorbeelden wordt besproken die discontinue `fold'-,
`ip'- en `symmetry-breaking'-bifurcaties illustreren. In een stick-slip-systeem treedt
een bifurcatie op die een tak met stabiele periodieke oplossingen verbindt met een tak
met instabiele periodieke oplossingen waarvan een Floquet-multiplicator oneindig
groot is. De theorie van Filippov blijkt essenti�eel te zijn voor het begrijpen van
dit soort bifurcaties, daar deze wordt veroorzaakt door de niet-uniciteit van de op-
lossing. Een gecombineerde discontinue fold{ip bifurcatie wordt behandeld en de
relatie met de tent-afbeelding wordt besproken. De waargenomen bifurcaties uit de
voorbeelden geven een ondersteuning voor een discussie over fundamentele vragen
met betrekking tot bifurcaties van periodieke oplossingen in discontinue systemen.





Chapter 1

Introduction

`If one looks at the di�erent problems of the integral

calculus which arise naturally when one wishes to

go deep into the di�erent parts of physics, it is

impossible not to be struck by the analogies existing.

Whether it be electrostatics or electrodynamics, the

propagation of heat, optics, elasticity, or

hydrodynamics, we are led always to di�erential

equations of the same family.'

Henri Poincar�e

American Journal of Physics 12 (1890) 211.

In this introductory chapter we give a motivation for the thesis. After discussing
di�erent types of discontinuous systems and their characteristics, we de�ne the ob-
jective of the thesis. An outline of the succeeding chapters is given next.

1.1 Motivation

Dry friction is a nonlinearity which is abundant in nature, machines and other pro-
cesses. Although friction may be a desirable property in brakes and violins, it is
generally an impediment. The presence of dry friction can induce self-sustained
vibrations like machine tool chattering, squealing noise of rail wheels, torsional vi-
bration in oilwell drillstrings and many other vibrations which are highly detrimental
to the performance of mechanical systems. Dry friction is therefore an important
topic in scienti�c and engineering research.

Tribologists conducted many experiments on sliding contact during the last
decades and explained the observed frictional phenomena with respect to surface
chemistry and physics. The classical Amontons-Coulomb model was validated but
also more complex tribological models are now available which take some of the
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underlying mechanisms of friction into account. Mechanical engineers and ap-
plied mathematicians have been concerned with the dynamical behaviour of systems
with friction. Studies on frictional dynamics are almost all based on the classical
Amontons-Coulomb model for dry friction. The Amontons-Coulomb model has the
advantage to have a limited amount of parameters and to account only for the essen-
tial features of dry friction, while more complex friction models are only validated
for one type of material combination and are therefore not generally applicable. Fur-
thermore, the Amontons-Coulomb model allows for an e�cient numerical integration
of the equations of motion of a system subjected to dry friction.

Application of the Amontons-Coulomb model to dynamical models of systems
with dry friction results in di�erential equations of Filippov-type. Filippov sys-
tems form a class of discontinuous systems described by di�erential equations with
a discontinuous right-hand side. To the class of Filippov systems do not only belong
mechanical systems with Amontons-Coulomb friction but also electrical circuits with
diode elements, controlled systems with switching control laws, mechatronical sys-
tems with encoders and many other systems, being mechanical or non-mechanical,
where a kind of switching is involved.

The undesired friction-induced vibrations can be prevented by changing the de-
sign of the system or can be combatted with the aid of control theory. Knowledge
on the dynamical behaviour of the system is therefore essential to improve the per-
formance. Profound insight in the dynamical behaviour of dynamical systems can
be gained from modern analysis techniques developed in the nonlinear dynamics
community. The theoretical knowledge and available methods are however only ap-
plicable to smooth dynamical systems. This motivates a theoretical study on the
nonlinear dynamics of Filippov systems.

The nonlinear dynamics of mechanical Filippov systems is explored in this thesis.
Systems with dry friction constitute an important example of mechanical Filippov
systems and are used as key applications of the theory throughout the thesis. Firstly,
we try to provide a theoretical basis for practical investigations of systems of this
class. Secondly, it may form a starting point for in-depth mathematical investiga-
tions. Hence, in the thesis we attempt to establish a bridge between engineering-
oriented and mathematics-oriented research in this �eld.

The next section reviews some basic terminology in the theory on nonlinear
dynamics and bifurcations.

1.2 Nonlinear Dynamics and Bifurcations

Mathematical models are frequently used in many disciplines of science to study
complex behaviour of systems. Systems that can be modeled by nonlinear di�er-
ential equations are called nonlinear dynamical systems. Examples of such systems
occur in economics (economical models of markets), biology (predator-prey models),
chemistry (A-B-C reactions), electronics (electrical circuits with nonlinear elements)
and mechanics (models of machines or moving bodies in general).

A dynamical system starting from a particular initial state can evolve towards a
steady state or to irregular chaotic motion. This steady state may be a stationary
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state, called �xed point in this thesis but also often referred to as equilibrium. The
state of the system may also evolve towards a periodic state, called periodic solution

in this thesis, or to a quasi-periodic state. Stationary and (quasi-)periodic states can
be stable, thereby attracting neighbouring solutions, or be unstable. The knowledge
of the steady states of a system for a certain parameter set is important as they
partly determine the long term dynamical behaviour of the system.

It is often desirable to know how the �xed points and (quasi-)periodic solutions
of a system change when a parameter of the system is changed. Such parameter
studies are usually conducted by means of path-following techniques where a branch
of �xed points or periodic solutions is followed while varying a parameter. The
number and type of �xed points and (quasi-)periodic solutions (being stable or
unstable) can change at a certain parameter value. This qualitative change in the
structural behaviour of the system is called bifurcation, an originally French word
introduced by Poincar�e [1899].

Bifurcations occur in many physical systems. Examples of bifurcations can be
found in morphodynamics (the forming of meanders in rivers), structural mechanics
(the buckling of a beam), utter oscillation of suspension bridges, hunting motion
of rail-way bogies and cardiac arrhythmias in malfunctioning hearts.

1.3 Discontinuous Systems

In this thesis bifurcations in discontinuous1 and non-smooth dynamical systems
are studied. A dynamical system can be expressed as a set of �rst-order ordinary
di�erential equations. Before proceeding we should clarify what we mean with the
term `discontinuous dynamical system' (see Van der Schaft and Schumacher [1997]).

Physical systems can often operate in di�erent modes, and the transition from
one mode to another can sometimes be idealized as an instantaneous, discrete tran-
sition. Examples include mechanical systems with dry friction, impact and backlash
or electrical circuits with diode elements. Since the time scale of the transition from
one mode to another is often much smaller than the scale of the dynamics of the
individual modes, it may be very advantageous to model the transitions as being
instantaneous. For instance, diode elements are often modeled as being ideal diodes
and mathematical models of mechanical systems subjected to dry friction are con-
sidered to switch between a slip mode and a (pure) stick mode. The mathematical
modeling of physical systems therefore may lead to discontinuous dynamical sys-
tems, which switch between di�erent modes, where the dynamics in each mode is
associated with a di�erent set of di�erential equations.

Discontinuous dynamical systems can be divided in three types according to their
degree of discontinuity:

1. Non-smooth continuous systems with a discontinuous Jacobian, like systems
with purely elastic one-sided supports. Those systems are described by a
continuous vector �eld but the vector �eld is non-smooth.

1A function f(x) is continuous at x 2 X provided that for all " > 0, there exists � > 0 so that
y 2 B(x; �) implies jf(x) � f(y)j � ". Roughly speaking, for single-valued functions this means
that we can draw the graph of the function without taking the pencil of the paper. A function f(x)
is smooth if it is continuously di�erentiable up to any order in x.
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model description function

(1) elastic support

m

k

kf

f0 cos!t

x

m�x+kx = f0 cos!t�f(x)

f(x) =

(
0 x � 0

kfx x > 0

non-smooth
continuous

f(x)

x

(2) dry friction

m

k

�

f0 cos!t

x

m�x+kx = f0 cos!t�f( _x)

f( _x) 2

8><>:
�� _x < 0

[��; �] _x = 0

� _x > 0

discontinuous
of Filippov-type

f( _x)

_x

�

��

(3) impact

m

g

x

m�x = �g +mf(x)

x(tk) = 0

_x+(tk) = �e _x�(tk)
f(x) = ( _x+(tk)� _x�(tk))�tk

x(t) � 0; f(x) � 0;

xf(x) = 0

impulsive

f(x)

x

Table 1.1: Non-smooth and discontinuous systems.
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2. Systems described by di�erential equations with a discontinuous right-hand
side, also called Filippov systems (Chapter 2). The vector �eld of those systems
is discontinuous. Examples are systems with visco-elastic supports and dry
friction.

3. Systems which expose discontinuities (or jumps) in the state, like impacting
systems with velocity reversals (not treated in this thesis).

Table 1.1 shows examples of each type of system together with its characteristic
function for the force at the discontinuity. The �rst example is a mass on a one-
sided elastic spring, where the spring force is a non-smooth continuous function
of the position. The second example is a mass with a dry friction damper, where
the dry friction force is a discontinuous function of velocity. The third example is
an impacting ball on a oor, where the contact force exhibits a Dirac pulse at the
instant of impact. In all three cases a kind of switching is involved and those systems
are therefore often called switching systems or di�erential equations with switching

conditions [Eich-Soellner and F�uhrer, 1998]. In the �eld of systems and control
theory, the term hybrid system is frequently used for systems composed of continuous

di�erential equations and discrete event parts [Brogliato, 1999]. Nowadays, the
term hybrid system is used for any system which exposes a mixed continuous and
discrete nature, even if the system is not controlled [Heemels, 1999]. Discontinuous
(or switching/hybrid) systems can be considered as dynamical extensions of Linear
Complementarity Problems, which gives another term : complementarity systems

([Heemels, 1999] and references therein).

1.4 Literature Survey

Discontinuous systems

The amount of publications on discontinuous systems is vast. Only a review of the
literature in the mathematical and mechanical �eld is given here.

The mathematical literature is mainly concerned with existence and uniqueness
of solutions of discontinuous di�erential equations. The fundamental work of Filip-
pov [Filippov, 1964, 1988; Sastry, 1999] extends a discontinuous di�erential equation
to a di�erential inclusion (see Chapter 2). More results on di�erential inclusions can
be found in Aubin and Cellina [1984] and Clarke et al. [1998]. Deimling and Szi-
lagyi [1994], Fe�ckan [1998] and Kunze and K�upper [1997] treat dry friction problems
as di�erential inclusions and address existence of periodic solutions. Aizerman and
Gantmakher [1958] derived jumping conditions of fundamental solution matrices (see
Chapter 3) and their results were extended to systems with a discontinuous state
by M�uller [1995]. Contemporary literature in the �eld of control theory focuses
on hybrid systems and complementarity systems, which encompasses also Filippov
systems [Heemels, 1999; Van der Schaft and Schumacher, 1997].

Publications in the �eld of mechanical systems are mainly concerned with dry
friction/stick-slip oscillations and impact. An extensive literature review on dry fric-

tion models can be found in [Armstrong et al., 1994; Feeny and Guran, 1997; Ibrahim,
1994a,b]. Dynamics of impacting systems (not treated in this thesis) is reviewed ex-
haustively by Brogliato [1999]. Glocker [1995] and Pfei�er and Glocker [1996] apply
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the theory of Linear Complementarity to multibody systems with impact and fric-
tion. Non-existence of solutions of impacting systems is discussed in [Brogliato,
1999; G�enot and Brogliato, 1999].

Bifurcations

During the last decades many textbooks about bifurcation theory for smooth sys-
tems appeared and bifurcations of periodic solutions in smooth vector �elds are well
understood [Guckenheimer and Holmes, 1983; Hagedorn, 1988; Kuznetsov, 1995;
Seydel, 1994]. However, little understanding exists about bifurcations of periodic
solutions in discontinuous vector �elds.

Andronov et al. [1987] treat periodic solutions of discontinuous systems. They
revealed many aspects of discontinuous systems and addressed periodic solutions
with sliding modes (Chapter 2) but did not treat periodic solutions in discontinuous
systems with regard to Floquet theory underlying those solutions.

Many publications deal with bifurcations in discontinuous systems of Filippov-
type. Published bifurcation diagrams were often constructed from data obtained by
brute force techniques and only show stable branches of periodic solutions [Begley
and Virgin, 1997, 1998; Blazejczyk-Okolewska and Kapitaniak, 1996; Dankowicz and
Nordmark, 2000; Galvanetto et al., 1995; Galvanetto and Knudsen, 1997; Hinrichs,
1997; Hinrichs et al., 1998; Kunze and K�upper, 1997; Oancea and Laursen, 1998;
Popp, 1992; Popp and Stelter, 1990; Popp et al., 1995; Stelter, 1992; Wiercigroch,
1994, 1996, 1997] (this list is far from complete). Bifurcation diagrams calculated
with path-following techniques show bifurcations to unstable periodic solutions but
the bifurcations behave as conventional bifurcations in smooth systems [Stelter and
Sextro, 1991; Van de Vrande et al., 1999].

Dankowicz and Nordmark [2000] study bifurcations of stick-slip oscillations but
the applied friction model, with internal states which allow for history and rate
dependence, yields a non-smooth continuous system. A small number of publications
show non-conventional bifurcations in Filippov systems [Elmer, 1997; Yoshitake and
Sueoka, 2000]. Yoshitake and Sueoka [2000] also address Floquet theory and remark
that the Floquet multipliers `jump' at the bifurcation point.

The work of Feigin [1974, 1978, 1995] and Di Bernardo et al. [1999a,b] studies
non-conventional bifurcations in Filippov systems and refers to those bifurcations
as `C-bifurcations' (see Chapter 6). Non-conventional bifurcations of non-smooth
discrete mappings were also addressed by Nusse and York [1992].

Another type of non-conventional bifurcation is the `grazing bifurcation' which
occurs in impacting systems. Bifurcations in impacting systems are studied by
[Brogliato, 1999; Ivanov, 1993, 1996; Foale and Bishop, 1994; Meijaard, 1996; Mole-
naar et al., 1999; Nordmark, 1997; Peterka, 1996].

Numerical methods to calculate periodic solutions in discontinuous systems can
be found in [Eich-Soellner and F�uhrer, 1998; Leine et al., 1998; Meijaard, 1997;
Reithmeier, 1991].

The body of this thesis has been published in [Leine et al., 1998; Leine and Van
Campen, 1999, 2000; Leine et al., 2000].
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1.5 Objective and Scope of the Thesis

The theory of bifurcations in smooth dynamical systems is well developed. This is
not the case for bifurcations in discontinuous dynamical systems. Many practical
problems in engineering are related to vibrations caused or inuenced by physical
discontinuities. Depending on the way of modeling, a mathematical model of the
physical system may fall in one of the three classes of discontinuous dynamical sys-
tems mentioned in the Section 1.3. This urges for a description of the bifurcation
behaviour of discontinuous dynamical systems. Existence of solutions for systems
with a discontinuous state is not guaranteed, which complicates the study of bifur-
cations of those systems. In this sense Filippov systems are less complex as existence
of solutions is guaranteed (under some conditions, see chapter 2). We will therefore
con�ne our study to Filippov systems and non-smooth continuous systems (which
can be regarded as a subclass of Filippov systems). Filippov systems embrace sys-
tems with dry friction and compliant impact but not systems with impact between
rigid bodies. Filippov systems arise also in models of electrical circuits with (ideal)
diode elements, controlled systems with encoders and in other scienti�c �elds. In
this thesis, however, we will focus on mechanical systems although the results apply
to Filippov systems in general. As mentioned before, an important category is the
class of systems with dry friction and we will address these types of systems in Sec-
tions 2.3, 2.4, 3.4 and 6.7 to 6.9. We will especially pay much attention to periodic
solutions of systems with dry friction. Bifurcations of periodic solutions of Filippov
systems are closely related to bifurcations of �xed points in non-smooth continu-
ous systems (discontinuous Jacobian). We will therefore also address bifurcations of
�xed points in non-smooth continuous systems.

The objective of the thesis is to investigate di�erent aspects of bifurcations of

1. �xed points in non-smooth continuous systems

2. periodic solutions in discontinuous systems of Filippov-type

and to study the relation between bifurcations in 1) and 2).
Filippov systems expose non-conventional bifurcations, which we will call discon-

tinuous bifurcations. The basic idea is that Floquet multipliers of Filippov systems
can jump when a parameter of the system is varied. If a Floquet multiplier jumps
over the unit circle in the complex plane a discontinuous bifurcation is encountered.
In the thesis it is explained how the discontinuous bifurcations come into being
through jumps of the fundamental solution matrix and it is shown how discontinu-
ous bifurcations are related to conventional bifurcations in smooth systems.

1.6 Outline of the Thesis

The thesis contains an introductory part which surveys the theory of Filippov and
of Aizerman and Gantmakher. It then proceeds with an investigation of bifurcations
in discontinuous dynamical systems which is the actual body of the thesis.

First, the theory of Filippov is briey discussed in Chapter 2. This theory gives
a generalized de�nition of the solution of di�erential equations with a discontinuous
right-hand side. Numerical methods are also addressed.
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The fundamental solution matrix is essential for the understanding of bifurca-
tions of periodic solutions. Discontinuities of the vector �eld cause jumps in the
fundamental solution matrix. The discontinuous behaviour of the fundamental so-
lution matrix is explained in Chapter 3. The underlying theory is due to Aizerman
and Gantmakher. Some elucidating examples on jumps in the fundamental solution
matrix are given in Section 3.4 and 3.5. After this, the introductory part ends and
the actual body of the thesis begins: a treatment of bifurcations in discontinuous
and non-smooth systems.

Chapter 4 discusses a linear approximation which approximates a discontinu-
ous system by a sti� continuous system or a non-smooth continuous system by a
smooth system. The relation with non-smooth analysis and generalized di�erentials
is discussed.

Chapter 5 deals with bifurcations of �xed points of non-smooth continuous sys-
tems. Explicit expressions are found for the bifurcation points of the simplest types
of non-smooth continuous systems. The results on bifurcations of �xed points of non-
smooth continuous systems are used as a stepping stone to bifurcations of periodic
solutions of Filippov systems. The treatise is restricted to one-parameter bifur-
cations. The simplest discontinuous bifurcations are treated next to their smooth
counterparts which enlarges the insight (although the theory for smooth systems
is well known). The saddle-node, transcritical, pitchfork and Hopf bifurcations are
discussed. A conjecture about the existence of discontinuous bifurcations of �xed
points is formulated and an attempt to a partial classi�cation of those bifurcations
is made.

How bifurcations of periodic solutions of Filippov systems come into being is
explained in Chapter 6. The Poincar�e map relates the bifurcations of �xed points
in non-smooth continuous systems to bifurcations of periodic solutions in Filippov
systems. A comparison is made between continuous bifurcations in smooth systems
and discontinuous bifurcations in Filippov systems.

Several mechanical examples are discussed which show discontinuous fold, ip
and symmetry-breaking bifurcations (Sections 6.6 to 6.9). It is shown that bifurca-
tions exist which connect a branch with stable periodic solutions to a branch with
in�nitely unstable periodic solutions (Section 6.7). Filippov theory turns out to be

essential for the understanding of in�nitely unstable periodic solutions. A combined
discontinuous fold{ip bifurcation is addressed in Section 6.9 and it is explained how
it can be described by the tent map.

Finally, in Chapter 7 a short overview of the thesis is given and the contributions

of the thesis are summarized. Several open problems are recommended for further
research and recommendations are given about terminology.

The theory developed in the preceding chapters is applied in Appendix A to a
simple model of drillstring dynamics.



Chapter 2

Filippov Theory

`He who loves practice without theory is like the

sailor who boards ship without a rudder and

compass and never knows where he may cast.'

Leonardo da Vinci (1452{1519)

This chapter discusses a solution concept for di�erential equations with a discontinu-
ous right-hand side. After discussing an example which illustrates the basic problem,
a concise review will be given of Filippov's convex method which extends a discon-
tinuous di�erential equation to a di�erential inclusion. Existence and uniqueness
problems will be addressed. A numerical technique is presented for the integration

of di�erential inclusions. Special attention is given to the relation between di�er-
ential inclusions and friction models. A `switch model' is developed to allow for an
e�cient solution of dry friction problems.

2.1 The Construction of a Solution

A dynamical system is usually expressed as the following set of ordinary di�erential
equations

_xe(t) = fe(t; xe(t)) xe(t) 2 IRn (2.1)

where xe is the n-dimensional state vector and fe(t; xe(t)) is the vector of right-handsides describing the time derivative of the state vector. A dot (_) denotes di�erenti-
ation with respect to time t. We will assume that fe(t; xe) is linearly bounded [Clarke
et al., 1998], i.e. there exist positive constants  and c such that

kfe(t; xe)k � kxek+ c 8 (t; xe): (2.2)

If the vector �eld is smooth, that is fe is continuously di�erentiable up to any order
both in xe and t, then a solution xe(t) of the system (2.1) exists for any given initial
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condition and is globally unique. In fact, smoothness of the vector �eld is not a
necessary condition for existence and uniqueness of the solution, as can be concluded
from the following theorem by Clarke et al. [1998] (theorem 1.1, page 178):

Theorem 2.1 (Existence and uniqueness of continuous systems)

Suppose that fe(t; xe) is continuous, and let (t0; xe0) 2 IR � IRn be given. Then the

following holds:

1. There exists a solution of (2.1) on an open interval (t0 � �; t0 + �), for � > 0,
satisfying xe(t0) = xe0.

2. If in addition we assume that fe(t; xe) is linearly bounded, so that (2.2) holds,

then there exists a solution of (2.1) on (�1;1) such that xe(t0) = xe0.
3. Let us now add the hypothesis that fe(t; xe) is locally Lipschitz, i.e. there exists

a constant L > 0 such that

kfe(t; xe)� fe(t; ye)k � Lkxe� yek; 8xe; ye 2 IRn
:

Then there exists a unique solution of (2.1) on (�1;1) such that xe(t0) = xe0.
Remark that the continuous systems implied in the above theorem can be allowed
to be non-smooth.

However, di�erential equations stemming from physical systems may be discon-
tinuous, i.e. the right-hand side fe can be discontinuous in xe. The theory of Filip-

pov [Filippov, 1964, 1988; Sastry, 1999] gives a generalized 1 de�nition of the solution
of di�erential equations which incorporates systems with a discontinuous right-hand
side. The solution xe(t) in the sense of Filippov to a di�erential equation with a
discontinuous right-hand side (also called Filippov systems, see Chapter 1) is con-

tinuous in time. Systems with a discontinuous solution, i.e. `jumps' in xe(t) at certaintime instances t (occurring for systems with impact between rigid bodies), are not
described by the theory of Filippov. Filippov's theory will be briey outlined in this
chapter.

In order to make things be as clear as possible, we �rst look at a very simple
one-dimensional example (see Kunze and K�upper [1997]). Consider the following
di�erential equation with a discontinuous right-hand side

_x = f(x) = 1� 2 sgn(x)

=

8><>:
3 x < 0

1 x = 0

�1 x > 0

(2.3)

1Note : `generalized' in the sense that the de�nition holds for a larger class of di�erential
equations.
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with sgn(0) = 0. For a given initial condition x(0) 6= 0 we can obtain a solution of
the IVP (initial value problem)

x(t) =

(
3t+ C1 x < 0

�t+ C2 x > 0
(2.4)

with constants C1 and C2 being determined by the initial condition. Each solution
reaches x = 0 in �nite time. If the solution arrives at x = 0, it can not leave x = 0,
because _x > 0 for x < 0 and _x < 0 for x > 0. The solution will therefore stay at
x = 0, which implies _x(t) = 0. Note that x(t) = 0 with _x(t) = 0 is not a solution in
the classical sense since 0 6= 1� 2 sgn(0). The natural idea to extend the notion of
solution is to replace the right-hand side f(x) by a set-valued function F (x) such that
F (x) = ff(x)g if f is continuous in x. If f is discontinuous in x a suitable choice
of F (x) is required. The di�erential equation is then replaced by the di�erential
inclusion ([Filippov, 1964, 1988])

_x 2 F (x): (2.5)

De�ne the set-valued2 sign function

Sgn(x) =

8><>:
f�1g x < 0

[�1; 1] x = 0

f1g x > 0

(2.6)

which is set-valued at x = 0. With this de�nition x(t) = 0 is a unique global solution
of the di�erential inclusion

_x 2 1� 2 Sgn(x) (2.7)

with initial condition x(0) = 0.

The above example is one-dimensional. We now need to de�ne a di�erential
equation with a discontinuous right-hand side in a more general sense for any di-
mension n. We restrict ourselves to di�erential equations with a right-hand side that
is discontinuous on a number of hyper-surfaces. We start with a single hyper-surface.
The state space IRn is split into two subspaces V� and V+ by a hyper-surface � such
that IRn = V�[�[V+. The hyper-surface � is de�ned by a scalar indicator function
h(xe(t)). 3 The state xe(t) is in � when

h(xe(t)) = 0: (2.8)

The normal ne perpendicular to the hyper-surface � is given by

ne = ne(xe(t)) = grad(h(xe(t))): (2.9)

2With the set [a; b] we mean the interval fx 2 IR j a � x � bg. With fa; bg we mean the set
comprising the elements a and b.

3The indicator function h(x
e

) is considered to be autonomous. Non-autonomous systems can
give rise to non-autonomous indicator functions. However, non-autonomous time-periodic sys-
tems can be transformed into autonomous systems having autonomous indicator functions (see
Appendix B.1).
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An indicator function h to de�ne a certain hyper-surface � is not unique. Di�erent
indicator functions can de�ne the same �. We assume that the indicator function
h(xe(t)) is chosen such that it always holds that

grad(h(xe(t))) 6= 0e: (2.10)

The subspaces V� and V+ and hyper-surface � can be formulated as

V� = fxe 2 IRn j h(xe(t)) < 0g
� = fxe 2 IRn j h(xe(t)) = 0g
V+ = fxe 2 IRn j h(xe(t)) > 0g

(2.11)

The function fe(t; xe) is assumed to be locally continuous, smooth and linearly boundedfor all xe 62 �. From this assumption it follows that the solution xe(t) within each
subspace V� and V+ exists and is unique (cf. Theorem 2.1).

The set-valued extension of fe(t; xe) of (2.1) for xe 2 � is given by the closed convex
hull of all the limits

Fe (t; xe) = cofye 2 IRn j ye = lim
~xe!xe fe(t; ~xe); ~xe 2 IRnn�g (2.12)

where co(A) denotes the smallest closed convex set containing A. All the limits exist
because fe(t; xe) is assumed to be locally continuous, smooth and linearly bounded
for all xe 62 �.

We are now able to consider the following n-dimensional nonlinear system with
discontinuous right-hand side

_xe(t) = fe(t; xe(t)) =
(

fe�(t; xe(t)) xe 2 V�
fe+(t; xe(t)) xe 2 V+; (2.13)

with the initial condition xe(0) = xe0. As mentioned before, the right-hand side fe(t; xe)is assumed to be discontinuous but such that it is piecewise continuous and smooth
on V� and V+ and discontinuous on �. The function fe�(t; xe) is therefore assumedto be C1 on V� [� and fe+(t; xe) is assumed to be C1 on V+ [�. It is not required

that fe�(t; xe) and fe+(t; xe) agree on �. The system described by (2.13) does not

de�ne fe(t; xe(t)) if xe(t) is on �. We can overcome this problem with the following
set-valued extension Fe (t; xe)

_xe(t) 2 Fe(t; xe(t)) =
8><>:

fe�(t; xe(t)) xe 2 V�
coffe�(t; xe(t)); fe+(t; xe(t))g xe 2 �

fe+(t; xe(t)) xe 2 V+;
(2.14)

where the convex set with two right-hand sides fe� and fe+ can be cast in

coffe�; fe+g = f(1� q)fe� + qfe+;8 q 2 [0; 1]g: (2.15)

The parameter q is a parameter which de�nes the convex combination and has

no physical meaning. The extension (or convexi�cation) of a discontinuous sys-
tem (2.13) into a convex di�erential inclusion (2.14) is known as Filippov's convex

method.
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It was stated that the set-valued extension Fe of fe should be suitable. If the
discontinuous system (2.13) is a mathematical model of a physical system, then
we are interested in a solution concept that guarantees existence of solutions. For
practical reasons therefore, we demand that the choice for Fe guarantees existence
of solutions. Existence can be guaranteed with the following notion of upper semi-
continuity of set-valued functions.

De�nition 2.1 (Upper Semi-continuity)

A set-valued function Fe (xe) is upper semi-continuous in xe if for ye! xe
supae2Fe (ye) infbe2Fe (xe) kae� bek ! 0

The following theorem is proven in Aubin and Cellina [1984](theorem 3, page 98):

Theorem 2.2 (Existence of solution of a di�erential inclusion)

Let Fe be a set-valued function. We assume that Fe is upper semi-continuous, closed,

convex and bounded for all xe 2 IRn. Then, for each xe0 2 IRn there exists a � > 0
and an absolutely continuous function xe(t) de�ned on [0; � ], which is a solution of

the initial value problem

_xe 2 Fe (t; xe(t)); xe(0) = xe0:
Filippov's convex method together with the above existence theorem de�nes the
solution in the sense of Filippov for a discontinuous di�erential equation.

De�nition 2.2 (Solution in the sense of Filippov)

An absolute continuous function xe(t) : [0; � ] ! IRn is said to be a solution of

_xe(t) = fe(t; xe) (2.13) in the sense of Filippov if for almost all 4 t 2 [0; � ] it holds that

_xe(t) 2 Fe(t; xe(t));
where Fe(t; xe(t)) is the closed convex hull of all the limits of fe(t; xe(t)) (2.12).
Remarks: If xe(t) is in a region where the vector �eld is continuous, xe(t) 2 V , then ofcourse must hold Fe (t; xe(t)) = ffe(t; xe(t))g. If the solution xe(t) slides along a surfaceof discontinuity, xe(t) 2 �, then _xe(t) 2 Fe(t; xe(t)). However, _xe(t) is not de�ned at
time instances where the solution arrives at a hyper-surface of discontinuity � or
leaves �. The set of t for which xe(t) arrives or leaves � is of measure zero.

It was assumed in (2.2) that fe(t; xe) is linearly bounded. In addition Fe (t; xe(t))is assumed to be bounded on values (t; xe) for which Fe is set-valued. Consequently,
Fe(t; xe(t)) is linearly bounded, i.e. there exist positive constants  and c such that
for all t 2 [0;1) and xe 2 IRn holds:

kFe (t; xe)k � kxek+ c:

Solutions xe(t) to (2.14) therefore exist on [0;1) (see [Aubin and Cellina, 1984;
Clarke et al., 1998]) but uniqueness is not guaranteed.

4
for almost all t means except for a set t of measure 0.
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Figure 2.1: Transversal intersection.

A complication of Filippov systems is the possibility of `accumulation points'
[Filippov, 1988; Heemels, 1999]. At an accumulation point, an in�nite number of
mode switches occur in a �nite time. We will not address this phenomenon in this
thesis and we will assume that no accumulation points occur.

Solutions of di�erential inclusions do not have to be unique. Obviously, the
solution of the IVP where xe0 62 � is locally unique, because fe�(t; xe) and fe+(t; xe) aresmooth. Uniqueness problems of IVPs for initial conditions on � will be illustrated
in the following examples which show three basic ways in which the vector �eld
around � can behave.

Example 2.1

Consider the discontinuous system

_x1 = 4 + 2 sgn(x2 � c)
_x2 = �4 + 2 sgn(x2 � c)

(2.16)

which can be extended to a set-valued vector �eld at � = fx2 = cg by replacing
`sgn(x)' with `Sgn(x)' and `=' with `2'. We take h = c � x2 as indicator function
which de�nes the subspaces V� and V+ by (2.11). The normal ne to � is given by
ne = [0;�1]T. The phase plane of the system is depicted in Figure 2.1. The vector
�eld is pushing the solution to � in the space V� = fx2 > cg and pushing from �
in the space V+ = fx2 < cg. A solution of (2.16) with an initial condition in V�
will after some time hit �, cross it transversally and proceed in V+. This is called a
transversal intersection. Note that the word `transversal' refers to the solution which
is transversal to � and does not refer to the vector �eld fe. Any solution of (2.16)
with an initial condition in V�, exposing a transversal intersection, therefore exists
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Figure 2.2: Attraction sliding mode.

and is unique. A necessary condition for a transversal intersection at � is�
neTfe�(t; xe(t))��neTfe+(t; xe(t))� > 0 xe(t) 2 � (2.17)

where neTfe� and neTfe+ are the projections of fe� and fe+ on the normal to the

hyper-surface �.

The vector �eld could also push the solution to � in both V� and V+. This will
be demonstrated in the following example.

Example 2.2

Consider the system

_x1 = 4 + 2 sgn(x2 � c)
_x2 = 2� 4 sgn(x2 � c)

(2.18)

with the phase plane depicted in Figure 2.2. The solution will hit � but cannot
leave it and will therefore move along the plane �. This is often called a sliding

mode. Because the hyper-surface attracts the solution, we call this an attraction

sliding mode. During the sliding mode the solution will continue along � with time
derivative fe given by

fe = �fe+ + (1� �)fe� (2.19)

with

� =
neTfe�

neT(fe� � fe+) (2.20)
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Figure 2.3: Repulsion sliding mode.

The scalar � can be regarded as the value for q in (2.15) that chooses one fe 2 Fesuch that it lies along �. The solution of (2.18), being an attracting sliding mode,
exists and is unique in forward time. An attraction sliding mode at � occurs if

neTfe�(t; xe(t)) > 0 and neTfe+(t; xe(t)) < 0 xe(t) 2 � (2.21)

where the inequality signs depend of course on the choice of h (in this case h(xe) > 0
in V+ and h(xe) < 0 in V�).

The third possible case is depicted in Figure 2.3 which is the vector �eld of the
following example.

Example 2.3

Consider the system

_x1 = �4� 2 sgn(x2 � c)
_x2 = �2 + 4 sgn(x2 � c)

: (2.22)

Note that this vector �eld is the vector �eld of (2.18) in reverse time. Here the
solutions are diverging from �. A solution which starts close to � will move away
from it. But a solution emanating from � can stay on �, obeying Filippov's solution,
or leave � by entering either V� or V+. This type of vector �eld around the hyper-
surface is addressed as repulsion sliding mode as the vector �eld is repulsing from �.
The IVP with initial condition on � has three possible solutions. The solution still
exists but is not unique in forward time.

We also give a one-dimensional example of non-uniqueness.
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Example 2.4

Consider the one-dimensional system

_x(t) 2 Sgn(x(t)); x(0) = 0 (2.23)

This IVP has three solutions

x(t) =

8><>:
�t x < 0

0 x = 0

t x > 0

(2.24)

A repulsion sliding mode at � occurs if

neTfe�(t; xe(t)) < 0 and neTfe+(t; xe(t)) > 0 xe(t) 2 �: (2.25)

In the preceding examples a locally unique solution in forward time was found
for the transversal intersection and for the attraction sliding mode, whereas non-
uniqueness was shown to exist for the repulsion sliding mode. One can come to the
false conclusion that (2.17) is a su�cient condition for local uniqueness in forward
time. As is shown by the following counter example this is not the case.

Example 2.5

Consider the one-dimensional di�erential inclusion

_x 2 F (x) =
�

2 + sgn(x) x 6= 0
[�1; 4] x = 0

with initial condition x(0) = 0. Existence of the solutions is guaranteed because F
is upper semi-continuous, non-empty, closed, convex and bounded (Theorem 2.2).
Equation (2.17) is also ful�lled. However, the solution is not unique. There are two
possible solutions x(t) = 0 and x(t) = 3t. Non-uniqueness is caused by 0 2 F (0)
which allows the solution to stay on �. Remark that F (x) is not the smallest convex
set containing 2 + sgn(x). The smallest convex set is 2 + Sgn(x), for which holds
0 62 F (0) and which has a unique solution in forward time.

The set-valued function Fe in the di�erential inclusion (2.14) is the smallest closed
convex set that contains the discontinuous function fe of (2.13). If Fe obeys condi-
tion (2.17) at a point on �, then there is no selection from Fe which lies along �. We
conclude that the solution of the di�erential inclusion (2.14) with xe0 2 � is locally
unique in forward time if

1. the projections of the vector �eld point to the same side of �, i.e.

neTfe�(0; xe0)neTfe+(0; xe0) > 0;

or if

2. the projections point to �, i.e.

neTfe�(0; xe0) > 0 and neTfe+(0; xe0) < 0

Filippov's theory will turn out to be very important to understand periodic
solutions where part of the orbit is a sliding mode.
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Figure 2.4: Numerical approximation of a sliding mode.

2.2 Numerical Approximation

As explained in the previous section, solutions to di�erential inclusions can contain
sliding modes. The occurrence of a sliding mode poses a di�culty for numerical
integration. In this section we present a numerical technique for the integration of

di�erential inclusions with sliding modes.

The vector �eld of Figure 2.4a pushes the solution which starts in point A to
the hyper-surface � at point B in �nite time. The solution then slides along � and
leaves � when the vector �eld in the space V+ becomes parallel to �. The solution
will then bend o� at point C, i.e. the point at which the vector �eld is parallel to �,
and reaches point D. This scenario is the attraction sliding mode. The solution from
A to D is unique. If we consider the solution in backward time, that is from D to
A, then the vector �eld reverses and the sliding mode will be of the repulsion type.
The reverse solution is clearly not unique. This insight is essential to understand
bifurcations of periodic solutions with sliding modes which will be treated in the
next chapters.

If we try to integrate such a scenario numerically we are faced with a di�culty:

a Runge-Kutta algorithm, for example, will have collocation points in both V� and
V+ between B and C. The integration algorithm will �nd the correct solution but it
will take an enormous amount of integration points.

Instead, we propose to construct a `band' or `boundary layer' around �, namely
the space V�, to allow for an e�cient numerical approximation. In the space V�,
the vector �eld is such that the solution is pushed to the middle of the band, i.e. to
�. The space V� ends when the vector �eld in V+ or V� becomes parallel to �. The
width of V� should be taken su�ciently small to yield a good approximation.

As an alternative, the discontinuous vector �eld is often approximated by a
smoothened vector �eld (see for instance Hinrichs [1997]; Van de Vrande et al.
[1999]). For instance sgn(x) can be approximated by 2

�
arctan("x). The smooth

approximation normally yields a good approximation for large values of " although
di�culties can be expected at repulsion sliding modes. It should be noted that the

smooth approximation always has existence and uniqueness of solutions whereas
this is not the case for the discontinuous system. However, the main disadvantage
of the smoothing method is the fact that it yields sti� di�erential equations which
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are expensive to solve. The method proposed in this section, with a boundary layer
which replaces the attraction sliding mode, is far more e�cient than the smoothing
method, as is pointed out in the Section 2.4 where the two methods are compared.

2.3 Dry Friction Models and Di�erential Inclusions

Dry friction plays an important role in the dynamic behaviour of mechanical systems,
as mentioned in Section 1.1. In this section we discuss three commonly used friction
models and relate them to the theory of di�erential inclusions. We will apply similar
friction models to systems which expose stick-slip vibrations in Sections 2.4, 3.4 and
6.7 to 6.9.

In tribology, dry friction is de�ned as a force that resists relative motion between
two contacting surfaces of di�erent bodies. The bodies `stick' to each other when the
relative velocity between the contacting surfaces is zero. If the bodies slide over each
other with a non-zero velocity, we speak of `slip'. In rolling contact of two bodies,
`stick' should be regarded as pure rolling without slip. Dry friction is characterized
by a di�erent behaviour in the slip and stick phase. The friction force in the stick
phase adjusts itself to make equilibrium with external forces on the bodies. The
bodies remain sticking as long as equilibrium is ensured. If the friction force in the
stick phase exceeds a threshold, called break-away friction force or maximum static
friction force, the bodies will begin to slip over each other. The maximum static
friction force will be denoted by Fs and the friction force F must be in the interval
�Fs � F � Fs when the bodies stick. In the slip phase, the friction force is a single-
valued function of the relative velocity vrel, i.e. F = F (vrel). The friction force
during slip is often called the `dynamic' friction force and is more or less constant.
Pure viscous friction does not contain a stick phase and can be regarded as dynamic
friction. A model for dry friction contains both a description for the stick and slip
phase. Many di�erent models are proposed for the mathematical description of dry
friction which mostly di�er in the way the stick phase is modeled. Three di�erent
friction models are depicted in Figure 2.5. The friction models (a), (b) and (c) are
ordered to their degree of smoothness. All these models are symmetric although
friction models can be non-symmetric. We will study the di�erences between these
friction models when they are applied to the simple mechanical model depicted in
Figure 2.6. The model consists of a rigid block with mass m that can slide over
a oor with velocity v relative to the oor under the action of an external force
Fex. First an important remark has to be made concerning the meaning of friction
models (b) and (c) from a mechanical point of view. Friction models (b) and (c)
should be understood such that only a transition from stick to slip can take place if
jFexj exceeds Fs. This mechanical understanding of the friction models can conict
with the mathematical interpretation where the friction models are interpreted as
inclusions. This problem will be further explained in the following paragraphs.

Friction model (a) describes the friction force F as a smooth single-valued func-
tion of vrel on the whole domain. The equation of motion of the block with friction
model (a) therefore reads

m _v(t) = Fex � F (v(t)): (2.26)
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Figure 2.5: Friction models.

A suitable choice for the function F , which has the characteristics of friction model
(a), is

F (v(t)) =
2

�
arctan("v(t))

h
Fs � Fd

1 + �jv(t)j + Fd

i
; (2.27)

where "� 1 and � > 0. The slope of the function is very steep for small jv(t)j. The
friction force (2.27) has a maximum which is approximately Fs for large values of
". This maximum was already introduced as the static friction force. The upward
ramp is followed by a downward ramp which brings the friction force to an almost
constant value Fd. This model has the advantage that the resulting equation of
motion is a smooth ordinary di�erential equation. All standard integration routines
can therefore be directly applied and the solution of the IVP always exists and is
unique. The disadvantages are twofold. Firstly, the model cannot describe the stick
phase properly. The friction force is zero at zero velocity. The block will therefore
always slip over the oor if an external force is present. We could de�ne `stick' for
this model as the phase where the friction is on the upward ramp but this notion
of `stick' becomes unclear if the friction force does not contain a maximum (for
instance if Fs = Fd). The second disadvantage is the steep slope of the upward and
downward ramps. The equation of motion with friction model (a) will be a very sti�
di�erential equation which is inconvenient from a numerical point of view.

In friction model (b), the upward ramp of friction model (a) is replaced by a
set-valued function at v = 0. The equation of motion with friction model (b) can be
regarded as a di�erential inclusion, i.e.

m _v(t) 2

8><>:
Fex � Fs�Fd

1+�jv(t)j
� Fd v(t) > 0

Fex + [�Fs; Fs] v(t) = 0

Fex +
Fs�Fd

1+�jv(t)j
+ Fd v(t) < 0

(2.28)

where the choice for the friction force in the slip phase is similar to the one in friction
model (a). Friction model (b) describes the stick phase correctly as it allows the
body to stick to the oor with zero velocity under the action of an external force.
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Figure 2.6: Block on a oor.

Remark that friction model (a) is a smoothened version of friction model (b). The
solution of the di�erential inclusion (2.28) exists as F is upper semi-continuous,
non-empty, closed, convex and bounded (Theorem 2.2). Moreover, the set [�Fs; Fs]
at v(t) = 0 is the smallest closed convex set that contains the left and right limits,
lim v # 0 and lim v " 0 of F . If �Fs � Fex � Fs, then _v < 0 for v(t) > 0 and
_v > 0 for v(t) < 0. Consequently, there exists an attraction sliding mode at v = 0 if
�Fs � Fex � Fs. In the same way we can infer that a transversal intersection exists
at v = 0 if jFexj > Fs. A repulsion sliding mode is not possible with friction model
(b). Uniqueness of the solution of the di�erential inclusion (2.28) is therefore always
ensured. This is due to the fact that the friction force is dissipating energy and
because the set-valued part of F is the smallest closed convex set that obeys upper
semi-continuity. Provided an e�cient integration algorithm is available to solve the
IVP for a di�erential inclusion (see the previous section), then friction model (b)
can be more e�cient than friction model (a). The slope of the downward ramp,
however, can still be steep for large values of �.

Friction model (c) also folds the downward ramp into the set-valued part at
v = 0. This friction model is known as the signum model with static friction point.
If we regard friction model (c) as a di�erential inclusion, we obtain

m _v(t) 2
8<:

Fex � Fd v(t) > 0
Fex + [�Fs; Fs] v(t) = 0
Fex + Fd v(t) < 0

(2.29)

where Fd < Fs. The solution of the di�erential inclusion (2.29) exists as F is upper
semi-continuous, non-empty, closed, convex and bounded. Remark that the set
[�Fs; Fs] at v(t) = 0 is not the smallest closed convex set that contains the left and
right limits, lim v # 0 and lim v " 0 of F . The smallest closed convex set would
be [�Fd; Fd]. This has important consequences for the uniqueness of the solution.
There exists an attraction sliding mode at v = 0 if �Fd � Fex � Fd. A transversal
intersection exists at v = 0 if jFexj > Fs.

If Fd < Fex < Fs, then _v > 0 for v(t) 6= 0 but _v(t) = 0 2 Fex + [�Fs; Fs].
Consequently, the IVP with v(0) = 0 as initial condition has two distinct solutions
v(t) = 0 and v(t) = (Fex � Fd)t if Fd < Fex < Fs. A same kind of reasoning can
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Figure 2.7: 1{DOF model with dry friction.

be held for �Fd > Fex > �Fs. The solution of the di�erential inclusion (2.29) is
therefore not unique if Fd < jFexj < Fs.

In friction models (a) and (b) the external force jFexj has to exceed Fs to force
the block to slip starting from stick. We conclude that friction models (a) and
(b) are consistent with the mechanical concept of friction. If friction model (c) is
regarded as a di�erential inclusion, then a transition from stick to slip is possible for
jFexj < Fs which results in non-uniqueness of solutions. The di�erential inclusion of
friction model (c) is clearly inconsistent with the mechanical concept of friction. 5

Friction models of type (c) are frequently used in literature [Andersson, 1980;
Begley and Virgin, 1997; Fe�ckan, 1998; Hinrichs, 1997; Hinrichs et al., 1998; Ibrahim,
1994a; Karnopp, 1985; Oestreich, 1998; Popp et al., 1995; Van den Steen, 1997]. Care
should be taken how friction models of type (c) are to be understood.

2.4 Example: The Stick-slip System

A single-degree-of-freedom model will be used to introduce and evaluate the numer-
ical aspects of the methods described in the preceding sections. The same model
treated in Galvanetto et al. [1995] and Van de Vrande et al. [1999] is used to facilitate
the comparison of results.

Consider a mass m attached to inertial space by a spring k. The mass is riding
on a driving belt, that is moving at constant velocity vdr (Figure 2.7a). Parameter
values are given in Appendix C.1. Between mass and belt, dry friction occurs, with
a friction force F . The state equation, describing this model, reads as

_xe = fe(xe) =
"

_x

� k

m
x+

F (x; vrel)

m

#
; (2.30)

5A remark related to this problem has been made by Glocker [1995]. In Glocker [1995] an
equivalent description of the friction model is given by a so-called `superpotential'. It is stated that
a superpotential does not exist for friction models of type (c).
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where xe = [ x _x ]T. The relative velocity of the mass m with respect to the belt is
denoted by vrel = _x� vdr. The friction force F (x; vrel) is in the slip phase a function
of the relative velocity vrel and in the stick phase a function of the spring force kx.
The friction model reads as

F (x; vrel) =

8<: F (x) = min(jkxj; Fs) sgn(kx); vrel = 0 stick,

F (vrel) = �Fs sgn vrel
1 + �jvrelj ; vrel 6= 0 slip.

(2.31)

The friction force in the stick phase is limited by the maximum static friction force,
i.e. jF (x)j � Fs. The friction curve is drawn in Figure 2.7b. This friction model is
identical to the friction model depicted in Figure 2.5b with Fd = 0.

The friction curve is often approximated by a smooth function. One possible
approximation for F is [Van de Vrande et al., 1999]

~F (vrel) = � 2

�

Fs arctan "vrel

1 + �jvrelj : (2.32)

The smoothened friction model is identical to the friction model depicted in Fig-
ure 2.5a with Fd = 0. Clearly, increasing the steepness parameter " improves the
approximation, especially for vrel close to 0. The friction curve will almost be the
same as in Figure 2.7b for large values of the steepness parameter (" = 106). How-
ever, a steep slope in ~F arises at vrel = 0, given by �(2=�)"Fs. This causes a sti�
di�erential equation, which is numerically costly to integrate.

Another method of integrating the system of equations starts from the Karnopp
friction model [Armstrong et al., 1994; Haessig and Friedland, 1991; Karnopp, 1985].
The classical Karnopp model has the advantage of generating ordinary di�erential
equations, but su�ers from some numerical instabilities in the stick phase [Sepehri
et al., 1996]. In the following a so-called switch model is proposed, which does not
possess this disadvantage and which can be considered to be an extended version of
the Karnopp model.

The switch model treats the system as three di�erent sets of ordinary di�erential

equations: one for the slip phase, a second for the stick phase and a third for the
transition from stick to slip. The state space is therefore divided in a number of
subspaces which are depicted in Figure 2.8. Each subspace has its own smooth

ordinary di�erential equation. There are two subspaces for the slip phase: S+ for
positive relative velocity and S� for negative relative velocity. Beside the subspaces,
a number of solutions are depicted in Figure 2.8, which show how di�erent solutions
enter from one subspace into another. The subspace U de�nes the stick mode.
Additionally, there are two subspaces for the transition from stick to slip: T+ and
T�. At each timestep the state vector is inspected to determine whether the system
is in one of the slip modes, in the stick mode or in one of the transition modes. The
corresponding time derivative of the state vector is then chosen. The conditions for
changing to the stick mode or the slip mode operate as switches between the systems.
A region of small velocity is de�ned as jvrelj < �, where � � vdr. The system is

considered to be in one of the slip modes if the relative velocity lies outside this
narrow band. Inside this narrow band, the system can be in the stick mode or in
a transition mode. The �nite region is necessary for digital computation since an
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exact value of zero will rarely be computed. If the relative velocity lies within the
narrow band and if the static friction force, needed to make equilibrium with the
applied forces on the mass, exceeds the break-away friction force Fs, the system is
considered to be in transition from stick to slip. The transition modes T+ and T�
are necessary to enforce the solution, coming from the stick mode U , into the correct
slip mode (S+ or S�). Remark that the stick phase is in fact an attraction sliding
mode and the vector �eld is identical to the one depicted in Figure 2.4a. The switch
model uses the same technique as in Figure 2.4b, where a narrow band is constructed
around the sliding mode. The switch model can be elucidated in pseudo code:

if jvrelj > � then

_xe = fe(xe) =
"

_x

� k

m
x+

F (vrel)

m

#
slip, xe 2 S+ _ xe 2 S�

elseif jkxj > Fs

_xe = fe(xe) =
"

_x

� k

m
x+

Fs

m
sgn kx

#
transition, xe 2 T+ _ xe 2 T�

else

_xe = fe(xe) =
"

vdr

�vrel
q

k

m

#
stick, xe 2 U

end;

The thickness parameter of the narrow band �, the Runge-Kutta tolerance TOL
and the perturbation parameter � for numerical computation of the fundamental
solution matrix by sensitivity analysis [Leine et al., 1998] have to be chosen by the
user. The parameter � should be chosen su�ciently small. With su�ciently small

is meant that � is small enough to have no qualitative inuence on the solution.
In practice, � is therefore often chosen much smaller than the amplitude of the
velocity, A( _x), or smaller than the velocity of the belt vdr. The perturbations on
the initial condition for sensitivity analysis should be small with respect to the size
of the subspaces U , S� and T�. The parameter � should therefore be chosen much
smaller than the thickness parameter �. The collocation points of the Runge-Kutta
integration method during the stick mode should all be situated within the narrow
band to avoid numerical instability problems of the classical Karnopp model. This
can be achieved by centering the relative velocity in the stick band and taking a
Runge-Kutta tolerance TOL much smaller than � but for an accurate computation
of the fundamental solution matrix TOL should be much smaller than �. Typically,
for a periodic solution the parameters are chosen as TOL� � � � � min(A( _x); vdr).

The acceleration of the mass during the stick mode is set to �vrel
p

k

m
to force

the relative velocity to zero, i.e. the solution is pushed to the center of the narrow

band. The multiplier
p

k

m
determines how `fast' the solution is pushed to the center.

The choice of the multiplier is somewhat arbitrary but the multiplier is large for
high frequencies of oscillation, therefore for small stick times, which is a convenient
property, and has the correct dimension, [s�1].

The proposed algorithm maintains the continuity of the state vector and yields
a set of ordinary di�erential equations that do not exhibit numerical instabilities.
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Figure 2.8: Phase spaces of the stick-slip system.

It can be inferred from Figure 2.8 that this system has an unstable equilibrium
with a stable periodic solution around it. Other friction models, in which the friction
force increases for increasing vrel at higher values of vrel, can have multiple periodic
solutions (even for a single degree-of-freedom system). One of the objectives of this
thesis is to follow branches of periodic solutions of Filippov systems, like the switch
model, and �nally arrive at bifurcations. To prove that this model has only one
stable periodic solution is beyond the scope of this section. Existence of at least
one periodic solution can be proved by using a non-smooth version of the Poincar�e-
Bendixson theorem [Filippov, 1988; Kunze and K�upper, 1997] and has been observed
before [Andersson, 1980; Galvanetto et al., 1995; Kunze and K�upper, 1997; Leine
et al., 1998, 2000; Van de Vrande et al., 1999]. Our aim in this section is to present
a numerical method that simulates friction induced periodic solutions correctly. We
also study if the switch model works e�ciently if combined with the shooting method.
The shooting method is a numerical method that �nds a periodic solution given an
initial guess for the state vector and the period time and is used to follow branches
of periodic solutions [Fey, 1992; Parker and Chua, 1989; Van de Vorst, 1996]. It
su�ces here to state that the system has a periodic solution and we will compare
how the switch model and the smoothing method perform if combined with the
shooting method.

The periodic solution computed with the switch model for the stick-slip system
is depicted in Figure 2.9b. The periodic solution was obtained with a shooting
method using sensitivity analysis [Leine et al., 1998]. The computation took 110232
oating-point-operations to obtain a shooting accuracy of 10�5 with a Runge-Kutta-
Fehlberg tolerance of 10�8. Small timesteps are taken only near the transitions
between slip and stick phase, resulting in 123 integration points (of the last iteration
of the shooting method). In fact, the adaptive timestep control of the integration
algorithm determines the switching point with the desired accuracy. The constant
� was taken to be 10�6. The initial guess for the state vector was xe0 = [1:1; 0]T,
whereas for the period time it was T0 = 12[s].
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Figure 2.9: Periodic solutions obtained with the smoothing method (" = 106) (a) and with

the switch model (b).

In Figure 2.9a the results obtained with the smoothing method are plotted for
" = 106. A Backward Di�erentiation Formula (BDF) proved to be the best inte-
gration method for the extremely sti� di�erential equation. This computation took
3493510 oating-point-operations to obtain the same accuracy as in the previous
case starting from the same initial guess. Small timesteps are not only necessary
near the transitions but during the whole stick phase, resulting in 1217 integration
points. The smoothing method needed 31.7 times more oating point operations
and about 10 times more data storage. Consequently, the smoothing method is
clearly more expensive than the switch model. The slip phase calculated with the
smoothing method contains more integration points than the slip phase of the switch
model because of the di�erences between the BDF and the Runge-Kutta-Fehlberg
integration method.

While using the smoothing method, the friction force should be a continuous
function of velocity. If an isolated static friction point was added to the discontinuous
friction curve, like the friction model depicted in Figure 2.5c, a second steep slope
would be added to the smooth approximation yielding an even sti�er di�erential
equation. The switch model can easily be extended with an isolated static friction

point. The small timesteps just after stick to slip transition in Figure 2.9b are due
to a continuous transition from a static to a dynamic friction force. The addition of
an isolated static friction point would limit this region of re�nement and speed up
the integration process.

The switch model was introduced in this section as an e�cient numerical method
for integrating a system with dry friction. The importance of the switch model
for theoretical considerations will become evident in Sections 3.4. The concept
of the switch model with a �nite narrow band for the stick phase will turn out
to be essential to understand bifurcations occurring in systems with dry friction
(Sections 6.7 to 6.9).
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Fundamental Solution Matrix

`In which, if it were to summarize the prodigious

revelations of which it speaks, the title would have

to be as long as the chapter itself, contrary to the

usage'

Umberto Eco, The Name of the Rose

(7th day, night)

In this chapter the discontinuous behaviour of fundamental solution matrices of
discontinuous systems is discussed. The de�nition of a fundamental solution matrix
for smooth systems is reviewed. Jumping conditions of the fundamental solution

matrix are then discussed and applied to two examples.

3.1 Fundamental Solution Matrix for Smooth Systems

In this chapter we consider the stability of periodic solutions of the nonlinear dy-
namical system

_xe(t) = fe(t; xe(t)); xe(t) 2 IRn
: (3.1)

We assume that (3.1) has a known periodic solution denoted by xeP (t) with minimumperiod T . A disturbance ye(t) is superimposed on xeP resulting in the solution

xe(t) = xeP (t) + ye(t) (3.2)

Substituting (3.2) in (3.1), assuming that fe(t; xe) is at least twice continuously dif-
ferentiable, expanding the results in a Taylor series around xeP , and retaining only
linear terms in the disturbance, we obtain

_ye(t) =
@fe(t; xe(t))

@xe ye(t) +O(kyek2) (3.3)
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or

_ye(t) �= J(t; xeP (t))ye(t) (3.4)

where J(t; xeP (t)) is the Jacobian matrix of fe(t; xeP (t)).The n-dimensional linear system (3.4) has n linearly independent solutions yei(t),where i = 1,2,..,n. These solutions are usually called a fundamental set of solutions.
This fundamental set can be expressed in the form of a square matrix called a
fundamental solution matrix as

�(t) =
�
ye1(t) ye2(t) : : : yen(t) � : (3.5)

The eigenvalues of the fundamental solution matrix �(T ) are called Floquet multipli-

ers [Guckenheimer and Holmes, 1983; Nayfeh and Balachandran, 1995; Nayfeh and
Mook, 1979; Parker and Chua, 1989]. Each Floquet multiplier provides a measure

of the local orbital divergence or convergence along a particular direction over one
period of the periodic solution. The Floquet multipliers determine therefore the sta-
bility of the periodic motion. A fundamental solution matrix can be regarded as a
set of fundamental solutions of the linearization in the disturbance of the nonlinear
system. The concept of a fundamental solution matrix is therefore important in the
stability analysis of periodic solutions of nonlinear dynamical systems.

Fundamental solution matrices are furthermore used in shooting methods for
�nding periodic solutions, in continuation methods to follow branches of periodic
solutions, and they are used in the determination of Lyapunov exponents.

For continuous systems the fundamental solution matrix can be obtained in an
elegant manner by integrating the so-called variational equation (see [Ascher et al.,
1995; Parker and Chua, 1989] and Appendix B.2). Discontinuous systems however,
exhibit discontinuities (or 'saltations' / 'jumps') in the time evolution of the funda-
mental solution matrix.

The jumps in the fundamental solution matrix can be computed analytically by

means of the theory of Aizerman and Gantmakher [1958], which will be discussed
in Sections 3.2 and 3.3.

The theory of Aizerman and Gantmakher was used by Bockman [1991] and M�uller
[1995] to calculate Lyapunov exponents of discontinuous systems.

3.2 Jumping Conditions: A Single Discontinuity

In this section we will derive how the fundamental solution matrix � jumps if the
solution xe(t) crosses a hyper-surface �, on which the vector �eld is discontinuous.
Consider the nonlinear system (2.14) with discontinuous right-hand side as described
in Chapter 2

_xe(t) 2 Fe(t; xe(t)) =
8><>:

fe�(t; xe(t)) xe(t) 2 V�
coffe�(t; xe(t)); fe+(t; xe(t))g xe(t) 2 �

fe+(t; xe(t)) xe(t) 2 V+;
(3.6)
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x(t)

V� V+�

fep� fep+
ne

feNp� feNp+

Figure 3.1: Projection of derivatives on the normal.

with the initial condition

xe(t = 0) = xe0: (3.7)

Assume that at a certain point in time, say tp, the solution xe(t) will cross �.With the de�nition of the indicator function (2.8) we obtain

h(xe(tp)) = 0:

At this hyper-surface there are two derivatives fep� and fep+ which lie in the direction

of the solution as denoted in Figure 3.1. The derivatives have components feNp� and

feNp+ perpendicular to the hyper-surface with magnitudes neTfep� and neTfep+. We

�rst consider only transversal intersections. Uniqueness of the solution is therefore
assured (this is not the case for a repulsion sliding mode problem). In order to assure
a transversal intersection, we assume that the projections of the derivatives fep� and

fep+ on the normal ne have the same sign

neTfep�neTfep+ > 0: (3.8)

Equation (3.8) assures that the solution leaves the hyper-surface and stays on the
hyper-surface at one point of time and not on an interval of time (i.e. the solution
curve crosses the hyper-surface).

An in�nitesimal disturbance �xe0 on the initial condition will cause a disturbance
�xe(t) on the state xe(t). The fundamental solution matrix �(t; t0) relates �xe(t) to
�xe0,

�xe(t) = �(t; t0)�xe0 +O(kxe0k2): (3.9)

The dependence of �(t; t0) on xe0 has been omitted for brevity. Let the solution
start in the subspace V�, that is xe0 2 V�. Suppose the solution curve crosses the
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hyper-surface � at t = tp, i.e. h(xe(tp)) = 0. The system is continuous on the interval
D = ft 2 IR j t0 � t � tpg. The fundamental solution matrix will also be continuous
on the interior of D. The time evolution of the fundamental solution matrix on the
interior of D can be obtained from the initial value problem

_�(t; t0) =
@fe(t; xe(t))

@xe �(t; t0); �(t0; t0) = �0 = I; t0; t 2 D: (3.10)

Equation (3.10) is called the variational equation (see [Ascher et al., 1995; Parker
and Chua, 1989] and Appendix B.2). The Jacobian @fe=@xe is not uniquely de�ned
on the border of D at t = tp where xe(tp) is located on the hyper-surface �. This
causes a jump (or discontinuity) in the fundamental solution matrix. We will derive
an expression for the jump in Section 3.3. For the moment we will assume that
we know how the fundamental solution matrix jumps and we assume that we can
express the jump with a matrix S, which maps the fundamental solution matrix just
before the jump, �(tp�; t0), to the fundamental solution matrix just after the jump,
�(tp+; t0), as

�(tp+; t0) = S�(tp�; t0); (3.11)

where

�(tp�; t0) = lim
t"tp

�(t; t0): (3.12)

On D the fundamental solution matrix can be obtained from integrating the varia-
tional equation (3.10) which gives for �(tp�; t0)

�(tp�; t0) =

Z
tp

t0

_�(t; t0)dt+ I: (3.13)

The fundamental solution matrix after the jump can then be obtained by (3.11)
where S should of course be known. The solution enters the subspace V+ (as
transversality was assumed) at t = tp, and traverses V+ during the interval G =
ft 2 IR j tp � t � tqg. We can now construct the fundamental solution matrix on G
after the jump as

�(tq ; t0) = �(tq ; tp+)�(tp+; t0)

=

 Z
tq

tp

_�(t; t0)dt+ I

!
�(tp+; t0):

(3.14)

If the fundamental solution matrix is known on G, then we can express �(tp+; t0)
by the right time limit to the jump as

�(tp+; t0) = lim
t#tp

�(t; t0): (3.15)

In general �(tp�; t0) 6= �(tp+; t0).



Fundamental Solution Matrix 31

xe(t)
�xe(t)

�t

�xep�

�xep+
h(xep�) = 0

ttp �tp

kxek

Figure 3.2: Disturbed and undisturbed solution.

We name the matrix S the saltation matrix (or 'jump' matrix) because it de-
scribes the jump by mapping �(tp�; t0) to �(tp+; t0) with (3.11). The saltation
matrix can be regarded as a fundamental solution matrix from time tp� to tp+

S = �(tp+; tp�): (3.16)

Substitution of (3.11) in (3.14) yields

�(tq ; t0) = �(tq ; tp+)S �(tp�; t0): (3.17)

The construction of saltation matrices (or jump conditions) is due to Aizerman
and Gantmakher [1958] and is explained in the next section.

3.3 Construction of Saltation Matrices

One question has not been answered up to now: how do we obtain the saltation ma-
trix S? The saltation matrix will be derived by inspecting the nonlinear dynamical
system in the neighbourhood of the occurrence of a discontinuity. Consider the dis-
turbed and undisturbed solutions depicted in Figure 3.2. Time is on the horizontal
axis of Figure 3.2 and an arbitrary norm of xe is on the vertical axis. The disturbed
solution �xe(t) is due to an initial disturbance

�xe0 = xe0 + �xe0: (3.18)

The disturbed solution stays �t = �tp � tp longer (if �t > 0) or shorter (if �t < 0) in
V� before hitting the hyper-surface �. The di�erences between the disturbed and
undisturbed solutions at the crossings are denoted by

�xep� = �xe(tp)� xe(tp); (3.19)
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�xep+ = �xe(�tp)� xe(�tp): (3.20)

We can express the undisturbed and disturbed solutions in a �rst-order Taylor
expansion

xe(�tp) � xe(tp) + fep+�t; (3.21)

�xe(�tp) � xe(tp) + �xep� + fep��t (3.22)

with the abbreviations

fep+ = fe(tp+; xe(tp+))
fep� = fe(tp�; xe(tp�)) (3.23)

The Equations (3.21) and (3.22) are inserted into (3.20)

�xep+ = �xe(�tp)� xe(�tp)� xe(tp) + �xep� + fep��t� (xe(tp) + fep+�t)� �xep� + fep��t� fep+�t
(3.24)

The disturbed solution satis�es the indicator function (2.8). We apply a Taylor
series expansion up to the �rst-order terms [M�uller, 1995]:

0 = h(�xe(�tp))� h(xe(tp) + �xep� + fep��t)
� h(xe(tp))| {z }

=0

+neT(�xep� + fep��t)
� neT(�xep� + fep��t);

(3.25)

where the normal ne is de�ned by (2.9).
From (3.25) we can express the variation �t in terms of �xep�.
�t = �neT�xep�

neTfep� (3.26)

The dependence between the variation �t and �xep� can be envisaged from Figure 3.3.
Due to the variation �xep� the disturbed solution after a time tp does not lie exactly
on the (�xed) surface �. The disturbed solution has to stay a time �t longer/shorter
in V�, covering an additional distance fep��t, to reach �. We infer from Figure 3.3

that the vectors �xep� and fep��t are related by

neTfep��t = �neT�xep�; (3.27)

from which we can derive (3.26).
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Figure 3.3: Construction of �t for autonomous �.

Combining (3.24) and (3.26) gives

�xep+ = �xep� + (fep+ � fep�)
neT�xep�
neTfep� : (3.28)

We have now expressed the variation �xep+ in terms of the variation �xep�. The
saltation matrix relates �xep+ to �xep�

�xep+ = S�xep�: (3.29)

We obtain the saltation matrix S = �(tp+; tp�) from (3.28) and (3.29) as

S = I +
(fep+ � fep�)neT

neTfep� : (3.30)

The inverse of the saltation matrix S�1 = �(tp�; tp+) is given by (for non-singular
S)

S
�1 = I +

(fep� � fep+)neT
neTfep+ : (3.31)

The saltation matrix S becomes singular if neTfep+ = 0 which will not happen if the

transversality condition (3.8) is ful�lled.

The saltation matrix was derived in this section for an autonomous indicator
function h(xe(t)). Non-autonomous systems can give rise to non-autonomous in-
dicator functions. However, non-autonomous time periodic systems can be trans-

formed into autonomous systems having autonomous indicator functions (see Ap-
pendix B.1). Alternatively, one can derive the saltation matrix for a non-autonomous
indicator function h(t; xe(t)) [Aizerman and Gantmakher, 1958; Filippov, 1988; M�uller,
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vdr
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m

k

c

F

Figure 3.4: 1{DOF model with dry friction.

1995]. The saltation matrix for a non-autonomous indicator function is given by

S = I +
(fep+ � fep�)neT

neTfep� + @h

@t
(tp; xe(tp)) : (3.32)

3.4 Example I: The Stick-slip System

To demonstrate the above theory we will study a one-dimensional system with dry
friction that possesses a stick-slip periodic solution.

Consider a mass m attached to inertial space by a spring k and damper c (Fig-
ure 3.4). The mass is riding on a driving belt, that is moving at a constant velocity
vrel. A friction force F acts between the mass and belt which is dependent on the
relative velocity (see Appendix C.2 for the parameter values).

The state equation of this autonomous system reads as

_xe = fe(xe) =
"

_x

� k

m
x� c

m
_x+

F

m

#
; (3.33)

where xe = [ x _x ]T and F is given by a signum model with static friction point

F =

�
F (vrel) = �Fslip sgn vrel; vrel 6= 0 slip
F (x; _x) = min(jFexj; Fstick) sgn(Fex); vrel = 0 stick

(3.34)

with

Fex(x; _x) = kx+ c _x:

The maximum static friction force is denoted by Fstick and vrel = _x � vdr is the
relative velocity. This friction model is identical to the friction model of type (c) in
Figure 2.5. Friction model (3.34) should be understood such that only a transition
from stick to slip can take place if jFexj exceeds Fstick.

This model permits explicit solutions for c = 0 due to its simplicity but it is not
directly applicable in numerical analysis. Instead, an approximating switch model
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Figure 3.5: Phase portrait.

will be studied, which was discussed in Section 2.4. The state equation for the switch
model reads as

_xe =
8>>>>><>>>>>:

�
_x

� k

m
x� c

m
_x� Fslip

m
sgn vrel

�
jvrelj > � or jFexj > Fstick

"
vdr

�vrel
q

k

m

#
jvrelj < � and jFexj < Fstick

(3.35)

A region of near-zero velocity is de�ned as jvrelj < �. The space IR2 is divided in
three subspaces V , W and D as indicated in Figure 3.6. The small parameter � is
enlarged in Figure 3.6 to make D visible.

A stable stick-slip periodic solution of this system exists and is depicted in Fig-
ure 3.5 together with the equilibrium point (x; _x) = (1; 0). As this system is au-
tonomous, the hyper-surfaces are not dependent on time. It can be seen that the
state traverses V (the slip phase) and D (the stick phase). If the state leaves V and
enters D, the hyper-surface �� is crossed with normal ne� where

h�(x; _x) = _x� vdr; (3.36)

and

ne� =

�
0
1

�
: (3.37)

Likewise, if the state leaves D and enters V again, the hyper-surface �� is crossed
with normal ne� where

h�(x; _x) = kx+ cvdr � Fstick; (3.38)

and

ne� =

�
1
0

�
: (3.39)
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Figure 3.6: De�nition of subspaces V, W and D.

Let us assume that the state vector crosses �� at t = t� and �� at t = t� . We
can now construct the saltation matrices S

�
and S

�
. The right-hand sides of (3.35)

at t = t� for lim � # 0 are

fe�� =

�
vdr

�x��

�
; fe�+ =

�
vdr

0

�
: (3.40)

The saltation matrix S
�
yields

S
�
= I +

(fe�+ � fe��)neT�
neT�fe�� =

�
1 0
0 0

�
; (3.41)

which is independent of any system parameter.

Conducting the same for S
�
yields

fe�� =

�
vdr

0

�
; fe�+ =

�
vdr

��F

m

�
; (3.42)

with �F = Fstick � Fslip. Substitution yields S
�

S
�
= I +

(fe�+ � fe��)neT�
neT� fe�� =

�
1 0

� �F

mvdr
1

�
: (3.43)

Note that the saltation matrix S
�
is singular causing the fundamental solution ma-

trix to be singular. The physical meaning of this is that the solution of the state
vector is uniquely mapped from xe0 in V to xe(t) in D but the inverse mapping does
not exist. If di�erent vector bundles enter the stick phase, they all pass the same
states on the stick phase and leave the stick phase from the same state xe� . So, if
the solution enters the stick phase, knowledge about its initial state is lost. The
fundamental solution matrix for the periodic solution of system (3.35) is plotted in
Figure 3.7. Jumps at t = t� and t = t� in the fundamental solution matrix can be
clearly distinguished.
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Figure 3.7: Fundamental solution matrix.

3.5 Example II: The Discontinuous Support

As a second example we will consider a mass-spring system with a discontinuous
support (Figure 3.8a). The support is massless, has a spring sti�ness kf and damping
coe�cient cf , which makes the support a �rst-order system. The displacement of
the mass relative to the equilibrium position is denoted by x and of the support by
y. The system has two possible modes: the mass is in contact with the support or

the mass is not in contact with the support. Let fc denote the contact force between
mass and support. If the mass is not in contact the following holds:

x < y and fc = 0;

and if the mass is in contact, we have:

x = y and fc = kfy + cf _y = kfx+ cf _x � 0:

The support, being a �rst-order system, relaxes to the equilibrium state, y = 0, if
the mass is not in contact with the support. If we assume that the relaxation time
of the support is much smaller than the time between two contact events, we can
neglect the free motion of the support. It is therefore assumed that the support is
at rest at the moment that contact is made. This assumption reduces the system to
one with a second-order equation. The free motion of the mass satis�es the ordinary
di�erential equation

m�x+ kx = f0 cos!t no contact; (3.44)
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whereas the equation of motion of the mass in contact with the support is

m�x+ cf _x+ (k + kf )x = f0 cos!t contact: (3.45)

The mass comes in contact with the support if the displacement becomes zero, i.e. if
x = 0. The mass looses contact with the support if the contact force becomes zero,
i.e. if fc = kfx+ cf _x = 0. We introduce the state-vector xe = [ x _x ]T and de�ne
the following two indicator functions:

h�(x; _x) = x; (3.46)

h�(x; _x) = kfx+ cf _x: (3.47)

The mass is not in contact with the support if xe 2 V�, with
V� = fxe 2 IR2 j h�(x; _x) < 0 _ h�(x; _x) < 0g; (no contact)

and the mass is in contact with the support if xe 2 V+, with
V+ = fxe 2 IR2 j h�(x; _x) > 0 ^ h�(x; _x) > 0g (contact):

The hyper-surface �, which divides the state-space IR2 in the subspaces V� and V+,
consists of the conjunction of two surfaces �� and ��. The hyper-surface �� is
de�ned by

�� = fxe 2 IR2 j h�(x; _x) = 0; h�(x; _x) � 0g; (3.48)

and has the normal

ne� =

�
1
0

�
: (3.49)

The hyper-surface �� is de�ned by

�� = fxe 2 IR2 j h�(x; _x) � 0; h�(x; _x) = 0g; (3.50)

and has the normal

ne� =

�
kf

cf

�
: (3.51)

The hyper-surface �, consisting of �� and ��, and the subspaces V� and V+
are depicted in Figure 3.8b. Remark that the hyper-surface � is non-smooth at the
origin.

The state equation of this non-autonomous discontinuous system reads as

_xe(t) = fe(t; xe(t)) =
(

fe�(t; xe(t)) xe 2 V�
fe+(t; xe(t)) xe 2 V+; (3.52)
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Figure 3.8: Mass with discontinuous support.

with

fe�(t; xe) =
"

_x

� k

m
x+

f0

m
cos!t

#
; (3.53)

and

fe+(t; xe) =
"

_x

�k + kf

m
x� cf

m
_x+

f0

m
cos!t

#
: (3.54)

System (3.52), which is discontinuous for xe 2 �, can be extended to a di�erential
inclusion with Filippov's convex method as described in Chapter 2.

We �rst consider the contact event, which is the transition from the mode without
contact to the mode with contact. Let us assume that trajectory xe(t) crosses �,leaving V� and entering V+, at t = t�. The trajectory crosses therefore the �� part
of � at this instance. We can now construct the saltation matrix S

�
of the contact

event. The right-hand sides at the instance t� are

fe�� =

�
_x�

� k

m
x� +

f0

m
cos!t�

�
; (3.55)

fe�+ =

�
_x�

�k+kf
m

x� � cf

m
_x� +

f0

m
cos!t�

�
: (3.56)
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The saltation matrix S
�
becomes

S
�
= I +

(fe�+ � fe��)neT�
neT�fe��

= I +

�
0 0
� cf

m
0

�
=

�
1 0
� cf

m
1

�
:

(3.57)

We now consider the transition from the mode with contact to the mode without
contact. Let us assume that the state vector crosses �, leaving V+ and entering V�,
at t = t� . The state crosses therefore the �� part of � at this instance. Consequently,
the following holds

fc = kfx� + cf _x� = 0: (3.58)

We can now construct the saltation matrix S
�
. The right-hand sides at the instance

t� are

fe�� =

�
_x�

�k+kf
m

x� � cf

m
_x� +

f0

m
cos!t�

�
; (3.59)

fe�+ =

�
_x�

� k

m
x� +

f0

m
cos!t�

�
: (3.60)

If we substitute (3.58) in (3.59) and (3.60), then the latter equations appear to be
identical

fe�� = fe�+:
Consequently, S

�
is simply the identity matrix.

S
�
= I (3.61)

The results show that the saltation matrices S
�
and S

�
are not dependent on the

support sti�ness kf . The saltation matrix S
�
is a�ected, however, by the ratio

cf

m
.

The physical interpretation must be sought in the discontinuity of the contact force
fc. The spring force before the contact event, kx, is equal to the spring force after
the contact event, (k+kf )x, because contact is made when x = 0. But the damping
force before the contact event, being zero, is not equal to the damping force after the
contact event, cf _x. The contact force fc will be continuous for the transition from
contact to no-contact, which is the reason that S

�
is equal to the identity matrix.

If the damping coe�cient cf is set to zero, the system reduces to a second-order
system with discontinuous sti�ness, which is a non-smooth continuous system. In
this case, the hyper-surfaces �� and �� do not form an angle and � is a smooth
hyper-plane. The saltation matrices S

�
and S

�
are both equal to the identity matrix

in this case. It can be concluded that the jumps in the fundamental solution matrix
are not caused by the discontinuous sti�ness but by the discontinuous damping term.
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Non-smooth Analysis of

Filippov Systems

`Every scienti�c truth goes through three stages.

First, people say it conicts with the Bible. Next

they say it had been discovered before. Lastly, they

say they always believed it.'

Louis Agassiz, (1807-1873)

The method of linear approximation is developed in this chapter and applied to
saltation matrices and Jacobian matrices. Linear approximation is compared with
the generalized di�erential of Clarke in Section 4.2. The non-smooth analysis tools
developed in this chapter will be used to study bifurcation points of non-smooth
continuous systems in Chapter 5 and Filippov systems in Chapter 6.

4.1 Linear Approximations at the Discontinuity

Discontinuities in the vector �eld fe cause jumps in the fundamental solution matrix
as was shown in the preceding chapter. The discontinuous di�erential equation is
therefore often approximated by a continuous di�erential equation. The approxi-
mation can be chosen to be smooth, which is called the `smoothing method' (see
Section 2.4), but this is not necessary. The approximation should at least yield a
continuous di�erential equation and have a residue which tends to zero for increasing
order of approximation.

We employ a special approximation in the sequel for analytical purposes. The
jump of the vector �eld fe is approximated by a linear variation of fe from fe� to

fe+ in a thin space around the hyper-surface of discontinuity. We should keep in

mind that a smooth (or continuous) approximation does not necessarily describe
all solutions of the discontinuous system. This is for instance the case when the
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discontinuous system exposes a repulsion sliding mode which implies non-uniqueness
of solutions. The smooth or continuous approximation has uniqueness of solutions
and can therefore not describe the behaviour at the repulsion sliding mode.

It will be shown that this linear approximation of the vector �eld at the hyper-
surface of discontinuity also yields a linear variation of the saltation matrix.

The linear approximation at the discontinuity is suitable for analytical purposes,
due to its simplicity, and will prove to be an important tool in the bifurcation analysis
of discontinuous systems.

In Section 4.2 we will show that the concept of linear approximation is identical
to the generalized derivative.

A single hyper-surface

Consider again the discontinuous system 2.13 where the indicator equation h de�nes
the hyper-surface of discontinuity �.

_xe(t) = fe(t; xe(t)) =
(

fe�(t; xe(t)) xe 2 V�
fe+(t; xe(t)) xe 2 V+; (4.1)

with

V� = fxe 2 IRn j h(xe(t)) < 0g
� = fxe 2 IRn j h(xe(t)) = 0g
V+ = fxe 2 IRn j h(xe(t)) > 0g

(4.2)

In the following we will briey denote a function ge(t; xe(t)) by ge.The hyper-surface �, on which fe is discontinuous, will now be replaced by a thin

space ~� with thickness �. If � approaches zero, then the space ~� becomes in�nitely
thin. The discontinuous vector �eld fe is replaced by a continuous vector �eld ~fe.The vector �eld ~fe in ~� varies linearly from fe� to fe+ to ensure continuity.

_xe(t) = ~fe =
8><>:

fe� xe 2 ~V�
(fe+ � fe�)h� + fe� xe 2 ~�

fe+ xe 2 ~V+;
(4.3)

with

~V� = fxe 2 IRn j h(xe(t)) < 0g
~� = fxe 2 IRn j 0 � h(xe(t)) � �g
~V+ = fxe 2 IRn j h(xe(t)) > �g

(4.4)

Clearly, the vector �eld ~fe is continuous and converges asymptotically to fe as � # 0.
The Jacobian of ~fe follows from (4.3) and (2.9) to be

~J(t; xe(t)) =
8><>:

J
�

xe 2 ~V�
(fe+ � fe�)ne

T

�
+ (J+ � J

�
)h
�
+ J

�
xe 2 ~�

J+ xe 2 ~V+;
(4.5)
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and is in fact not properly de�ned on the borders between ~V�, ~V+ and ~� as ~fe is
not necessarily smooth. This will not turn out to be problematic. Remark that
system (4.3) is a non-smooth continuous system, which has existence and uniqueness
of solutions (Theorem 2.1).

We are interested in bifurcations of periodic solutions of discontinuous systems.
The fundamental solution matrix of a discontinuous system can jump as we elabo-
rated in Chapter 3. A periodic solution can be regarded as a �xed point of a Poincar�e
map P (xe) on a Poincar�e section (see Section 6.4). The derivative of the Poincar�e
map DP (xe) can therefore also jump as it is directly related to the fundamental so-
lution matrix, see (6.7). We assume the Poincar�e map itself to be locally continuous
at the �xed point. As periodic solutions are �xed points of P (xe), we will also studybifurcations of �xed points of non-smooth systems. Having periodic solutions in
mind, we will study only �xed points of continuous vector �elds with discontinuous
Jacobians. We consider therefore continuous but non-smooth mappings:

Bifurcations of �xed points: the vector �eld is
a) continuous: fe�(t; xe(t)) = fe+(t; xe(t)) if xe(t) 2 �

b) non-smooth: J
�
(t; xe(t)) 6= J+(t; xe(t)) if xe(t) 2 �

Bifurcations of periodic solutions:
a) the Poincar�e map P (xe) is continuous in xeb) the derivative DP (xe) of the Poincar�e map is non-smooth, which yields
fe� 6= fe+ if xe(t) 2 �

Remarks: The statement that only continuous mappings will be considered is
too restrictive. Poincar�e mappings are in general discontinuous (for example the
Lorenz system, see Guckenheimer and Holmes [1983], page 313). We will mainly
consider mappings which are continuous in a su�ciently large neighbourhood around
the �xed point of the mapping. In Section 6.7, however, an example will be given
where the Poincar�e map is discontinuous at the �xed point, which results in in�nitely
unstable periodic solutions. Note that this is a sliding mode problem for which (3.8)
does not hold.

We now study how the saltation matrix changes as the solution xe(t) is crossingthe space ~� from ~V� to ~V+ (Figure 4.1), that is xe(t) crosses the hyper-surface ~�
transversally and (2.17) is satis�ed. Neighbouring solutions of xe(t) will also cross ~�transversally. Uniqueness of solutions in forward and backward time (Theorem 2.1)
assures that the neighbouring solutions do not join with xe(t). We denote the state
at the border of ~V� and ~� by xe0 at time t0. We denote the state at the border of
~V+ and ~� by xe1 at time t1. Let the solution starting from xe0 travel a distance �xein ~� during a time �t. The following holds

t0 � t0 +�t � t1

�xe(t0) = 0e
xe1 = xe0 +�xe(t1)

(4.6)
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xe0

xe(t)
xe1

xe0 +�xe

h(xe0) = 0

h(xe0 +�xe) = q�

h(xe1) = �

~�

~V�

~V+

Figure 4.1: Linear approximation over a hyper-surface.

We expand the indicator function h(xe) as a Taylor approximation around xe0,
h(xe0 +�xe) = h(xe0) + @h

@xeT�xe+O(�xe2): (4.7)

The indicator function should be chosen such that it always holds that

@h

@xeT 6= 0e: (4.8)

As � approaches zero, the space ~� becomes in�nitely thin and �xe # 0e and �t # 0.
It therefore su�ces to take only the linear term into account in the Taylor approxi-
mation of (4.7) as � # 0. It follows from the de�nition of ~V� in (4.4) that

h(xe0) = 0 (4.9)

and that

h(xe1) = �: (4.10)

We assume that the indicator function in ~� has values between 0 and �

h(xe0) � h(xe0 +�xe) � h(xe1)0 � h(xe0 +�xe) � �:
(4.11)

and, additionally, that the indicator function in ~� increases monotonically from 0
to � when t is increased from t0 to t1. This assumption holds when ~� is in�nitely
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thin and when (4.8) holds. Consequently, due to monotonicity and the omission of
higher-order terms it is allowed to express the indicator function for � # 0 as a linear
function of a variable q(t)

h(xe0 +�xe(t)) = q(t)� (4.12)

where 0 � q(t) � 1 on t0 � t � t1. The variable q(t) is a parameterization of the
transversal solution xe(t) in the space ~�, where q(t0) = 0 corresponds to xe(t0) on the
border between ~V� and ~� and q(t1) = 1 corresponds to xe(t1) on the border between
~� and ~V+. The value of q(t) is found from (4.12) with xe(t) = xe0 + �xe(t) 2 ~�.
Similarly, we express the distance �xe(t0 +�t) as a Taylor approximation up to the
linear term with �t # 0 for � # 0

�xe(t0 +�t) =

Z
t0+�t

t0

~fedt = fe��t+O(�t2) (4.13)

Substitution of (4.9) and (4.12) in (4.7) yields

q(t0 +�t)� = neTfe��t (4.14)

for � # 0. We will omit the dependence of q on t in the sequel.

The Jacobian can be approximated for small � and bounded ~fe by

~J(t0 +�t; xe0 +�xe(t)) = 1

�
(fe+ � fe�)neT +O(1) (4.15)

which becomes large for � # 0 and fe+ 6= fe�. We can now construct the saltation

matrix ~S = �(t0 +�t; t0) for � # 0 from the previous results

~S = I +

Z
t0+�t

t0

~J(t; xe(t)) �(t0 +�t; t0)dt

= I + (fe+ � fe�)ne
T

�
�t+O(�t)

= I + q

(fe+ � fe�)neT
neTfe� +O(�t)

(4.16)

The saltation matrix ~S converges therefore for � # 0 to the set

~S = fI + q

(fe+ � fe�)neT
neTfe� ;8 0 � q � 1g

= fI + q(S � I);8 0 � q � 1g
(4.17)

where S is the saltation matrix over � given by (3.30). The saltation matrix therefore
behaves linearly over ~� if � # 0. The derivation is given for autonomous h but the
same result could have been obtained for non-autonomous h.
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~V��

~V�+

~V+�

~V++

~�1

~�2

Figure 4.2: Linear approximation with two hyper-surfaces.

For �xed points we have fe� = fe+ and the Jacobian on ~� is therefore given by

~J(t; xe0 +�xe(t)) = (J+ � J
�
)q(t) + J

�
(4.18)

The Jacobian of �xed points behaves therefore linearly in ~�. If � # 0, then the space
~� reduces to the hyper-surface � and the Jacobian on � becomes set-valued. The
set-valued Jacobian is given by

~J(t; xe) = f(J+ � J
�
)q + J

�
;8 0 � q � 1g (4.19)

where xe 2 �. For �xed points of non-smooth continuous systems, the linear ap-
proximation with � > 0 smoothens the continuous non-smooth vector �eld. For
periodic solutions of Filippov systems, the linear approximation with � > 0 replaces

the discontinuous vector �eld by a continuous vector �eld.

A double hyper-surface

The �xed point could also be located on the intersection of two hyper-surfaces �1

and �2. The linear approximation is analogous to the one given in the previous
subsection but more elaborate. Each hyper-surface �j has now to be replaced by

a corresponding thin space ~�j with parameter qj (Figure 4.2). The �xed point is
located in the double-hatched zone where the hyper-surfaces intersect. The two
hyper-surfaces divide the state-space in four spaces V��, V+�, V�+ and V++ with
Jacobians J

��
, J+�, J�+ and J++. The linear approximation of the Jacobian over

hyper-surface ~�1 at the �xed point is

~J
I
= fq1(J+� � J

��
) + J

��
;8 0 � q1 � 1g above ~�2

~J
II

= fq1(J++ � J
�+) + J

�+;8 0 � q1 � 1g below ~�2
(4.20)

with
J+� � J

��
= J++ � J

�+
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Figure 4.3: Function (a), classical derivative (b) and generalized derivative (c).

because the same hyper-surface is crossed. With a second linear approximation we
can set up the Jacobian over the other hyper-surface

~J = fq2( ~JII � ~J
I
) + ~J

I
;8 0 � q2 � 1g

= fq2(J�+ � J
��

) + q1(J+� � J
��

) + J
��
;8 0 � q1 � 1;8 0 � q2 � 1g

(4.21)

which is a linear combination in q1 and q2 in the double shaded space around the
�xed point.

4.2 Generalized Di�erentials

The concept of linear approximation is closely related with the subdi�erential of
Clarke [Clarke et al., 1998; Tikhomirov, 1989], also called generalized di�erential.

Consider a scalar continuous piecewise di�erentiable function f(x) with a kink
at one value of x, such as f(x) = jxj (Figure 4.3). The derivative f 0(x) is de�ned
by the tangent line to the graph of f when the graph is smooth at x. Although the
function is not absolutely di�erentiable at every point x, it possesses a left and right
derivative de�ned as

f
0

�
(x) = lim

y"x

f(y)�f(x)
y�x

; f
0

+(x) = lim
y#x

f(y)�f(x)
y�x

: (4.22)

The generalized derivative of f at x is declared as any value f 0
q
(x) included between

its left and right derivatives. Such an intermediate value can be expressed as a
convex combination of the left and right derivatives.

f
0

q
(x) = (1� q)f 0

�
+ qf

0

+(x) ; 0 � q � 1 (4.23)

Geometrically, a generalized derivative is the slope of any line drawn through the
point (x; f(x)) and between the left and right tangent lines (drawn by dashed lines
in Figure 4.3a). The set of all the generalized derivatives of f at x, more generally
the convex hull of the derivative extremes, is called the generalized di�erential of f
at x.

@f(x) = coff 0
�
(x); f 0+(x)g

= ff 0
q
(x) j f 0

q
(x) = (1� q)f 0

�
(x) + qf

0

+(x);8 q j 0 � q � 1g (4.24)
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The generalized di�erential is the set of all the slopes of all the lines included in
the cone bounded by the left and right tangent lines and is a closed convex set.
Alternatively, it consists in closing the graph of f 0(x) at the points where it is
discontinuous (Figure 4.3b,c). In non-smooth analysis, the generalized di�erential is
used to de�ne a local extremum of f at x by 0 2 @f , which is the generalized form
of f 0(x) = 0 in smooth analysis [Clarke et al., 1998; Tikhomirov, 1989].

In the previous section the concept of linear approximation was introduced with
approximation parameter �. Considering the limit of � going to zero, it was shown
that the Jacobian behaves on the hyper-surface as (4.18)

~J = f(1� q)J
�
+ qJ+;8 0 � q � 1g:

and the saltation matrix as (4.17)

~S = f(1� q)I + qS;8 0 � q � 1g;

or in terms of the fundamental solution matrix

~� = f(1� q)�
�
+ q�+;8 0 � q � 1g: (4.25)

The Jacobian of the linear approximation, ~J , can be regarded as the generalized
Jacobian in the sense of Clarke, that is, the generalized di�erential of the vector
�eld fe with respect to the state xe

~J = @xefe: (4.26)

Similarly, the generalized fundamental solution matrix can be de�ned as the gener-
alized di�erential of the solution xe(t) with respect to the initial condition xe0.

~�(t; t0) = @xe0xe(t) (4.27)

We conclude that the approximation of the vector �eld by a linear approxima-
tion, as outlined in the previous section, converges for the Jacobian and fundamental
solution matrix to their generalized di�erential forms. We could raise the hypothe-
sis that any nonlinear monotone asymptotic approximation converges to the results
of the generalized di�erential (see also Anosov [1959]). The linear approximation
was obtained from the Taylor expansion of the indicator function (4.7) by neglect-
ing higher-order terms. The linear approximation came naturally without prior
assumptions. Any monotone approximation will therefore converge to the linear
approximation which in the limit converges to the generalized di�erential.

This chapter applied linear approximation and the concept of generalized di�er-
entials to fundamental solution matrices. This is a new application of the generalized
di�erential and will be of use to study bifurcation points of non-smooth continuous
systems and Filippov systems in the next chapters.
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Bifurcations of Fixed Points

`In questions of science the authority of a thousand

is not worth the humble reasoning of a single

individual'

Galileo Galilei, (1564-1642)

As stated in the introduction, it is often desirable to know how the �xed points of a
system change when a parameter of the system is changed. The number and type
of �xed points can change at a certain parameter value. This qualitative change in

the structural behaviour of the system is called bifurcation.

The theory of bifurcations of �xed points in smooth vector �elds is well under-
stood [Guckenheimer and Holmes, 1983; Hagedorn, 1988; Kuznetsov, 1995; Seydel,
1994]. However, little is known about bifurcations of �xed points in non-smooth
continuous vector �elds. In this chapter, we will study bifurcations of �xed points
occurring in non-smooth continuous systems. It will be shown that a bifurcation in a
non-smooth continuous system can be discontinuous, in the sense that an eigenvalue
jumps over the imaginary axis under the variation of a parameter. We will try to
compare the bifurcations found in non-smooth systems with bifurcations of smooth
systems. Bifurcations of �xed points will be used as a stepping stone to bifurcations
of periodic solutions in discontinuous systems of Filippov-type in the next chapter.

Some facts about bifurcations of �xed points in smooth systems will briey be
repeated in Section 5.1. Next, the basic idea of a discontinuous bifurcation is pre-
sented in Section 5.2. In Sections 5.3 to 5.7 di�erent bifurcations of �xed points

of smooth and non-smooth continuous systems will subsequently be studied. The
di�erent bifurcations are compared and conclusions are drawn in the discussion of
Section 5.8.
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5.1 Smooth Systems

In this chapter, we consider bifurcations of �xed points of autonomous systems which
depend on one single parameter �:

_xe = fe(xe; �): (5.1)

Let n denote the dimension of the system. The system (5.1) is called smooth if it is
di�erentiable up to any order in both xe and �. Fixed points of (5.1) are solutions
of the algebraic equations

0e = fe(xe; �): (5.2)

In order to illustrate graphically the dependence of a �xed point xe on �, we requirea scalar measure of the n-vector xe. We shall use the notation [xe] for such a measure
of xe. Examples are [xe] = x1 and [xe] = kxek. A diagram depicting [xe] versus �, where(xe; �) solves equation (5.2), will be called a bifurcation diagram. An example of a
bifurcation diagram is Figure 5.4a. The continuous curves of solutions of (5.2) under
variation of � are called branches. The branches of smooth systems are continuous
and smooth but can split into one or more other branches. On a regular point of
the branch, that is on a point where the branch does not split or turn around, we
can de�ne the slope of the branch. We will use the following abbreviations

J(xe; �) = @fe(xe; �)
@xe and fe;�(xe; �) = @fe(xe; �)

@�
: (5.3)

Both derivatives exist for a smooth system. Using the implicit function theo-
rem [Kuznetsov, 1995; Seydel, 1994] it follows that, provided J(xe; �) is non-singular,locally (5.2) is equivalent to writing xe as a function of xe(�), i.e. 0e = fe(xe(�); �).Then it follows from di�erentiating (5.2) with respect to � that

J(xe; �)dxed� + fe;�(xe; �) = 0e (5.4)

As J(xe; �) is non-singular we can solve for dxe=d�. Clearly, a point (xe; �) is regularif det(J(xe; �)) 6= 0. The slope s of a branch on a regular point can be found from

s =
d[xe]
d�

=
@[xe]
@xe

dxe
d�

= �d[xe]
dxe J

�1(xe; �)fe;�(xe; �) (5.5)

The scalar measure [xe] should of course be such that it is indeed di�erentiable with
respect to xe at all �xed points on the branch. The choice [xe] = kxek can cause
problems as it is not everywhere di�erentiable.

Some de�nitions from bifurcation theory will be repeated. Seydel [1994] de�nes
a bifurcation point in the following way:

De�nition 5.1 (Bifurcation point (Seydel [1994]))

A bifurcation point (with respect to �) is a solution (xe�; ��), where the number of

�xed points or (quasi-)periodic solutions changes when � passes ��.
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The de�nition is to be understood that also the number of �xed points and (quasi-)
periodic solutions at the point under consideration have to be taken into account.
Consider for instance the bifurcation diagram depicted in Figure 5.5a. In this case
there are two �xed points for � < 0, one �xed point for � = 0 (which is the point
under consideration) and two �xed points for � > 0. The point (x; �) = (0; 0) is
therefore a bifurcation point because the number of �xed points changes at this point
for varying � (the change is: 2{1{2). We conclude that if branches intersect, then
their intersection point must be a bifurcation point.

Likewise, the system _x = �x has one �xed point for � < 0, in�nitely many �xed
points for � = 0 (which is the point under consideration) and one �xed point for
� > 0 (the change is: 1{1{1). The point (x; �) = (0; 0) is therefore a bifurcation
point. Stability is often exchanged at bifurcation points but this is not necessary.
Consider for instance the two-dimensional system

_x1 = �x1

_x2 = x2

Clearly, there is a bifurcation at (x; �) = (0; 0) but stability is not exchanged (the
�xed point changes from a saddle to a source). For one-dimensional smooth systems
however, a bifurcation is accompanied by an exchange of stability.

Another example is the saddle-node (or turning point) bifurcation depicted in
Figure 5.4a: there are zero �xed points for � < 0, one �xed point for � = 0 and two
�xed points for � > 0. One could be tempted to think that a bifurcation occurs if
the slope of the branch becomes vertical. A counter example is the system

_x = f(x; �) = �� x
3

The Jacobian is J(x; �) = �3x2 and therefore J(0; 0) = 0. Furthermore, f;� 6= 0 so
the slope at (0; 0) is vertical. But, if we study the bifurcation diagram in Figure 5.1,
then we see that (0; 0) is not a bifurcation point according to De�nition 5.1. Such a
point is called a hysteresis point (Seydel [1994]). Remark that the hysteresis e�ect
is caused by the fact that

@
2
f(0; 0)

@x2
= 0:

A bifurcation diagram can be misleading. Two branches can cross each other in
the two-dimensional bifurcation diagram without intersecting in the multi-dimen-

sional space. Such a point is not a bifurcation point. The problem is caused by the
projection of the multi-dimensional state-parameter space on the two-dimensional
bifurcation diagram and can be circumvented by another choice for [xe]. We will
make the assumption that a crossing of two branches in the bifurcation diagram
represents an intersection of the branches in the multi-dimensional space. Note that
this is never a problem if n = 1.

Many bifurcations in the sense of De�nition 5.1 expose a topological change of

the phase portrait of the system as its parameter passes the bifurcation point. We
will adopt the following de�nition for topological equivalence taken from Kuznetsov
[1995]:
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Figure 5.1: Hysteresis point.

De�nition 5.2 (Topological equivalence (Kuznetsov [1995]))

A dynamical system _xe = fe(xe), xe 2 IRn, is topologically equivalent in a region

U � IRn to a dynamical system _ye = ge(ye), ye 2 IRn, in a region V � IRn if there is a

homeomorphism h : IRn ! IRn, h(U) = V , mapping trajectories of the �rst system

in U onto trajectories of the second system in V , preserving the direction of time.

Remark: A homeomorphism is an invertible map such that both the map and its
inverse are continuous.

Kuznetsov [1995] gives a de�nition of a bifurcation based on topological nonequiv-
alence of the phase portrait (De�nition 5.2):

De�nition 5.3 (Bifurcation (Kuznetsov [1995]))

The appearance of a topologically nonequivalent phase portrait under variation of

parameters is called a bifurcation.

A third de�nition of a bifurcation is given by Guckenheimer and Holmes [1983].

De�nition 5.4 (Bifurcation value (Guckenheimer and Holmes [1983]))

A value �� of equation (5.1) for which the solution of (5.1) is not structurally stable

is a bifurcation value of �.

Remark: A �xed point is structurally stable if the Jacobian matrix (or the linearized
system around the �xed point) does not have eigenvalues on the imaginary axis.

De�nition 5.4 is unsatisfactory. The system _x = f(x; �) = 0 is structurally
unstable for all values of �. De�nition 5.4 suggests that all values of � are bifurcation
points. No bifurcation exists according to De�nitions 5.1 and 5.3. Also a hysteresis
point would be a bifurcation point according to De�nition 5.4. De�nition 5.4 will
therefore not be used. It should be noted that, for smooth systems, if a point is a
bifurcation point according to De�nitions 5.1 and 5.3, then it is also a bifurcation
according to De�nition 5.4. The implication does not hold in the other direction.
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Figure 5.2: Eigenvalue paths at a bifurcation.

The De�nitions 5.1 and 5.3 are consistent with each other for all the examples
of smooth systems given in this thesis in the sense that a bifurcation appears at
a bifurcation point. Although De�nitions 5.1, 5.2 and 5.3 were originally de�ned
for smooth continuous systems, we can apply them to non-smooth or discontinuous
systems. For periodic solutions of discontinuous systems, De�nitions 5.1 and 5.3 can
be inconsistent with each other. A bifurcation in the sense of De�nition 5.3 is not
always a bifurcation in the sense of De�nition 5.1. But a bifurcation in the sense of
De�nition 5.1 is always a bifurcation in the sense of De�nition 5.3. With the aim to
study non-smooth and discontinuous systems in mind, we will take De�nition 5.1 as
the de�nition for bifurcation in this thesis.

Fixed points of smooth systems can expose the following bifurcations: (a) saddle-
node bifurcation, (b) transcritical bifurcation, (c) pitchfork bifurcation or (d) Hopf
bifurcation. Bifurcations (a)-(c) are static bifurcations, at which only branches of
�xed points meet, and (d) is a dynamic bifurcation of a �xed point where a branch
of periodic solutions is created at the bifurcation point. The Jacobian matrices of
smooth systems are smooth continuous functions of the state vector and parameter.
The eigenvalues of the Jacobian matrix will therefore also depend continuously (but
not necessarily smooth) on the parameter. A bifurcation of a �xed point of a smooth
system occurs when one eigenvalue (or a pair of them) passes the imaginary axis
when a parameter is varied. The scenario is depicted in Figure 5.2a where a pair
of complex conjugated eigenvalues passes the imaginary axis when a parameter � is

varied and a Hopf bifurcation occurs at some critical value � = �
�. The bifurcations

occurring in smooth systems are called continuous bifurcations in this thesis because
the eigenvalues behave continuously.
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5.2 Discontinuous Bifurcation: The Basic Idea

Non-smooth continuous systems possess hyper-surfaces on which the vector �eld is
non-smooth. Let xe be a �xed point of (5.1) at some value for � and let � be a
hyper-surface which divides the state space in the smooth subspaces V� and V+. If
xe is not on �, then we can �nd a single-valued Jacobian matrix J(xe; �). If xe is on
�, then there are two Jacobian matrices J

�
(xe; �) and J+(xe; �) on either side of �

associated with the vector �eld in V� and V+. Assume that we vary � such that the
�xed point xe moves from V� to V+ via �. Let xe� denote the unique �xed point on
� for � = ��. The Jacobian matrix J(xe; �) varies as � is varied and is discontinuous
at � = �� for which xe = xe�. Loosely speaking, we say that J(xe; �) `jumps' at
� = �� from J

�
(xe�; ��) to J+(xe�; ��). A jump of the Jacobian matrix under the

inuence of a parameter implies a jump of the eigenvalues. In the previous chapter
we elaborated how we can de�ne a `generalized Jacobian' ~J(xe; �) which is set-valuedat (xe�; ��). The generalized Jacobian is the closed convex hull of J

�
(xe; �) and

J+(xe; �) at (xe�; ��)
~J(xe�; ��) = cofJ

�
(xe�; ��); J+(xe�; ��)g

= f(1� q)J
�
(xe�; ��) + qJ+(xe�; ��);8q j 0 � q � 1g: (5.6)

In fact, (5.6) de�nes how the Jacobian `jumps' at �. To be more precise, (5.6) gives
the set of values which the generalized Jacobian can attain on �. From the set-valued
generalized Jacobian we can obtain the set-valued eigenvalues. We can look upon
eig( ~J(xe�; ��)) together with (5.6) as if it gives a unique path of eigenvalues `during'
the jump as q is varied from 0 to 1. It is important to realize that for smooth
systems the eigenvalues are single-valued functions of the parameter � and that
the eigenvalues are set-valued functions in � for non-smooth continuous systems.
An eigenvalue can pass the imaginary axis while varying �, leading to a smooth
bifurcation, but it can also cross the imaginary axis during its jump along a path
de�ned by the generalized Jacobian. Examples will be given in the next sections
where jumps of eigenvalues over the imaginary axis lead to non-classical bifurcations.

We will name a bifurcation associated by a jump of an eigenvalue (or a pair
of them) over the imaginary axis a discontinuous bifurcation. A typical scenario
of a discontinuous bifurcation is depicted in Figure 5.2b where the unique path of
a pair of complex conjugated eigenvalues on the jump is indicated by the dashed
lines. The path depends on the Jacobian matrices J

�
(xe�; ��) and J+(xe�; ��). Notethat another pair of these two Jacobian matrices could yield the scenario depicted in

Figure 5.3a. The eigenvalues before and after the jump are the same as in Figure 5.2b
but the path of the pair of eigenvalues on the jump is di�erent. The possibility of the
eigenvalues to become set-valued greatly complicates the bifurcation behaviour as the
eigenvalue could also cross the imaginary axis multiple times during its jump. This
is depicted in Figure 5.3b where a pair of complex conjugated eigenvalues cross the
imaginary axis twice during the jump. One can suggest that for this case there exists
a discontinuous bifurcation which is a combination of two classical Hopf bifurcations.
Other combinations would also be possible, like Hopf { saddle-node, saddle-node {
saddle-node, etc. The discontinuous bifurcation can therefore be a single crossing
bifurcation which behaves very much like a conventional smooth bifurcation, or it
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Figure 5.3: Eigenvalue paths at a bifurcation.

can be a multiple-crossing bifurcation being far more complex.

We call the type of bifurcation, at which set-valued eigenvalues cross the imagi-
nary axis, a discontinuous bifurcation because the eigenvalues behave discontinuous
at the bifurcation point.

De�nition 5.5 (Discontinuous Bifurcation)

A bifurcation point, as de�ned by De�nition 5.1, is called a discontinuous bifurcation
point if the eigenvalues at the bifurcation point are set-valued and contain a value

on the imaginary axis.

Some important fundamental questions arise at this point:

1. Does a jump of an eigenvalue (or a pair of them) over the imaginary axis under
the inuence of a parameter imply a bifurcation in the sense of De�nition 5.1?

2. Can we classify a discontinuous bifurcation by inspecting the point where the
path of the set-valued eigenvalue (or a pair of eigenvalues) cross the imaginary
axis?

3. Does a continuous bifurcation for a smooth approximating system exist if the
non-smooth system exposes a discontinuous bifurcation?

4. Is the discontinuous bifurcation of the non-smooth system related to the contin-
uous bifurcation of a smooth approximating system (assuming that it exists)?

5. Do discontinuous bifurcations exist that do not have a continuous counterpart?
In other words: do discontinuous bifurcations exist that behave qualitatively
di�erent from any continuous bifurcation?
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Figure 5.4: Saddle-node bifurcation.

The answers to these questions are not straightforward. Some examples which illus-

trate the problems around these questions will be studied in the next sections. We
will return to these questions in the last section.

A treatise of some discontinuous bifurcations of �xed points will be given in the
next sections. For each of the continuous bifurcations (a)-(d) we try to �nd a simi-
lar discontinuous (single crossing) bifurcation occurring in a non-smooth continuous
system. The non-smooth system should be as simple as possible and will therefore
be chosen as a piecewise-linear continuous function. First the continuous bifurcation
is briey treated, and then its discontinuous counterpart is discussed. The insight in
discontinuous bifurcations of �xed points of non-smooth continuous systems is im-
portant in its own right but will also be of value for the understanding of bifurcations
of periodic solutions of discontinuous systems in the next chapter.

5.3 Saddle-node Bifurcation

The smooth scalar system

_x = f(x; �) = �� x
2 (5.7)

has two �xed points for � > 0

x =
p
�; x = �p� :

The Jacobian J = �2x becomes singular at x = 0. There exists a bifurcation at

(x; �) = (0; 0) in the x � � space (Figure 5.4a), which is known as a saddle-node
bifurcation point. The upper branch is stable (solid line) and the lower one unstable
(dashed line). At a continuous saddle-node bifurcation, f;� (cf. (5.3)) does not
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belong to the range of the matrix J (cf. Theorem 3.1 in Kuznetsov [1995]). Hence
the matrix [J jf;�] has rank n. This can be geometrically interpreted as stating
that the continuation problem is unique, i.e. we can follow the branch up to the
bifurcation and continue uniquely on the other part of the branch. However, the
fact that the continuation problem is unique does not necessarily imply that [J jf;�]
has full rank.

We now replace the term x
2 by jxj which yields a non-smooth system:

_x = f(x; �) = �� jxj (5.8)

which has again two �xed points for � > 0

x = �; x = �� :

with the generalized set-valued Jacobian ~J(x; �) = � Sgnx and f;�(x; �) = 1. The

linear approximation of the Jacobian ~J(x; �) at (x; �) = (0; 0) takes the form

~J(0; 0) = f�2q + 1;8 0 � q � 1g; (5.9)

which becomes singular at q = 1
2 . The bifurcation diagram is depicted in Fig-

ure 5.4b and looks similar to the one for the continuous version. Again there is a
stable branch and an unstable branch but they now meet at an acute angle. From
inspection of the bifurcation diagram we see that a static bifurcation (in the sense of
De�nition 5.1) exists at (x; �) = (0; 0). We also conclude that the single eigenvalue
on the bifurcation point is set-valued, i.e. � = [�1; 1]. Where for the smooth case

the eigenvalue passed the origin, the set-valued eigenvalue of the non-smooth system
`jumps' over the imaginary axis through the origin. For this reason, we will call the

point (x; �) = (0; 0) a discontinuous bifurcation point. The matrix
h
~J(0; 0)jf;�(0; 0)

i
for q = 1

2
has rank n similar to the smooth case. However, it seems not justi�ed to

conclude from this that the continuation problem (i.e. the possibility to follow the
branch after the bifurcation point) is unique because the slope of the branch is not
properly de�ned on the non-smooth bifurcation point.

The jump of the eigenvalue and the acute conjunction of branches are properties
of discontinuous bifurcations which we will also encounter for bifurcations of periodic
solutions.

It should be noted that, if we select to smoothen the non-smooth system with
the following arctangent function

_x � �� 2

�
arctan("x)x � �� 2

�
"x

2 +O(x4);

then the resulting bifurcation will be a continuous saddle-node bifurcation for all "
as can be seen from the expansion around the bifurcation point (x = 0). Whether
every smoothing function will reveal a saddle-node bifurcation is not clear. But

still, the discontinuous bifurcation in Figure 5.4b resembles the smooth saddle-node
bifurcation in Figure 5.4a and we will call it therefore a discontinuous saddle-node
bifurcation.
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Figure 5.5: Transcritical bifurcation, smooth.

5.4 Transcritical Bifurcation

First, we consider the scalar smooth system

_x = f(x; �) = �x� x
2
: (5.10)

There are two �xed points

x = 0; x = �

The Jacobian of (5.10)

J(x; �) = �� 2x

has the single eigenvalues

� = �; at x = 0
� = ��; at x = �

The static bifurcation, shown in Figure 5.5a, is a transcritical bifurcation point at
which two branches exchange stability. The function f(x; �) is depicted in Fig-
ure 5.5b for � = �1, � = 0 and � = 1. The function has two distinct zeros for � 6= 0,
where one is always in the origin. At the bifurcation point (� = 0), the two zeros
coincide to one double zero. The two zeros exchange stability when the bifurcation
point is passed. At a continuous transcritical bifurcation point, f;� does belong to
the range of the matrix J . The matrix [J jf;�] has rank n � 1 at (x; �) = (0; 0). A
second branch therefore crosses the bifurcation point, which makes the continuation
problem non-unique.

We now study the following non-smooth system:

_x = f(x; �) = j1
2
�j � jx� 1

2
�j (5.11)
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Figure 5.6: Transcritical bifurcation, discontinuous.

This non-smooth system approximates the parabola in Figure 5.5b by a piecewise-
linear curve (a tent) as is depicted in Figure 5.6b. The lines are bold where the
curves overlap each other. The non-smooth system (5.11) has the same �xed points
as the smooth system (5.10)

x = 0; x = �:

From inspection of the bifurcation diagram depicted in Figure 5.6a, we see that
a static bifurcation (in the sense of De�nition 5.1) exists at (x; �) = (0; 0) as the
number of �xed points changes (the change is 2{1{2). The bifurcation of the non-
smooth system depicted in Figure 5.6a is similar to the transcritical bifurcation in
Figure 5.5a. The generalized Jacobian of (5.11) is

~J(x; �) = � Sgn(x� 1

2
�)

and is set-valued at (x; �) = (0; 0). The generalized Jacobian has the eigenvalues

� = �1; at x = 0 if � < 0
� = 1; at x = 0 if � > 0
� = 1; at x = � if � < 0
� = �1; at x = � if � > 0
� = [�1; 1]; at (x; �) = (0; 0)

Where for the smooth transcritical bifurcation the eigenvalue passed the origin, the
set-valued eigenvalue of the non-smooth system `jumps' over the imaginary axis
through the origin. For this reason, we will call the point (x; �) = (0; 0) a discontin-
uous bifurcation point (Figure 5.6a). Because the structure of the branches around
the discontinuous bifurcation point resembles the structure of the transcritical bi-
furcation, we will call this bifurcation a discontinuous transcritical bifurcation.
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Figure 5.7: Non-symmetric smoothing.

The �xed point (x; �) = (0; 0) is located on the intersection of two hyperplanes
� = 0 and x � 1

2
� = 0 in the (x; �) space. Two parameters, q1 and q2, are needed

for a linear approximation. The �rst parameter, q1, will be varied to satisfy the
condition det( ~J(0; 0)) = 0 and the second parameter, q2, will be varied to ensure

that
h
~J(0; 0)j~fe;�(0; 0)

i
has rank n� 1.

The linear approximation ~J of the Jacobian at (x; �) = (0; 0) takes the form

~J(0; 0) = f�2q1 + 1;8 0 � q1 � 1g; (5.12)

which becomes singular at q1 =
1
2
. Furthermore,

~f;�(x; �) =
1

2
Sgn(�) +

1

2
Sgn(x� 1

2
�); (5.13)

which is set-valued at the bifurcation point. We therefore construct a linear approx-
imation

~f;�(0; 0) = f1
2
(2q2 � 1) +

1

2
(2q1 � 1);8 0 � q1 � 1;8 0 � q2 � 1g

= fq2 + q1 � 1;8 0 � q1 � 1;8 0 � q2 � 1g
(5.14)

The matrix
h
~J(0; 0)j ~f;�(0; 0)

i
has rank n � 1 at q1 = 1

2
; q2 = 1

2
. Because of the

non-smoothness of the problem it is not justi�ed to conclude that the continuation
problem is non-unique as for the smooth case but a resemblance is present.

If we smoothen the non-smooth system (5.11) with the following particular arc-
tangent function

_x � 1

�
arctan(

1

2
"�)�� 2

�
arctan("(x � 1

2
�))(x � 1

2
�) � 2

�
"(�x� x

2);

then the resulting bifurcation will be a continuous transcritical bifurcation for all "
as can be seen from the expansion around the bifurcation point (x = 0, � = 0). The
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Figure 5.8: Pitchfork bifurcation, smooth.

smoothened system can be transformed to the standard normal form with the time
transformation � = "t.

However, not every smoothing function gives a transcritical bifurcation. Consider
for instance the following non-symmetric smoothing:

j 1
2
�j � 2

�
arctan( 1

2
"�) 1

2
�+ 1

"

jx� 1
2�j � 2

�
arctan("(x� 1

2�))(x � 1
2�)

(5.15)

which gives

_x � 2

�
("(�x � x

2) +
1

"
) (5.16)

for jxj � 1 and "� 1. Equation (5.16) has two branches in the bifurcation diagram
for varying � but the branches do not intersect (Figure 5.7). No bifurcation exists
for (5.16).

5.5 Pitchfork Bifurcation

We consider the smooth system

_x = f(x; �) = �x+ �x
3
; (5.17)

where the constant � will be taken as � = �1. There is one �xed point for �

�
� 0

and are three �xed points for �

�
< 0.

x = 0 trivial point

x = �p��

�
for �

�
< 0
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Figure 5.9: Pitchfork bifurcation, discontinuous.

The Jacobian
J = �+ 3�x2

has the single eigenvalues

� = �; at x = 0

� = �2�; at x = �p��

�
for �

�
< 0

For � = �1 there is a supercritical pitchfork bifurcation (Figure 5.8a) and for � = 1 a
subcritical pitchfork bifurcation (Figure 5.8b). At a continuous pitchfork bifurcation
point, f;� does belong to the range of the matrix J (cf. Theorem 3.1 in Kuznetsov

[1995]). The matrix [J jf;�] has rank n� 1 = 0 at (x; �) = (0; 0), which is consistent
with the fact that two branches intersect at the bifurcation point.

We now study the following non-smooth system:

_x = f(x; �) = �x+ jx+ 1

2
�j � jx� 1

2
�j (5.18)

There exists one �xed point for � � 0 and three �xed points for � > 0

x = 0 trivial point
x = �� for � > 0

From inspection of the bifurcation diagram depicted in Figure 5.9a, we observe that
a static bifurcation (in the sense of De�nition 5.1) exists at (x; �) = (0; 0) as the
number of �xed points changes (the change is 1{1{3).

The generalized Jacobian of (5.18)

~J(x; �) = �1 + Sgn(x+
1

2
�)� Sgn(x � 1

2
�)
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Figure 5.10: Non-symmetric smoothing.

has the single eigenvalues

� = �3; at x = 0; � < 0
� = 1; at x = 0; � > 0
� = �1; at x = ��; � > 0

and is set-valued at (x; �) = (0; 0). As there are two hyperplanes where the vector
�eld is discontinuous, we need two parameters for a linear approximation of the
Jacobian at (x; �) = (0; 0)

~J(0; 0) = f�1 + (�2q1 + 1)� (�2q2 + 1);8 0 � q1 � 1;8 0 � q2 � 1g
= f2(q2 � q1)� 1;8 0 � q1 � 1;8 0 � q2 � 1g; (5.19)

which becomes singular at q2 � q1 =
1
2
. Furthermore,

~f;�(x; �) =
1

2
Sgn(x+

1

2
�) +

1

2
Sgn(x� 1

2
�); (5.20)

which is set-valued at the bifurcation point. We therefore construct a linear approx-
imation

~f;�(0; 0) = f1
2
(2q1 � 1) +

1

2
(2q2 � 1);8 0 � q1 � 1;8 0 � q2 � 1g

= fq1 + q2 � 1;8 0 � q1 � 1;8 0 � q2 � 1g:
(5.21)

The matrix
h
~J(0; 0)j ~f;�(0; 0)

i
has rank n � 1 at q1 = 3

4
; q2 = 1

4
. The contin-

uation problem is clearly non-unique as can be seen from the bifurcation diagram

(Figure 5.9a). But to conclude this from the rank of
h
~J(0; 0)j ~f;�(0; 0)

i
seems not

justi�ed because of the non-smoothness of the problem.
The bifurcation diagram is shown in Figure 5.9a for the discontinuous supercrit-

ical pitchfork bifurcation of system (5.18). We call the bifurcation discontinuous



64 Chapter 5

because the eigenvalue `jumps' over the imaginary axis. The discontinuous bifur-
cation is classi�ed as a discontinuous pitchfork bifurcation because it resembles the
continuous pitchfork bifurcation. Similarly, the system

_x = f(x; �) = x+ jx+ 1

2
�j � jx� 1

2
�j (5.22)

exhibits a discontinuous subcritical pitchfork bifurcation (Figure 5.9b).
We smoothen the non-smooth system (5.18) with a particular arctangent function

and apply a Taylor series expansion around (x = 0, � = 0)

_x = �x+ jx+ 1
2�j � jx� 1

2�j

� �x+ 2
�
arctan("(x+ 1

2
�))(x + 1

2
�)� 2

�
arctan("(x � 1

2
�))(x� 1

2
�)

� (�1 + 4
�
"�)x� 8

3�
"
3
�x

3
:

The resulting bifurcation is a continuous pitchfork bifurcation with the bifurcation
point at (x = 0, � = �

4" ). The bifurcation point of the smoothened system therefore
approaches the origin as " is increased.

However, not every smoothing function gives a pitchfork bifurcation. Consider
for instance the following non-symmetric smoothing:

jx+ 1
2
�j � 2

�
arctan("(x+ 1

2
�))(x + 1

2
�) + 1

"

jx� 1
2
�j � 2

�
arctan("(x� 1

2
�))(x � 1

2
�)

(5.23)

which gives

_x � (�1 + 4

�
"�)x� 8

3�
"
3
�x

3 +
1

"
(5.24)

for jxj � 1 and " � 1. Equation (5.24) has two branches close to the origin in the
bifurcation diagram for varying �, but the branches do not intersect (Figure 5.10).
Only a saddle-node bifurcation exists for (5.24).

5.6 Hopf Bifurcation

At a Hopf bifurcation point the �xed point looses its stability and a periodic solution
is born (or vise-versa). First, we consider the smooth planar system

_x1 = �x1 � !x2 + (�x1 � �x2)(x
2
1 + x

2
2)

_x2 = !x1 + �x2 + (�x1 + �x2)(x
2
1 + x

2
2)

(5.25)

where �, !, � and � are constants. We will study the �xed points and periodic
solutions of system (5.25) for di�erent values of �. This system has a �xed point
xe = [x1; x2]

T = [0; 0]T for all values of � and the Jacobian matrix of the linearized
system around the �xed point is

J =

�
� �!
! �

�
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Figure 5.11: Hopf bifurcation, smooth.

with the eigenvalues �1;2 = � � i!. For � < 0 the �xed point is asymptotically
stable. When � is increased to � = 0 the �xed point becomes non-hyperbolic, and
for � > 0 the �xed point becomes unstable. By using the transformation

x1 = r cos � and x2 = r sin � (5.26)

we transform (5.25) into

_r = �r + �r
3 (5.27)

_� = ! + �r
2 (5.28)

The trivial �xed point of (5.27) corresponds to the �xed point of (5.25), and the
nontrivial �xed point (r 6= 0) of (5.27) corresponds to a periodic solution of (5.25). In
the latter case, r is the amplitude and _� is the frequency of the periodic solution that
is created by the Hopf bifurcation. The transformation (5.26) therefore transforms
the Hopf bifurcation into the pitchfork bifurcation. The bifurcation diagram for
the Hopf bifurcation is depicted in Figure 5.11 and the bifurcation diagram for the
transformed system (5.27) is identical to Figure 5.8 where x should be replaced by r.

We now study the following non-smooth system

_x1 = �x1 � !x2 +
x1p
x
2

1
+x2

2

(j
p
x21 + x22 +

1
2
�j � j

p
x21 + x22 � 1

2
�j)

_x2 = !x1 � x2 +
x2p
x
2

1
+x2

2

(j
p
x21 + x22 +

1
2�j � j

p
x21 + x22 � 1

2�j)
(5.29)

which is dependent on the parameters � and !. We will study the �xed points
and periodic solutions of system (5.29) for di�erent values of �. The non-smooth
system (5.29) has the same �xed point as the smooth system with the same stability.



66 Chapter 5

x1

x2

0 �

(a) supercritical

x1

x2

0 �

(b) subcritical

Figure 5.12: Hopf bifurcation, discontinuous.

We transform the system (5.29) with the transformation (5.26) into

_r = �r + jr + 1

2
�j � jr � 1

2
�j (5.30)

_� = ! (5.31)

The one-dimensional system (5.30) is identical to the non-smooth system (5.18)
exposing a discontinuous pitchfork bifurcation. The scenario for the discontinuous

Hopf bifurcation is depicted in Figure 5.12 and the scenario for (5.30) is identical to
Figure 5.9.

5.7 Hopf{Pitchfork Bifurcation

Consider the non-smooth continuous system

_x1 = x2

_x2 = �x1 + jx1 + �j � jx1 � �j � x2 � jx2 + �j+ jx2 � �j (5.32)

For � > 0 there are three �xed points

x1 = 0; x2 = 0 trivial point
x1 = �2�; x2 = 0

For � � 0, the only �xed point is the trivial point x1 = 0; x2 = 0. The Jacobian
matrix at the trivial branch jumps at � = 0 from J(0; 0)tr

�
to J(0; 0)tr+.

J(0; 0)tr
�
=

�
0 1

�3 1

�
; � < 0; � =

1

2
� i

1

2

p
11 (5.33)

J(0; 0)tr+ =

�
0 1
1 �3

�
; � > 0; � = �11

2
� 1

2

p
13 � f0:30;�3:30g (5.34)
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Figure 5.13: Path of the eigenvalues of ~J(0; 0)tr.

The trivial �xed point is therefore an unstable focus for � < 0 and a saddle for
� > 0. The Jacobian matrix on the non-trivial branches is

J(�2�; 0)non =
�

0 1
�1 �3

�
; � > 0;

� = �1 12 � 1
2

p
5 � f�0:38;�2:62g

(5.35)

Fixed points on the non-trivial branches are therefore stable nodes. The jump of
the Jacobian on the trivial branch can be expressed as

~J(0; 0)tr = f(J(0; 0)tr+ � J(0; 0)tr
�
)q + J(0; 0)tr

�
;8 0 � q � 1g: (5.36)

The eigenvalues of the convex combination ~J(0; 0)tr are plotted for 0 � q � 1 in
Figure 5.13. We observe that the eigenvalues of the convex combination cross the
imaginary axis twice. At q = 1

4
a pair of complex conjugated eigenvalues passes the

imaginary axis and at q = 3
4
a single eigenvalue passes the origin.

With the transformation

y1 =
x1

�
; y2 =

x2

�
(5.37)

we can transform system (5.32) for � < 0 to

_y1 = y2

_y2 = �y1 � jy1 + 1j+ jy1 � 1j � y2 + jy2 + 1j � jy2 � 1j (5.38)

and for � > 0 to

_y1 = y2

_y2 = �y1 + jy1 + 1j � jy1 � 1j � y2 � jy2 + 1j+ jy2 � 1j (5.39)

The transformed systems are independent of � for � 6= 0. Fixed points and periodic
solutions of (5.38) and (5.39) are after a back-transformation with 5.37 also �xed
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Figure 5.14: Bifurcation diagrams.

points and periodic solutions of system (5.32). The location of the �xed points of
system (5.32) scale therefore with �. But also all periodic solutions of system (5.32)
scale with �. This means that the shape of a periodic solution of (5.32) does not
change for varying �, but the size of the periodic solution scales with �. The period
time is independent of �. The bifurcation diagram of system (5.32) is depicted in
Figure 5.14a. Branches of �xed points are indicated by black lines and periodic
branches by grey lines. Stable branches are indicated by solid lines and unstable
branches by dashed lines. Explicit expressions were found for the �xed points and
the periodic solution was found numerically. The point (x1; x2; �) = (0; 0; 0) is
a bifurcation point where two branches of �xed points bifurcate from the trivial
branch and also one periodic solution. This bifurcation behaviour is consistent with
the path of the eigenvalues `during' the jump (Figure 5.13). The two crossings with

the imaginary axis would suggest a combination of a Hopf and a static bifurcation.
This is indeed the case, because a periodic branch and other branches of �xed points
are created at the bifurcation point. The magnitude max(x1) varies linearly in �

for all branches as was expected from the transformation. The period time of the
periodic solution is T = 4:03 s and is independent of �. The stable periodic solution
in the transformed coordinates (5.37) is depicted in Figure 5.15 together with the
unstable �xed point (denoted by `+') and the lines y1 = �1, y2 = �1 on which the
vector �eld is non-smooth.

We now study the smooth approximating system

_x1 = x2

_x2 =� x1 +
2

�
arctan("(x1 + �))(x1 + �)� 2

�
arctan("(x1 � �))(x1 � �)

� x2 � 2

�
arctan("(x2 + �))(x2 + �) +

2

�
arctan("(x2 � �))(x2 � �)

(5.40)
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Figure 5.15: Periodic solution.

The system can be expanded in a Taylor series around x1 = x2 = 0

_x1 = x2

_x2 � (�1 + 8
�
"�)x1 � 64

3� "
3
�x

3
1 + (�1� 8

�
"�)x2 +

64
3� "

3
�x

3
2

(5.41)

The smooth approximating system (5.40) also has the trivial branch of �xed
points (x1; x2) = (0; 0). The location of the eigenvalues on the trivial branch are
computed numerically (with " = 10) for varying �. The eigenvalues are plotted in
the complex plane in Figure 5.16 for some values of � (indicated by *) together with
the eigenvalue-path of the convex combination (Figure 5.13), which is indicated by

a solid line. The eigenvalues of the smooth approximating system seem to be almost
located on the eigenvalue-path of the convex combination of the non-smooth system.
The trivial branch of the approximating system also undergoes a Hopf bifurcation
and a pitchfork bifurcation but at di�erent values of �. The bifurcation diagram of
the smooth approximating system is sketched in Figure 5.14b. The Hopf bifurcation
is approximately located at � = � �

8"
and the pitchfork bifurcation approximately at

� = �

8" . The two bifurcations approach each other for increasing ".

5.8 Discussion and Conclusions

All classical bifurcations of �xed points of smooth systems were discussed in this
chapter and a parallel was shown with non-smooth systems. For each of the classical
continuous bifurcations a discontinuous bifurcation was found.

In Section 5.2 some fundamental questions about discontinuous bifurcations were
raised. With the preceding examples in mind, we will try to answer these questions
one by one.

1. Does a jump of an eigenvalue (or a pair of them) over the imaginary axis

under the inuence of a parameter imply a bifurcation in the sense of De�ni-

tion 5.1? In all examples the conclusion that a bifurcation exists was taken
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Figure 5.16: Path of the eigenvalues of the approximating system.

from inspection of the bifurcation diagram. If there is a change in the number
of �xed points for a certain parameter value, then there is a bifurcation at this
parameter value according to De�nition 5.1. We also observed that a `jump'
exists of the eigenvalue over the imaginary axis. Although it is intuitively ap-
pealing to state that at a bifurcation an eigenvalue (or a pair of them) must

`jump' or pass the imaginary axis, we do not have mathematical proof for this.

2. Can we classify a discontinuous bifurcation by inspecting the point where the

path of the set-valued eigenvalue (or a pair of eigenvalues) crosses the imag-

inary axis? The discontinuous bifurcations of the preceding examples were
classi�ed by comparing their nature with a certain type of continuous bifurca-
tion. If at a discontinuous bifurcation the change of �xed points is the same as
for a certain type of continuous bifurcation, then the discontinuous bifurcation
can be regarded as the discontinuous counterpart of that type of continuous
bifurcation. We observed that all discontinuous static bifurcations expose a
jump of an eigenvalue through the origin, like for the continuous static bifur-
cations. For the discontinuous Hopf bifurcation, a pair of eigenvalues jumps
through the imaginary axis, consistent with the continuous Hopf bifurcation.
The example in Section 5.7 exposes a discontinuous bifurcation point at which
a branch of periodic solutions as well as a branch of �xed points bifurcate. The
set-valued eigenvalues cross the imaginary axis twice, suggesting a Hopf and
a static bifurcation. Although we cannot classify this discontinuous multiple-
crossing bifurcation as a discontinuous counterpart of a continuous bifurcation,
we can still look upon the discontinuous bifurcation as a combination of two
continuous bifurcations and classify it as such. Whether we can classify the
discontinuous bifurcation by inspecting the crossing of the eigenvalue with the
imaginary axis is not proven although it seems intuitively correct.

3. Does a continuous bifurcation exist if the non-smooth system, exposing a dis-
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continuous bifurcation, is approximated by a smooth system? In Section 5.4
a counterexample was given by taking a non-symmetric smoothing function.
The smoothened version of the non-smooth system did not expose a bifurca-
tion. It should be remarked that if the smoothing parameter is increased, all
branches converge to the branches of the non-smooth system but the branches
may not necessarily intersect (implying a bifurcation).

4. Is the discontinuous bifurcation of the non-smooth system related to the con-

tinuous bifurcation of the smoothened system (assuming that it exists)? In Sec-
tion 5.5 a non-smooth system exposed a discontinuous pitchfork bifurcation.
A non-symmetric smoothing of the non-smooth system exposed a saddle-node
bifurcation. We conclude that the bifurcation occurring in the smoothened
system is not always related to the discontinuous bifurcation of the original
non-smooth system.

5. Do discontinuous bifurcations exist that do not have a continuous counterpart?

In other words: do discontinuous bifurcations exist that behave qualitatively dif-

ferent from any continuous bifurcation? Section 5.7 showed a discontinuous
bifurcation which can be looked upon as the combination of two continuous
bifurcations. This bifurcation can therefore not be classi�ed as simply the
counterpart of a continuous bifurcation. However, the discontinuous bifurca-
tion still behaves in the same way as the two continuous bifurcations. The
qualitative behaviour of the bifurcation is (in this particular case) simply the
combination of the behaviour of a Hopf and a pitchfork bifurcation. In Chap-
ter 6 we will encounter a combined ip-fold bifurcation of a periodic solution
that behaves like a ip and fold bifurcation but also shows behaviour not cov-
ered by a ip or fold bifurcation separately. We are therefore not con�dent
that the behaviour of a multiple-crossing bifurcation of a �xed point is always
simply the combination of behaviour of continuous bifurcations.

From the preceding discussion we raise two conjectures.

Conjecture 5.1

A necessary condition for the existence of a discontinuous bifurcation of a �xed

point of a non-smooth continuous system is a `jump' of an eigenvalue (or a pair of

them) over the imaginary axis, i.e. the path of the set-valued eigenvalue(s) passes

the imaginary axis.

A discontinuous bifurcation point would according to Conjecture 5.1 be structurally
unstable in the sense that the set-valued eigenvalue contains a value on the imaginary
axis.

Conjecture 5.2

A discontinuous bifurcation of a �xed point of a non-smooth continuous system may

be classi�ed by inspecting the point(s) where the path of the set-valued eigenvalue

(or a pair of eigenvalues) crosses the imaginary axis.
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Remarks: Conjecture 5.2 suggests that we can classify a discontinuous bifurcation
if it exists. The conjecture does not give a condition for a bifurcation. The conjecture
also suggests that we can classify a double-crossing bifurcation as the combination
of two continuous bifurcations, like for the Hopf-pitchfork bifurcation, because it
exposes the behaviour of both continuous bifurcations. However, the bifurcation
can still show features not covered by the two continuous bifurcation separately.

We should be sceptical concerning Conjectures 5.1 and 5.2. One can argue that
it might be possible that a double-crossing bifurcation is the combination of two
bifurcations that cancel each other out. A smooth approximation of a non-smooth
system could show two saddle-node bifurcations (turning the branch in opposite
directions) which collide in the limiting case. The bifurcation diagram would then
look in the limiting case like a hysteresis point (Figure 5.1). The non-smooth system,
showing a double intersection of a set-valued eigenvalue with the origin, might then
have no bifurcation at all and would be a non-smooth counterpart of a hysteresis
point. Conjecture 5.1 suggests therefore a necessary condition for a discontinuous
bifurcation and not a su�cient condition. If indeed a discontinuous bifurcation
exists, then Conjecture 5.2 suggests that we can classify the discontinuous bifurcation
by inspecting the crossing point(s) of the set-valued eigenvalues with the imaginary
axis.

These conjectures are raised from observations and agree with one's intuition as
they are generalizations of theorems for continuous bifurcations in smooth systems.
The conjectures will be assumed to hold in the remainder of this thesis keeping in
mind that there exists no mathematical proof that they are correct.

Periodic solutions can be looked upon as �xed points on a Poincar�e map. The
generalization of eigenvalues for �xed points are Floquet multipliers for periodic
solutions. If the above conjectures are correct, then we can expect a discontinuous
bifurcation of a periodic solution if a Floquet multiplier (or a pair of them) jumps
over the unit circle. The type of discontinuous bifurcation of a periodic solution could
then be inferred from the crossing point of the path of the Floquet multiplier(s) with
the unit circle. We will discuss bifurcations of periodic solutions in the next chapter.
The results on discontinuous bifurcations of periodic solutions will be compared with
Conjectures 5.1 and 5.2.
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Bifurcations of Periodic

Solutions

`If a man will begin with certainties, he shall end

with doubts; but if he will be content to begin with

doubts, he shall end in certainties.'

Francis Bacon, (1561-1626)

In this chapter we will study bifurcations of periodic solution in discontinuous sys-
tems. Section 6.3 explains how a discontinuous bifurcation of a periodic solution
can be created when a periodic solution touches a non-smooth hyper-surface. The
relation with discontinuous bifurcations of �xed points in non-smooth continuous

systems is treated. Fundamental questions about discontinuous bifurcations of peri-
odic solutions are raised. Sections 6.6 to 6.9 treat a number of numerical examples
which show discontinuous bifurcations. Section 6.10 draws conclusions from the
numerical examples and tries to give answers to the questions of Section 6.3.

6.1 Discontinuous Systems

In this chapter we will study periodic solutions of nonlinear systems with a discontin-
uous right-hand side, as de�ned in Chapter 2, under inuence of a single parameter.
The right-hand side is discontinuous on one or more hyper-surfaces and is assumed
to be linearly bounded. An example of such a system is

_xe(t) = fe(t; xe(t); �) =
(

fe�(t; xe(t); �) xe 2 V�
fe+(t; xe(t); �) xe 2 V+; (6.1)
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with

V� = fxe 2 IRn j h(xe(t); �) < 0g
� = fxe 2 IRn j h(xe(t); �) = 0g
V+ = fxe 2 IRn j h(xe(t); �) > 0g:

(6.2)

The system depends on a single parameter �. Also, the indicator function h is in
general dependent on �, which implies dependence on � for the hyper-surface �
and the spaces V� and V+. Discontinuous systems of this type can be extended to
di�erential inclusions by means of the method proposed by Filippov (Chapter 2).
The resulting di�erential inclusion has a set-valued map Fe(t; xe; �) which is upper
semi-continuous, convex, closed, non-empty and linearly bounded. Existence of the
solution to the IVP is therefore guaranteed. Uniqueness, however, is not guaranteed.

6.2 Bifurcations in Smooth Systems

In the preceding chapter, bifurcations of �xed points were discussed. Jacobian ma-
trices of non-smooth continuous systems can behave discontinuously when a system
parameter is varied: they jump. The jump of the Jacobian matrix causes a jump of
the eigenvalues. If an eigenvalue jumps over the imaginary axis under inuence of
a parameter, we presumed that a discontinuous bifurcation can occur (see Conjec-
ture 5.1).

Before introducing the basic idea of discontinuous bifurcations of periodic solu-
tions, we shortly address bifurcations of such solutions in smooth systems. A periodic
solution can be regarded as a �xed point of a Poincar�e map P on a Poincar�e section.
The results on bifurcations of �xed points are therefore useful for the investigation of
bifurcations of periodic solutions. The stability of a periodic solution is determined
by its Floquet multipliers �i (i = 1,...,n), which are the eigenvalues of the funda-
mental solution matrix �(T + t0; t0). The Floquet multipliers are the generalization
of the eigenvalues at a �xed point. Because solutions of autonomous systems can be
shifted in time, one of the Floquet multipliers equals unity for such systems. The
periodic solution is stable if all Floquet multipliers (not associated with the phase in
the autonomous case) lie within the unit circle. If one or more Floquet multipliers lie
outside the unit circle, then the periodic solution is unstable. The periodic solution
varies (as well as its Floquet multipliers) as a parameter of the system is varied. The
periodic solution changes from stable to unstable (or vise versa) when the largest
Floquet multiplier passes through the unit circle.

Like for �xed points, di�erent de�nitions for a bifurcation of a periodic solution
exist. We will take De�nition 5.1 as de�nition for a bifurcation of periodic solutions.
According to De�nition 5.1, a point is a bifurcation point of a periodic solution if
the number of periodic solutions changes for a varying system parameter. One can
also give a de�nition of a bifurcation of a periodic solution based on topological
equivalence of the phase portrait, like De�nition 5.3. We will discuss in Section 6.10
the di�erence between these de�nitions when they are applied to periodic solutions
of Filippov systems.

A bifurcation of a periodic solution of a smooth system occurs if a Floquet
multiplier (or a pair of them) passes through the unit circle under variation of a
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Figure 6.1: Discontinuous bifurcation; single crossing.

system parameter.

6.3 Discontinuous Bifurcation: The Basic Idea

Examples of non-smooth continuous systems in Chapter 5 showed discontinuous bi-
furcations of �xed points when an eigenvalue jumps over the imaginary axis. Conjec-
ture 5.1 presumed that such a jump over the imaginary axis is a necessary condition
for a discontinuous bifurcation. Moreover, we presumed that the crossing of the
path of the jump (obtained from a convex combination of two Jacobians) with the
imaginary axis determines the type of bifurcation (Conjecture 5.2).

In Chapter 3 we concluded that fundamental solution matrices of the discontin-
uous systems, �(t; t0), expose jumps at time instances t where a hyper-surface of

discontinuity is crossed. Periodic solutions change under inuence of a parameter.
The crossing of a periodic solution with a hyper-surface can vanish if a parameter

is varied. The fundamental solution matrix after the period time �(T + t0; t0) of a
periodic solution can therefore also exhibit a jump if a system parameter is varied.
The jump of the fundamental solution matrix implies a jump of one or more Floquet
multipliers.

In a similar way as for bifurcations of �xed points, we can expect a discontinuous
bifurcation of a periodic solution when a Floquet multiplier jumps over the unit
circle under inuence of a parameter. The basic idea is depicted in Figure 6.1. The
Floquet multipliers jump at a critical value of the parameter � = �

� from �� and
��� to �+ and ��+. The path of the jump is obtained from a convex combination
of the fundamental solution matrices before and after the jump. The path of the
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Floquet multipliers crosses the unit circle. We presume that this causes a discontin-
uous bifurcation of a periodic solution (in this case a discontinuous Neimark-Sacker
bifurcation). Remark that also other jumps are possible as was explained in the
preceding chapter about �xed points (see Figures 5.2 and 5.3).

The numerical examples in the Sections 6.6 to 6.8 show discontinuous counter-
parts of various types of smooth bifurcations of periodic solutions, all characterized
by a single jump over the unit circle at the point where the smooth bifurcation has
a Floquet multiplier which passes through the unit circle. Like for discontinuous
bifurcations of �xed points also multiple crossings are possible. In Figure 6.2 a jump
of a real valued Floquet multiplier is shown which jumps from a value smaller than
�1 to a value greater than +1 thereby crossing the unit circle twice. It crosses the

unit circle at the points �1, involving a ip bifurcation, and at the point +1, in-
volving a fold bifurcation. The discontinuous bifurcation is therefore a combination
of a fold and a ip bifurcation. We will discuss an example of this type of combined
fold{ip bifurcation in Section 6.9. Similar alternatives for the path of the jump are
possible as in Figures 5.2b and 5.3a.

The idea of a discontinuous bifurcation of a periodic solution, at which a Floquet
multiplier jumps through the unit circle, is similar to the `C-bifurcations' in the
work of Feigin [1974, 1978, 1995] and Di Bernardo et al. [1999a,b]. Feigin classi�es
C-bifurcations on the number of real-valued eigenvalues of the Poincar�e map (see
Section 6.4) that are smaller than �1 or larger than +1, but does not take complex
eigenvalues into account. The classi�cation embraces only the discontinuous fold
and ip bifurcation, the combined fold{ip bifurcation and the smooth transition
(which is not a bifurcation in the sense of De�nition 5.1) [Di Bernardo et al., 1999b].
The possibility of a discontinuous symmetry-breaking bifurcation or other discon-
tinuous bifurcations were not mentioned. Non-classical bifurcations of non-smooth
discrete mappings were also addressed by Nusse and York [1992]. Discontinuous
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Figure 6.3: Poincar�e map for an autonomous system.

bifurcations are based on jumps in the Floquet multipliers which are essentially the
same as the derivatives of the Poincar�e map. The `C-bifurcations' are therefore
also discontinuous bifurcations (except for the smooth transition). In this thesis it
is explained how the discontinuous bifurcations come into being through jumps of
the fundamental solution matrix. It is shown that the fundamental solution matrix
can jump if a periodic solution touches a non-smooth hyper-surface of discontinuity.
The jumps are described by saltation matrices which can be expressed explicitly.
Furthermore, the path of the Floquet multipliers during the jump is calculated by
means of linear approximation. The path of the eigenvalues of the Poincar�e map
at a C-bifurcation remains on the real axis, whereas the Floquet multipliers at a
discontinuous bifurcation can be complex conjugated.

6.4 The Poincar�e Map

We can elucidate the relation between continuous bifurcations and discontinuous
bifurcations even more by studying the Poincar�e map [Parker and Chua, 1989].
Consider an n-th order autonomous system

_xe(t) = fe(xe(t)) (6.3)

with a periodic solution � shown in Figure 6.3. Let xe� be a point on the periodic
solution and let 
 be an (n�1)-dimensional hyper-surface transversal to � at xe�. We
will call the hyper-surface 
 the Poincar�e section. The trajectory emanating from xe�will hit 
 at xe� in a positive direction in T seconds, where T is the period time of the
periodic solution. Trajectories starting on 
 in a su�ciently small neighbourhood of
xe� will, in approximately T seconds, intersect in a positive direction in the vicinity
of xe�. Therefore, xe(t) and 
 de�ne a mapping P of some neighbourhood U � 
 of
xe� onto another neighbourhood V � 
 of xe�. The map P : U ! V is de�ned as

xei+1 = P (xei) (6.4)
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where xei+1 = xe(ti+1) 2 
 is the �rst intersection point of the trajectory xe(t) thatstarts from xe(ti) = xei 2 
. The map P is called the Poincar�e map or �rst return
map of the autonomous system. The map can be applied to itself xei+2 = P (P (xei)).The time-continuous system (6.3) has been transformed to a discrete map P .

For a point xe� on a periodic solution holds of course

xe� = P (xe�): (6.5)

A periodic solution � is therefore a �xed point of

H(xe) = P (xe)� xe: (6.6)

The derivative DP of the map P is related to the fundamental solution matrix
� [Parker and Chua, 1989]

DP (xei) =
"
I � 1

neT
fe(t;xei+1)fe(t;xei+1)ne
T



#
�(ti+1; ti); (6.7)

where �(ti+1; ti) is the fundamental solution matrix along the trajectory xe(t) of
system 6.3 and ne
 is the normal to 
 at xei+1. The stability of a periodic solution
can be inferred from the eigenvalues of the Poincar�e map but also from the Floquet
multipliers. The eigenvalues of DP (xe�) are f0;m1; : : : ;mn�1g. One eigenvalue is
zero because the eigenvectors of DP lie in the tangent plane to 
 and are therefore
linearly dependent. The fundamental solution matrix �

T
of the periodic solution �

has eigenvalues f1;m1; : : : ;mn�1g, which are also called Floquet multipliers. One

Floquet multiplier equals unity because the periodic solution of an autonomous
system can be shifted in time. The remaining Floquet multipliers are identical to
the eigenvalues of the Poincar�e map.
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The Poincar�emap can also be de�ned for non-autonomous time-periodic systems.
Consider the system

_xe(t) = fe(t; xe(t)) (6.8)

with fe(t; ze) = fe(t + T; ze). For non-autonomous time-periodic systems the period

time T is a priori known. We de�ne an n-dimensional hyper-surface � 2 S
1 � IRn

as

� = f(t; xe) 2 S1 � IRn j t = kT; k = 0; 1; 2:::g (6.9)

Every T seconds, the trajectory xe(t) of system (6.8) intersects �. We can therefore
de�ne a mapping PN : �! � which maps the state xe(t0) to the state xe(t0 + T ) as

xe(t0 + T ) = PN (xe(t0)): (6.10)

The map PN is called the Poincar�e map for a non-autonomous system or T -advance
map. The derivative DPN of PN is identical to the fundamental solution matrix �

T
.

The Poincar�e map at a fold bifurcation is depicted in Figure 6.4. The map has
no intersection points with the diagonal xi+1 = xi for � < �

�. The map is tangent
to the diagonal for � = �

�. For � > �
� the map has two intersection points, which

correspond to periodic solutions of the dynamical system. Two periodic solutions are
therefore created/destroyed at � = �

�, which is consequently a fold bifurcation. The
map at a continuous fold bifurcation, stemming from a smooth system, is smooth and

is tangent to the diagonal xi+1 = xi, i.e. the slope is +1. The map at a discontinuous
fold bifurcation, stemming from a discontinuous system, is non-smooth and touches
the diagonal with its tip. One limb of the non-smooth map has a slope smaller
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Figure 6.6: Tent map.

than +1 and the other limb has a slope larger than +1. The derivative of the map
therefore jumps from a value smaller than +1 to a value larger than +1. The Floquet
multiplier is directly related to the derivative of the map.

The Poincar�e map at a ip bifurcation is depicted in Figure 6.5. The map at a
continuous ip bifurcation, stemming from a smooth system, crosses the diagonal
with a slope �1. The map at a discontinuous ip bifurcation, stemming from a
discontinuous system, is non-smooth and crosses the diagonal with its tip. One limb
of the non-smooth map has a slope smaller than �1 and the other has a slope larger
than �1. The derivative of the map therefore jumps from a value smaller than �1
to a value larger than �1.

The map at a discontinuous fold bifurcation and the one at a discontinuous ip
bifurcation were explained above, but the example of Figure 6.2 shows a discontinu-
ous bifurcation which is a combination of a ip and a fold as the Floquet multiplier
jumps from � < �1 to � > +1. As the slope of the Poincar�e map is directly related
to the Floquet multiplier, the map should be non-smooth having two limbs where
one has a slope larger than +1 and the other has a slope smaller than �1. This map
is depicted in Figure 6.6 and appears to be the tent map. This type of bifurcation,
with an underlying tent map, will be encountered in Section 6.9.

6.5 Intersection of Hyper-surfaces of Discontinuity

In Chapter 3 we elaborated how fundamental solution matrices of discontinuous
systems can jump as the solution crosses a hyper-surface of discontinuity. Jumps
of the Jacobian of �xed points are presumed to lead to discontinuous bifurcations
when an eigenvalue (or a pair of them) crosses the imaginary axis, as was outlined in
the preceding chapter. The question arises: can jumps in the fundamental solution
matrix cause discontinuous bifurcations of periodic solutions?

We consider the following scenario (Figure 6.7). The hyper-surface � de�nes
a discontinuity and divides the state-space in the two subspaces V+ and V�. The
vector �eld is discontinuous on �, i.e. fe� 6= fe+, but � itself is smooth. Assume that
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Figure 6.7: Double intersection of a smooth hyper-surface.

a system has one periodic solution that changes under inuence of a parameter �.
For a value � < �

� the periodic solution is denoted by periodic solution I. Periodic
solution I does not cross �. If we increase the parameter � to � = �

�, then the
periodic solution changes to periodic solution II. Periodic solution II is tangent at
one point to �. If we increase � even more to � > �

�, then the periodic solution
becomes periodic solution III which crosses � twice at points A and B. Let us assume
that periodic solution I comes in�nitely close to � (without crossing it) and that
periodic solution III stays an in�nitely small time in V+ but crosses � twice. The
periodic solutions I and III are therefore (almost) identical, but the fundamental
solution matrix of periodic solution III will jump twice with saltation matrices S

A

and S
B
. The crossings occur at tA = tB = t� as periodic solution III stays an

in�nitely small time in V+. We can now express the fundamental solution matrix

�
III

into �
I

�
III

(T + t0; t0) = �
I
(T + t0; t� + t0)SBSA�I

(t� + t0; t0) (6.11)

However, from (3.30) and (3.31) we conclude that S
B

= S
�1
A
, for non-singular

S
A
and S

B
. The fundamental solution matrix of periodic solution III is therefore

identical to the one of periodic solution I, �
III

(T + t0; t0) = �
I
(T + t0; t0). This

scenario, in which a single smooth hyper-surface is crossed twice, can consequently
not lead to a bifurcation of a periodic solution if S

A
is non-singular. The singular

case arises in sliding mode problems (for instance in Section 6.7).
The preceding scenario did not lead to a bifurcation because the saltation matrix

over a smooth hyper-surface is equal to the inverse of the saltation matrix in opposite
direction over the same hyper-surface at that point. We will study a second scenario
which is depicted in Figure 6.8. The hyper-surface � is now non-smooth and consists

of two parts �A and �B . The periodic solution III enters V+ by crossing �A at
point A and leaves V+ by crossing �B at point B. The saltation matrix S

A
is (in

general) not equal to S�1
B
. Consequently, the fundamental solution matrix of periodic
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solution III is not identical to the one of periodic solution I. Therefore, at � = �
�,

the fundamental solution matrix over the period time �
II
(T + t0; t0) will jump from

�
I
(T + t0; t0) to �III

(T + t0; t0). The theory of linear approximation (developed for
�xed points) is now applicable, as a periodic solution is a �xed point of a Poincar�e
map. We combine the two saltation matrices S

BA
= S

B
S
A
. From Section 4.1 we

know that the theory of linear approximation also applies to the saltation matrix.
Therefore, the combined saltation matrix can also be approximated linearly

~S
BA

= I + q(S
BA

� I) 0 � q � 1: (6.12)

We introduce the generalized fundamental solution matrix ~� at � = �
� which is the

closed convex hull of �
I
and �

III

~� = cof�
I
(T + t0; t0);�III

(T + t0; t0)g
= fq(�

III
(T + t0; t0)��

I
(T + t0; t0)) + �

I
(T + t0; t0);8 0 � q � 1g:

(6.13)

The generalized fundamental solution matrix (6.13) is the set-valued fundamental
solution matrix of periodic solution II. In fact, (6.13) de�nes how the fundamental
solution matrix of the periodic solution `jumps' from �

I
to �

III
if � is increased

from � < �
� to � > �

�. From the set-valued generalized fundamental solution
matrix we can obtain the set-valued Floquet multipliers. We can look upon eig(~�)
together with (6.13) as if it gives a path of Floquet multipliers `during' the jump as
q is varied from 0 to 1.

Other scenarios as the ones depicted in Figure 6.7 and 6.8 are of course also

possible. A third scenario is depicted in Figure 6.9. The tip of the non-smooth hyper-
surface is again touched by a periodic solution. The third scenario can therefore also
lead to a discontinuous bifurcation of a periodic solution.
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Figure 6.9: Third scenario.

A Floquet multiplier can jump from inside the unit circle to outside the unit
circle under inuence of a parameter �. Similar to a discontinuous bifurcation of a
�xed point we presume that such a jump of a Floquet multiplier causes a discon-
tinuous bifurcation of a periodic solution. Where the Floquet multiplier crosses the
unit circle during its jump is determined by ~�. The jumping Floquet multiplier can
also jump from outside the unit circle to another point outside the unit circle in
the complex plane. Similar to our treatment of �xed points, we presume that the
existence of a bifurcation depends on the path of the Floquet multiplier during its
jump. It could have jumped from one point to the other without passing through
the unit circle (which would imply no bifurcation) or it could have passed through
the unit circle twice. We presume that the latter case causes a discontinuous bi-
furcation which is the combination of two bifurcations. If the generalized Jacobian
determines the existence and type of discontinuous bifurcation of �xed points (i.e.
if Conjectures 5.1 and 5.2 hold), then the generalized fundamental solution matrix
determines the existence and type of bifurcation of periodic solutions.

The discontinuous vector �eld can also be approximated in a smooth way, with a
`sti�ness' depending on the accuracy of approximation. We concluded in the previous
chapter that the discontinuous bifurcation of a �xed point may vanish if the vector
�eld is approximated by a smooth vector �eld. This problem probably also exists
for bifurcations of periodic solutions. Floquet multipliers of smooth systems do not
jump but move `fast' when the solution is passing through a `sti�' part of the vector
�eld. A smooth approximation which preserves the existence of the bifurcation will
yield a continuous path of the Floquet multipliers through the unit circle. A smooth
approximation which does not preserve the existence of the bifurcation will yield
two unconnected branches that come close to each other. To each branch belongs
a continuous path of Floquet multipliers which does not necessarily cross the unit
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circle.
The above reections can be summarized by the following fundamental questions:

1. Do discontinuous bifurcations (in the sense of De�nition 5.1) exist of periodic
solutions of Filippov systems?

2. Does a discontinuous bifurcation exist caused by the scenario depicted in Fig-
ure 6.8?

3. Does a jump of a Floquet multiplier over the unit circle under the inuence of
a parameter lead to a bifurcation of a periodic solution?

4. Can we classify the bifurcation by inspecting the point where the path of the
set-valued Floquet multiplier(s) crosses the unit circle?

5. Do discontinuous bifurcations of periodic solutions exist that do not have a
continuous counterpart? In other words: do discontinuous bifurcations exist
that behave qualitatively di�erent from any continuous bifurcation?

6. Can De�nitions 5.1 and 5.3 be inconsistent when they are applied to periodic
solutions of Filippov systems?

These questions are related to each other and are also related to the questions
raised in Section 5.2. Some numerical examples in the following sections show discon-
tinuous bifurcations of periodic solutions which illustrate these questions. We will
return to the questions in the last section. The bifurcation diagrams in Sections 6.6
to 6.9 have been made with a path-following technique based on the shooting method
implemented in MatLab [Fey, 1992; Parker and Chua, 1989; Van de Vorst, 1996].
The fundamental solution matrix after the period time �

T
, used in the shooting

method, was obtained with a sensitivity analysis [Leine et al., 1998].

6.6 Fold Bifurcation; Trilinear Spring System

In this section we will treat a system that exposes a discontinuous fold bifurcation.
The forced oscillation of a damped mass on a spring with cubic term leads to the
Du�ng equation [Hagedorn, 1988; Guckenheimer and Holmes, 1983; Nayfeh and
Balachandran, 1995; Nayfeh and Mook, 1979]. The Du�ng equation is the classical
example where the harmonic resonance peak is bended and two fold bifurcations
(also called turning point bifurcations) are born. In our example, we will consider a
similar mass-spring-damper system, where the cubic spring is replaced by a trilinear
spring. Additionally, trilinear damping is added to the model. The trilinear damping
will turn out to be essential for the existence of a discontinuous fold bifurcation.

The model is very similar to the model of Natsiavas [Natsiavas, 1989; Natsiavas
and Gonzalez, 1992] but the transitions from contact with the support to no contact
are di�erent from those in the model of Natsiavas. The model of Natsiavas switches
as the position of the mass passes the contact distance (in both transition directions).
In our model, contact is made when the position of the mass passes the contact
distance (for growing jxj), and contact is lost when the contact force becomes zero.
It is remarked that our modi�cation of the Natsiavas model is not introduced to
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obtain an improved physical representation but in order to illustrate the theory
developed in this thesis.

We consider the system depicted in Figure 6.10. The model is similar to the
discontinuous support of Example II in Subsection 3.5 but now has two supports
on equal contact distances xc. The supports are �rst-order systems which relax
to their original state if there is no contact with the mass. If we assume that the
relaxation time of the supports is much smaller than the time interval between
two contact events, we can neglect the free motion of the supports. It is therefore
assumed that the supports are at rest at the moment that contact is made. This is
not an essential assumption but simpli�es our treatment as the system reduces to a
second-order equation.

The second-order di�erential equation of this system is

m�x+ C( _x) +K(x) = f0 sin(!t) (6.14)

where

K(x) =

8><>:
kx [x; _x]

T 2 V�
kx+ kf (x� xc) [x; _x]

T 2 V+1
kx+ kf (x+ xc) [x; _x]

T 2 V+2
(6.15)

is the trilinear restoring force and

C( _x) =

(
c _x [x; _x]

T 2 V�
(c+ cf ) _x [x; _x]

T 2 V+1 [ V+2
(6.16)
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Figure 6.11: Subspaces of the trilinear system.

is the trilinear damping force. The state-space is divided into three subspaces V�,
V+1 and V+2 (Figure 6.11).

If the mass is in contact with the lower support, then the state is in space V+1

V+1 = f[x; _x]T 2 IR2 j x > xc; kf (x� xc) + cf _x � 0g;

whereas if the mass is in contact with the upper support, then the state is in space
V+2

V+2 = f[x; _x]T 2 IR2 j x < �xc; kf (x+ xc) + cf _x � 0g:
If the mass is not in contact with one of the supports, then the state is in space V�
de�ned by

V� = f[x; _x]T 2 IR2 j [x; _x]T =2 (V+1 [ V+2)g
We de�ne the indicator functions h1a(x; _x) and h1b(x; _x) as

h1a = x� xc; h1b = kf (x� xc) + cf _x (6.17)

The hyper-surface �1 between V� and V+1 consists of two parts �1a and �1b. The
part �1a de�nes the transition from V� to V+1 because contact is made when x

becomes larger than xc

�1a = f[x; _x]T 2 IR2 j h1a(x; _x) = 0; h1b(x; _x) � 0g: (6.18)

The part �1b is de�ned by the indicator equation which de�nes the transition from
V+1 back to V� as contact is lost when the support-force becomes zero (the support
can only push, not pull on the mass)

�1b = f[x; _x]T 2 IR2 j h1a(x; _x) � 0; h1b(x; _x) = 0g: (6.19)
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Figure 6.12: Response diagram of trilinear spring system.

Similarly, the hyper-surface �2 between V� and V+2 consists of two parts �2a and
�2b de�ned by the indicator equations

h2a(x; _x) = x+ xc h2b(x; _x) = kf (x+ xc) + cf _x (6.20)

Like we have done in Subsection 3.5 we can construct the saltation matrices. The
saltation matrices are of course similar to those of Subsection 3.5

S1a =

�
1 0
� cf

m
1

�
; S1b = I (6.21)

S2a =

�
1 0
� cf

m
1

�
; S2b = I (6.22)

The hyper-surfaces �1 and �2 are non-smooth. The saltation matrices are not
each others inverse, S1a 6= S

�1
1b and S2a 6= S

�1
2b . According to Section 6.3 we now

have all the ingredients for the existence of a discontinuous bifurcation.
The response diagram of the trilinear system is shown in Figure 6.12 for varying

forcing frequencies with the amplitude A of x on the vertical axis. Stable branches
are indicated by solid lines and unstable branches by dashed-dotted lines. The
parameter values are given in Appendix C.3.

There is no contact with the support for amplitudes smaller than xc and the
response curve is just the linear harmonic peak. For amplitudes above xc there will
be contact with the support, which will cause a hardening behaviour of the response
curve. The resonance peak of the response curve bends to the right like the Du�-
ing system with a hardening spring. The amplitude becomes equal to xc twice at
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Figure 6.13: Floquet multipliers.

! = !A and ! = !B , on both sides of the peak, and corners of the response curve
can be seen at these points. The orbit touches the corners of �1 and �2 for A = xc,
like solution II in Figure 6.8. The Floquet multipliers can therefore jump at those
points. The magnitude of the Floquet multipliers is shown in Figure 6.13. The
two Floquet multipliers are complex conjugate for A < xc (and therefore have the
same magnitude). The pair of Floquet multipliers jump at ! = !A but do not jump
through the unit circle. From the numerical calculations depicted in Figure 6.12 it
follows that no bifurcation exist (in the sense of De�nition 5.1) at ! = !A. However,
at ! = !B the complex pair jumps to two distinct real multipliers, one with a mag-
nitude bigger than one. One of those Floquet multipliers therefore jumps through
the unit circle. A bifurcation is observed in Figure 6.12 at ! = !B (one periodic
solution exists for ! < !B and three periodic solutions co-exist for ! > !B). We pre-
sume that this bifurcation is caused by the jump of the Floquet multiplier through
the unit circle. The path of the Floquet multipliers on the jump is obtained by
the generalized fundamental solution matrix (6.13). One Floquet multiplier crosses
+1. The observed bifurcation resembles a continuous fold bifurcation of a smooth
system. The bifurcation at ! = !B at which the Floquet multiplier jumps through
+1 is therefore called a discontinuous fold bifurcation.

Damping of the support is essential for the existence of this discontinuous fold
bifurcation. For cf = 0, all saltation matrices would be equal to the identity matrix
and the corner between �1a and �1b would disappear (and also between �2a and
�2b); therefore no discontinuous bifurcation could take place and the fold bifurcation

would be continuous (see also Example 3.5). The model of Natsiavas [Natsiavas,
1989; Natsiavas and Gonzalez, 1992] did not contain a discontinuous fold bifurcation
because the transitions were modeled such that S1a = S

�1
1b and S2a = S

�1
2b .
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6.7 In�nitely Unstable Periodic Solutions

In the preceding section we studied the discontinuous fold bifurcation, where a Flo-
quet multiplier jumped over the unit circle, through +1, to a �nite value. In this
section we will study a discontinuous fold bifurcation where the Floquet multiplier
jumps to in�nity (crossing +1). This results in periodic solutions with a Floquet
multiplier at in�nity, which we will call in�nitely unstable periodic solutions.

We consider again the stick-slip system of Section 3.4 depicted in Figure 3.4, but
now for positive damping c > 0. The equilibrium solution of system (3.33) is given
by

xeeq =
�

Fslip

k

0

�
(6.23)

and is stable for positive damping (c > 0).
The model also exhibits stable periodic stick-slip oscillations. In Section 3.4 it

was shown that the saltation matrix for the transition from slip to stick is given by
(Equation (3.41))

S
�
=

�
1 0
0 0

�
;

which is singular. The fundamental solution matrix will therefore also be singular.
The periodic solution has two Floquet multipliers, of which one is always equal to
one as the system is autonomous. The singularity of the fundamental solution matrix
implies that the remaining Floquet multiplier has to be equal to zero, independent
of any system parameter. The Floquet multipliers of the stable periodic solution of
this system are therefore �stable1 = 1 and �stable2 = 0.

The stable periodic solution is sketched in the phase plane in Figure 6.14 (bold
line). The equilibrium position is also stable and indicated by a dot. The space D
is enlarged in Figure 6.14 to make it visible but is in�nitely thin in theory and is
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Figure 6.15: Bifurcation diagram of the stick-slip system.

taken very thin in numerical calculations. We assume that the thickness of D in the
numerical calculations is small enough to approximate the qualitative behaviour of
the theoretical in�nitely thin space D to a su�cient extent.

A solution outside the stable periodic solution, like solution I in Figure 6.14,
will spiral inwards to the stable periodic solution and reach the stick-phase D. The
stick-phase will bring the solution exactly on the stable periodic solution as it is
in�nitely small. Every point in D is therefore part of the basin of attraction of the
stable periodic solution.

Solution II starts inside the stable periodic solution, spirals around the equilib-
rium position and hits D whereupon it is on the stable periodic solution. But a
solution inside the stable periodic solution might also spiral around the equilibrium
position and not reach the stick phase D (solution III). It will then be attracted to
the equilibrium position.

A solution inside the stable periodic solution can therefore spiral outwards to the
stable periodic solution, like solution II, or inwards to the equilibrium position (so-
lution III). Consequently, there must exist a boundary of attraction between the two
attracting limit sets. This boundary is the unstable periodic solution sketched by a
dashed line in Figure 6.14. The boundary of attraction is partly along the border
between D and V because solutions in D will attract to the stable periodic solution
and just outside D to the equilibrium position. The unstable periodic solution is
therefore de�ned by the solution in V which hits the border of D tangentially and by
a part along the border of D and V . The part of the unstable periodic solution along
the border of D is therefore a sliding mode along a discontinuity as discussed in
Chapter 2. The solution on either side of the sliding mode is repulsing from it. It is
therefore a repulsion sliding mode. The solution starting from a point on a repulsion
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sliding mode is not unique as was discussed in Chapter 2. Non-uniqueness causes
one Floquet multiplier to be at in�nity because a solution may drift away from the
periodic solution without any initial disturbance from the periodic solution. The
unstable periodic solution is therefore in�nitely unstable. As the periodic solution
is in�nitely unstable, it is not possible to calculate it in forward time. However,
calculation of the periodic solution in backward time is possible. The vector �eld in
backward time is identical to the one in forward time but opposite in direction. The
repulsion sliding mode in forward time will turn into an attraction sliding mode in
backward time. The solution starting from a point on the unstable periodic solution
will move counter-clockwise in the phase-plane in backward time and hit the border
of D. It will slide along the border of D until the vector �eld in V becomes parallel
to D, and will then bend o� in V . Any solution starting from a point close to that
starting point will hit D and leave D at exactly the same point. Information about
where the solution came from is therefore lost through the attracting sliding mode.
In other words: the saltation matrix of the transition from V to D during backward
time is singular. The fundamental solution matrix will therefore be singular in back-
ward time because it contains an attracting sliding mode. The Floquet multipliers of
the unstable periodic solution in backward time are therefore 1 and 0. The Floquet
multipliers in forward time must be their reciprocal values. The second Floquet
multiplier is therefore in�nity, �unstable1 = 1 and �unstable2 =1, which of course must
hold for an in�nitely unstable periodic solution.

The bifurcation diagram of the system is shown in Figure 6.15 with the velocity
of the belt vdr as parameter and the amplitude A of x on the vertical axis. The
equilibrium branch and the stable and unstable periodic branches are depicted. The
unstable branch is of course located between the stable periodic branch and the
equilibrium branch as can be inferred from Figure 6.14. The stable and unstable
periodic branches are connected through a fold bifurcation point. The second Flo-
quet multiplier jumps from � = 0 to � =1 at the bifurcation point, and therefore
through +1 on the unit circle. We will call this bifurcation therefore a discontinuous
fold bifurcation. The fold bifurcation occurs when vdr is such that a solution which
leaves the stick phase D, transverses V , and hits D tangentially (like the unstable
periodic solution). The stable and unstable periodic solutions coincide at this point.
Note that there exists again a corner of hyper-surfaces at this point as in Figure 6.8.
The saltation matrices are not each others inverse, S

�
S
�
6= I , which is essential for

the existence of a discontinuous bifurcation. Moreover S
�
is singular.

Three Poincar�emaps are depicted in Figure 6.16 for di�erent values of vdr; before,
at and after the bifurcation point. The Poincar�e section is chosen as 
 = fxe 2 IR2 j
x � Fslip=k; _x = 0g. The three intersection points of the Poincar�e map with the
diagonal in Figure 6.16a indicate the equilibrium position at x = 1 and the unstable
and stable periodic solutions. The slope of the Poincar�e map at the intersection
points of the periodic solutions is equal to the second Floquet multiplier, which is
consistent with �stable2 = 0 and �unstable2 = 1. The Poincar�e map of Figure 6.16b

touches the diagonal with its tip similar to the Poincar�emap of the discontinuous fold
bifurcation in Figure 6.4. The stable and unstable periodic solutions disappeared in
Figure 6.16c as is shown in Figure 6.15.
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Figure 6.16: Poincar�e maps of the stick-slip system.

A similar model was studied in Van de Vrande et al. [1999] with a very accurately
smoothed friction curve. The stable branch was followed for increasing vdr but the
fold bifurcation could not be rounded to proceed on the unstable branch. As the
unstable branch is in�nitely unstable for the discontinuous model, it is extremely
unstable for the smoothed approximating model. The branch can therefore not be
followed numerically in forward time if the friction model is approximated accurately.

The stable branch in Figure 6.15 was followed in forward time up to the bifur-
cation point. The path-following algorithm was stopped and restarted in backward
time to follow the unstable branch.

This section showed that in�nitely unstable periodic solutions come into being
through repulsion sliding modes. Filippov theory turns out to be essential for the
understanding of in�nitely unstable periodic solutions. In�nitely unstable periodic
solutions and their branches can be found through backward integration. Smoothing
of a discontinuous model is not su�cient to obtain a complete bifurcation diagram
of a discontinuous system as in�nitely unstable branches cannot be found.

6.8 Symmetry-Breaking Bifurcation; Forced Vibration with

Dry Friction

The second type of bifurcation of a periodic solution which will be studied is the
symmetry-breaking bifurcation. Suppose a non-autonomous time-periodic system has
the following symmetry property (also called inversion symmetry)

fe(t; xe) = �fe(t+ 1

2
T;�xe); (6.24)

where T is the period. If xe1(t) = xe(t) is a periodic solution of the system, then
also xe2(t) = �xe(t + 1

2T ) must be a periodic solution. The periodic solution is
called symmetric if xe1(t) = xe2(t) and asymmetric if xe1(t) 6= xe2(t). When a Floquet

multiplier passes through the unit circle at +1, the associated bifurcation depends
on the nature of the periodic solution prior to the bifurcation. Suppose that the
periodic solution prior to the bifurcation is a symmetric periodic solution. Then, if
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Figure 6.17: Forced vibration with dry friction.

the bifurcation breaks the symmetry of the periodic solution, it is called a symmetry-
breaking bifurcation [Nayfeh and Balachandran, 1995].

We will show in this section that the continuous symmetry-breaking bifurcation
has a discontinuous counterpart. Consider the forced vibration of the system de-
picted in Figure 6.17. The mass is supported by a spring, damper and dry friction
element. The parameter values are given in Appendix C.4. The equation of motion
reads as

m�x+ c _x+ kx = ffric( _x; x) + f0 cos!t (6.25)

with the friction model

ffric( _x; x) =

� �Fslip sgn( _x); _x 6= 0 slip
min(jFexj; Fstick) sgn(Fex); _x = 0 stick

(6.26)

where

Fex = kx� f0 cos!t:

This friction model is identical to type (c) in Figure 2.5. The system (6.25) has been
analyzed numerically with the switch-model as in Sections 2.4 and 3.4 and in [Leine
et al., 1998; Leine and Van Campen, 2000; Leine et al., 2000]. It can be veri�ed that
the system (6.25) has the symmetry property (6.24).

The bifurcation diagram of this system is depicted in Figure 6.18 and shows two
branches with periodic solutions. Branch I is unstable between the points A and
B. Branch II bifurcates from branch I at point A and B. For large amplitudes, the
inuence of the dry friction element will be much less than the linear elements. Near
the resonance frequency, !res =

p
k=m = 1 [rad/s], branch I will therefore be close

to the harmonic resonance peak of a linear one-degree-of-freedom system. We �rst
consider periodic solutions on branch I at the right side of point B. The velocity
of the mass _x becomes zero at two instances of time during one oscillation (as do

linear harmonic oscillations). The mass does not come to a stop during an interval
of time. In other words: the oscillation contains no stick event in which the periodic
solution passes the stick phase. The number of stick events on a part of a branch is
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Figure 6.18: Bifurcation diagram of forced vibration with dry friction.

indicated by numbers (0,1,2) in Figure 6.18. The Floquet multipliers on this part of
branch I are complex (Figure 6.19). The system therefore behaves `almost linearly'.
All the periodic solutions on branch I are symmetric.

If this part of branch I with `almost linear' symmetric periodic solutions is fol-
lowed to frequencies below !res, then bifurcation point B is met. At bifurcation point
B, the symmetric branch I becomes unstable and a second branch II with asymmet-
ric periodic solutions is created. In fact, on the bifurcated asymmetric branch two
distinct periodic solutions xe1(t) 6= xe2(t) exist, which have the same amplitude. The
periodic solutions on branch I left of point B contain two stick events per cycle. The
periodic solutions on branch II between the points B and C contain one stick event,
and they contain two stick events between the points A and C . The existence of a
stick event during the oscillation causes one Floquet multiplier to be equal to zero.
Points B and C are points where stick events are created/destroyed, which cause the
Floquet multipliers to be set-valued (they jump). A set-valued Floquet multiplier at
B passes +1. The bifurcation at point B resembles a continuous symmetry-breaking
bifurcation and is therefore called a discontinuous symmetry-breaking bifurcation.
We presume that a discontinuous symmetry-breaking bifurcation is always associ-
ated with a jump of a Floquet multiplier through +1.

Branch II encounters a jump of the Floquet multipliers at point C but the set-
valued Floquet multipliers remain within the unit circle. We observe that point C
is not a bifurcation point but the path of branch II is non-smooth at C due to the
jump of the Floquet multipliers.

The asymmetric branch meets the symmetric branch again at point A. The Flo-
quet multipliers pass +1 without a jump and point A is therefore a continuous
symmetry-breaking bifurcation. No new stick events are created at point A because
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Figure 6.19: Floquet multipliers.

all branches have two stick events per cycle. Remark that the branch I behaves
smooth at bifurcation A and non-smooth at bifurcation B.

6.9 Flip Bifurcation; Forced Stick-slip System

Another type of bifurcation of a periodic solution is the ip bifurcation which is
characterized by a Floquet multiplier which is passing through the unit circle at
�1. A new type of discontinuous bifurcation will be studied in this section which
occurs in a forced stick-slip system taken from Yoshitake and Sueoka [2000]. The
discontinuous bifurcation is a combination of a continuous fold and ip bifurcation.
The system is identical to the stick-slip system of Section 3.4 (Figure 3.4) without
linear damping and a di�erent friction model. Additionally, the mass is forced
periodically. The parameter values are given in Appendix C.5. The equation of
motion reads as

m�x+ kx = ffric(vrel; x) + f0 cos!t (6.27)

with vrel = _x� vdr. The friction model reads as

ffric(vrel; x) =

� ��0 sgn(vrel) + �1vrel � �3v
3
rel; vrel 6= 0 slip

min(jFexj; �0) sgn(Fex); vrel = 0 stick
(6.28)

where

Fex = kx� f0 cos!t:

This friction model is identical to type (b) in Figure 2.5. This model has been
analyzed numerically with the switch-model as in Sections 2.4 and 3.4 and in [Leine
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Figure 6.20: Bifurcation diagram of the forced stick-slip system.

et al., 1998; Leine and Van Campen, 2000; Leine et al., 2000], which resulted in
Figures 6.20 to 6.23.

The resonance curve of this model has been published by Yoshitake and Sueoka
[2000] for 0:2 � ! � 4. The 1/2-subharmonic closed resonance curve is of special
interest and depicted in Figure 6.20 and a part is enlarged in Figure 6.21. The
real part of the largest Floquet multiplier (in magnitude) is depicted in Figure 6.22.
All Floquet multipliers are real except on a part of branch III. Stable branches of
periodic solutions are denoted by solid lines and unstable branches by dashed-dotted
lines. Jumps of the Floquet multiplier (set-valued Floquet multipliers) are denoted

by dotted lines.

The 1/2-subharmonic closed resonance curve possesses several discontinuous and
continuous bifurcations. Branches I-V are period-2 solutions, branches VI and VII
are period-4, and branch VIII is period-8. A discontinuous fold bifurcation at point
A connects the stable branch I to the unstable branch II and its largest Floquet
multiplier jumps through +1 (similar to the discontinuous fold bifurcation in Sec-
tion 6.6). The stable branch I folds smoothly into branch V and stability is ex-
changed. At point B, the unstable branch V is folded into the unstable branch IV
without exchanging stability. The set-valued Floquet multiplier at point B crosses
the unit circle twice as it jumps from � > 1 on branch V to � < �1 on branch IV,
thereby crossing the points +1 and �1 on the unit circle (Figure 6.2). In Section 6.3
we presumed that such a `multiple-crossing' jump of a Floquet multiplier causes a
bifurcation which is a combination of a fold and a ip bifurcation. The fold action of
the bifurcation is clear as the branch is folded. A conventional continuous ip bifur-
cation causes a period-doubled branch to bifurcate from the main branch. Branches
IV and V are period-2 and branch VII emanates indeed from point B and is period-4.
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Figure 6.21: Bifurcation diagram of the forced stick-slip system.

The bifurcation at point B therefore also shows a ip action. But branch VIII also
bifurcates from B and is period-8. This is not in conformity with the bifurcation
theory for smooth systems.

A better understanding of the phenomenon can be obtained by looking at the
Poincar�e map depicted in Figure 6.23. Remark that the map is indeed similar to the
tent map of Figure 6.6. In fact, the `full' Poincar�e map is a mapping from IR2 to IR2

which cannot easily be visualized. Instead, a section of this map is depicted with the
displacement xn = x(nT ), where T = 2�=!, on the abscissa and the displacement
after two periods xn+2 on the ordinate (because we study period-2 oscillations).
The velocity _xn is iterated with a Newton-Raphson method to be equal to _xn+2.
Fixed points of this reduced map are periodic solutions with period-2 (or period-1)
as holds x(nT ) = x((n+ 2)T ) and _x(nT ) = _x((n+ 2)T ). The map is calculated for
! = 1:67587 [rad/s] which is just to the right of the bifurcation point B. It can be
seen that there are three �xed points which corresponds to the periodic solutions at
the branches I, IV and V. The map exposes a peak between the �xed points IV and
V. Although this is a section of a higher-dimensional map, the `full' map will also
be similar to the tent map.

The tent map has been studied thoroughly in literature [Glendinning, 1994;
Martelli, 1992; Rasband, 1990]. The tent map is the non-smooth piece-wise lin-
ear version of the logistic map (both non-invertible). The logistic map is smooth
and leads to a cascade of period-doublings which is a well known route to chaos.
The distance between two succeeding period-doublings is �nite for the logistic map.
For the tent map however, in�nitely many period-doublings occur at the same bi-
furcation value which leads directly to chaos.

The results on the tent map could explain the behaviour at the bifurcation
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Figure 6.22: Floquet multiplier.

point B. The similarity between the tent map and the Poincar�e map suggests that
there are in�nitely many period-doublings. This would result in an in�nite number
of other unstable branches starting from point B (period-8, 16, 32...). A period-8
branch (VIII) starting from point B was indeed found beside the `expected' period-4
branch (VII). The in�nitely many other branches become more unstable as their
period-doubling number increases and the branches become closely located to each
other which makes it di�cult to �nd them numerically. These facts agree with the
analytical results on the tent map.

How do we classify the discontinuous bifurcation at point B? The discontinuous

bifurcation is not a direct counterpart of a continuous bifurcation. In the sequel we
will call this bifurcation a discontinuous fold{ip bifurcation because it resembles
both bifurcations. The name is not completely satisfactory because branch VIII
and the possibly in�nitely many branches that are created at the discontinuous
bifurcation point are resembled neither by a continuous fold nor by a continuous ip
bifurcation.

The branches VII and VIII connect bifurcation point B with bifurcation point C.
The Floquet multiplier at point C jumps from inside the unit circle to outside the
unit circle through �1. We call bifurcation point C a discontinuous ip bifurcation
because it resembles a continuous ip bifurcation. One question has not been an-
swered: where do those in�nitely many branches starting from point B lead to? We
can suggest that the in�nitely many other unstable branches will probably lead to
bifurcation point C. But the Floquet multiplier at C does not seem to pass both +1

and �1, but only �1. The Poincar�e map at point C will look like Figure 6.5b and
will not be similar to the tent map. It is therefore not clear whether the in�nitely
many other unstable branches will be connected to bifurcation point C.
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Figure 6.23: Poincar�e map (! = 1:67587 [rad/s]).

As follows from the tent map, the system will behave chaoticly for !-values just
to the right of point B.

Yoshitake and Sueoka [2000] studied the model carefully and showed that the
underlying Poincar�e map is similar to the tent map but did not �nd the branches
VII and VIII (or higher period-doublings). Discontinuous fold and ip bifurcations,
where the Floquet multipliers jump at the bifurcation point, were found by Yoshi-
take and Sueoka. However, they did not show how the Floquet multipliers jump
which can be explained from saltation matrices and generalized fundamental solu-
tion matrices as elaborated in this thesis. They classi�ed the region between B and
C as chaotic and mentioned the similarity with the bifurcations found by Nusse and
York [1992]. Nusse and York studied discrete dynamical systems with a tent map
and denoted the discontinuous bifurcations they found by `border-collision bifurca-
tions'. Their numerical calculations only showed stable solutions. They did not give
a method to classify discontinuous bifurcations but conclude their paper with the
remark that this is still an open question. In this thesis it is presumed that the
discontinuous bifurcations can at least be partly classi�ed by investigating the gen-
eralized Jacobian, the generalized fundamental solution matrix or the generalized
derivative of the Poincar�e map (Section 4.1).

A discontinuous fold-ip bifurcation was discussed in this section and it was
shown that it is related to the one-dimensional tent map. It is suggested that
in�nitely many branches meet at the same bifurcation point and these branches are
all period-doublings of the branch under bifurcation.
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6.10 Discussion and Conclusions

In Section 6.3 some fundamental questions about discontinuous bifurcations of pe-
riodic solutions were raised. With the preceding examples in mind, we will try to
answer these questions one by one.

1. Do discontinuous bifurcations (in the sense of De�nition 5.1) exist of periodic

solutions of Filippov systems? The conclusion that a point on a branch is a
(continuous or discontinuous) bifurcation point (in the sense of De�nition 5.1)
was in the preceding examples always drawn from observation of the bifurca-
tion diagram. We call a bifurcation point a discontinuous bifurcation point if
it exposes a jump of the Floquet multipliers over the unit circle. Sections 6.6
to 6.9 show a number of discontinuous systems exposing bifurcations of pe-
riodic solutions in the sense of De�nition 5.1. Some of the bifurcations are
accompanied by a Floquet multiplier which passes continuously through the
unit circle. The branch of periodic solutions at such bifurcation points remains
smooth. We classify those bifurcations as continuous bifurcations. Other bifur-
cation points are accompanied by a Floquet multiplier which crosses the unit
circle discontinuously. The branch on such bifurcation points is continuous
but non-smooth. We classify those bifurcations as discontinuous bifurcations
of periodic solutions because of the discontinuous behaviour of the Floquet
multipliers.

2. Does a discontinuous bifurcation exist caused by the scenario depicted in Fig-

ure 6.8? Figure 6.12 shows a bifurcation diagram in which there are two points
where a periodic solution touches the tip of a non-smooth hyper-surface as de-
picted in Figure 6.8. The point at ! = !A is not a bifurcation point and is
accompanied by a jump of the Floquet multipliers within the unit circle. The
point at ! = !B is a fold bifurcation point and is accompanied by a jump of
the Floquet multipliers through unit circle at +1. We presume that a periodic
solution which touches the tip of a non-smooth hyper-surface can only undergo
a discontinuous bifurcation if the Floquet multiplier(s) jump through the unit
circle. Remark that the stable periodic solution depicted in Figure 6.14 un-
dergoes a discontinuous fold bifurcation depicted in Figure 6.15 if the periodic
solution touches the lower-right corner of the stick region D (Figure 6.14). The
discontinuous bifurcation is accompanied by a jump through the unit circle of
the second Floquet multiplier.

3. Does a jump of a Floquet multiplier through the unit circle under the inuence

of a parameter lead to a bifurcation of a periodic solution? All the examples
show that a discontinuous bifurcation is always accompanied by a jump of
Floquet multiplier(s) through the unit circle. Points at which the Floquet
multipliers jumped but remained within the unit circle never occurred to be a
bifurcation point. We do not have evidence that a jump of a Floquet multiplier
should always be accompanied by a bifurcation. We presume that a jump of
a Floquet multiplier through the unit circle is a necessary condition for a
bifurcation of a periodic solution (in the sense of De�nition 5.1).
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4. Can we classify the bifurcation by inspecting the point(s) where the path of the

set-valued Floquet multiplier(s) crosses the unit circle? Sections 6.6 and 6.7
show bifurcations which behave qualitatively like fold bifurcations. They are
called discontinuous fold bifurcations because they resemble a conventional
fold bifurcation and because of the discontinuous behaviour of the Floquet
multipliers. The classi�cation of those bifurcations as fold bifurcations seems
consistent with the fact that they are accompanied by a jump of a Floquet mul-
tiplier through +1. Bifurcation point B in Figure 6.18 is classi�ed as a discon-
tinuous symmetry-breaking bifurcation because it resembles the conventional
symmetry-breaking bifurcation. The classi�cation as symmetry-breaking bi-
furcation seems consistent with the fact that the bifurcation is accompanied
by a jump of a Floquet multiplier through +1. Along the same reasoning, bi-
furcation points A and C in Figure 6.20 can be classi�ed as discontinuous fold
and ip bifurcations. Bifurcation point B, however, exposes a jump through
the unit circle at �1 and +1. The discontinuous bifurcation is not a direct
counterpart of a continuous bifurcation. We will classify this bifurcation as a
discontinuous fold{ip bifurcation because it resembles both bifurcations. The
classi�cation is not completely satisfactory because branch VIII and the possi-
bly in�nitely many branches that are created at the discontinuous bifurcation
point resemble neither a continuous fold nor a continuous ip bifurcation. We
conclude that a classi�cation, based on the points where the set-valued Floquet
multiplier crosses the unit circle, is only partly possible.

5. Do discontinuous bifurcations of periodic solutions exist that do not have a

continuous counterpart? In other words: do discontinuous bifurcations exist

that behave qualitatively di�erent from any continuous bifurcation? Clearly,
bifurcation point B in Figure 6.20 is a bifurcation point that does not have a
direct continuous counterpart. This bifurcation behaves qualitatively di�erent
from any continuous bifurcation.

6. Can De�nitions 5.1 and 5.3 be inconsistent when they are applied to periodic

solutions of Filippov systems? De�nition 5.1 is based on a change of the num-
ber of �xed points and periodic solutions at a critical value of a parameter of
the system. De�nition 5.3 is based on a topological change of the phase portrait
under variation of a parameter. These two de�nitions can be inconsistent. If
we compare a periodic solution I which is not along an attraction sliding mode
with a periodic solution II which is partly along an attraction sliding mode,
then we can map every trajectory in the phase plane of periodic solution I to a
trajectory in the phase plane of periodic solution II. However, the inverse map
(mapping trajectories from II to I) does not exist. Consequently, there is no
homeomorphism between the two phase planes. A periodic solution with an
attraction sliding mode is therefore topologically di�erent from a periodic solu-
tion without a sliding mode. Consider point C in Figure 6.18. The point is not
a bifurcation point according to De�nition 5.1. The number of stick intervals
change at this point from 2 to 1. Each stick interval is an attraction sliding
mode. Consequently, point C is a bifurcation according to De�nition 5.3. Di
Bernardo et al. [1999a] introduce the term `sliding bifurcation' for a change
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of a periodic solution with a sliding mode to a periodic solution without a
sliding mode under inuence of a parameter. The term `multi-sliding bifurca-
tion' is introduced for a change in the number of sliding modes. Point C in
Figure 6.18 would according to this de�nition be a multi-sliding bifurcation.
Although not explicitly stated in Di Bernardo et al. [1999a], it seems that a
`sliding bifurcation' is a bifurcation in the sense of De�nition 5.3.

The di�erent de�nitions for a bifurcation can lead to confusion when they are
applied to discontinuous systems. This urges for a consensus about what is to be
understood by `bifurcation'. De�nition 5.1 seems to be a good candidate as it is
very clear from the bifurcation diagram whether or not a point on a branch is a
bifurcation point or not.

In the previous chapter we formulated Conjectures 5.1 and 5.2 about existence
and classi�cation of bifurcations of �xed points of non-smooth continuous systems.
From the preceding discussion we formulate similar conjectures for bifurcations of
periodic solutions of discontinuous systems of Filippov-type.

Conjecture 6.1

A necessary condition for the existence of a discontinuous bifurcation in the sense

of De�nition 5.1 of a periodic solution of a discontinuous system is a `jump' of a

Floquet multiplier (or a pair of them) through the unit circle, i.e. the path of the

set-valued Floquet multiplier(s) passes through the unit circle.

Conjecture 6.2

A discontinuous bifurcation of a periodic solution of a discontinuous system can be

(partly) classi�ed by inspecting the point(s) where the path of the set-valued Floquet

multipliers (or a pair of them) passes through the unit circle.

Conjecture 6.2 presumes that we can classify bifurcation point B in Figure 6.20 as
a fold{ip bifurcation but we should keep in mind that the bifurcation point shows
behaviour not covered by a conventional fold or ip bifurcation separately.

Remark that Conjectures 6.1 and 6.2 are related with Conjectures 5.1 and 5.2
through the Poincar�e map. We close this chapter by stating that the results on
periodic solutions of discontinuous systems seem to be consistent with the results
on �xed points of non-smooth continuous systems.
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Concluding Remarks

`We are to admit no more causes of natural things

than such as are both true and su�cient to explain

their appearances'

Isaac Newton,
Principia (1687), Book III, Rule I.

This chapter gives an overview of the thesis indicating the contributions. The
thesis is closed with recommendations for further research.

7.1 Overview and Summary of Contributions

In this section a short overview is given of the thesis, whereas the contributions are
stated.

In Chapter 2 the theory of Filippov was reviewed, giving a solution concept for
di�erential equations with a discontinuous right-hand side. Existence and uniqueness

problems were addressed. A numerical technique was presented for the integration of
di�erential inclusions. Special attention was given to the relation between di�erential
inclusions and friction models. A `switch model' was developed [Leine et al., 1998,
2000], being an extended version of the Karnopp model, to allow for an e�cient
solution of dry friction problems. The switch model has been used throughout the
thesis for problems involving dry friction.

Jumps in the time evolution of the fundamental solution matrix were discussed in
Chapter 3. The theory of saltation matrices describing the jumps is due to Aizerman
and Gantmakher [1958]. Saltation matrices were applied to systems with dry friction
and discontinuous supports in the examples of Sections 3.4 and 3.5.

In Chapter 4, dealing with non-smooth analysis, the concept of linear approx-
imation at the discontinuity was presented. It was shown in Section 4.2 that the
concept of linear approximation is closely related to the generalized derivative of
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Clarke [Clarke et al., 1998]. The idea to apply the generalized derivative to the
fundamental solution matrix is new.

Bifurcations of �xed points of non-smooth continuous systems were discussed
in Chapter 5; these are called `discontinuous bifurcations' in this thesis. Some re-
sults on bifurcations in smooth systems were reviewed and di�erent de�nitions for
bifurcations were discussed. In Section 5.2 the basic idea was presented as to how
a discontinuous bifurcation of a �xed point originates. Also the new possibility of
multiple-crossing bifurcations was explained. A number of examples (Sections 5.3
to 5.7) were developed to show di�erent aspects of discontinuous bifurcations. A dis-
continuous counterpart for each continuous bifurcation was found. Also a multiple-
crossing bifurcation was shown to exist (Section 5.7). The linear approximation
of the Jacobian, as developed in Chapter 4, was applied to each of the investigated
non-smooth systems. The usefulness of linear approximation became especially clear
in Section 5.7. At the end of Chapter 5 a conjecture about the existence of discon-
tinuous bifurcations of �xed points was formulated and an attempt to a partial
classi�cation of those bifurcations was made.

Chapter 6 was devoted to bifurcations of periodic solutions in discontinuous sys-
tems. The Poincar�e map relates the concept of discontinuous bifurcations of �xed
points to discontinuous bifurcations of periodic solutions. It was shown that discon-
tinuous bifurcations of periodic solutions can occur if a periodic solution touches a
non-smooth hyper-surface for a critical parameter value. This was illustrated by an
example in Section 6.6 which showed a discontinuous fold bifurcation. This example
extends the trilinear model of Natsiavas [Natsiavas, 1989; Natsiavas and Gonzalez,
1992] to a Filippov system.

An example of a stick-slip system (Section 6.7) showed that a Floquet multiplier
can also jump to in�nity. We call a periodic solution with a Floquet multiplier
at in�nity an in�nitely unstable periodic solution. A discontinuous fold bifurca-
tion connected in this example a stable branch to a branch with in�nitely unstable
periodic solutions. The in�nitely unstable periodic solution can be understood by
Filippov theory. Bifurcation to in�nitely unstable periodic solutions led to complete
failure of the classical smoothing method to investigate discontinuous systems. This
example was developed after a discussion with B.L. van de Vrande who encountered
numerical problems during path-following of a similar model with a very accurately
smoothed friction curve [Van de Vrande et al., 1999].

In Section 6.8 the di�erences were illustrated between De�nitions 5.1 and 5.3 for
bifurcation of periodic solutions. The example in that section showed a discontinuous
counterpart of a symmetry-breaking bifurcation. It is noticed that this example is
original.

Recently, Yoshitake and Sueoka [2000] discovered a novel type of bifurcation of
a periodic solution, characterized by a jump of a Floquet multiplier through the
unit circle (which is called `discontinuous bifurcation' in this thesis). Yoshitake and
Sueoka also concluded that a jump of a Floquet multiplier from � < �1 to � > 1
can cause the Poincar�e map to be similar to the tent map which leads to chaos. The
example treated in Section 6.9 is due to Yoshitake and Sueoka. However, they did
not �nd two branches emanating from a discontinuous ip bifurcation (the branches
VII and VIII in Figure 6.21). Neither did they explain why the Floquet multipliers
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jump and how we can calculate this jump by means of saltation matrices. The
numerical results found by Yoshitake and Sueoka were reproduced, thereby applying
the �ndings of Chapters 2 to 5 to this problem. By linear approximation of the
fundamental solution matrix it could be shown that the jump from � < �1 to � > 1
is indeed through � = �1 and � = +1. The possibility of in�nitely many branches
was suggested.

In this thesis the following main contributions to the �eld of discontinuous sys-
tems of Filippov-type were made.

� It was explained how linear approximation and the generalized fundamental
solution matrix determine the path of the jump of the eigenvalues. Filippov
theory, generalized derivatives and Floquet theory were combined to under-
stand bifurcations in discontinuous systems.

� Discontinuous bifurcations of periodic solutions were shown to occur when a
periodic solution touches a non-smooth hyper-surface for a critical parameter
value. Saltation matrices are therefore important for the understanding of
discontinuous bifurcations.

� Some low-dimensional examples were studied, giving insight into discontinu-
ous bifurcations. Discontinuous counterparts were found of conventional fold,
symmetry-breaking and ip bifurcations. A discontinuous bifurcation without
a direct continuous counterpart was also found. The discontinuous bifurcation
found by Yoshitake and Sueoka [2000], exposing a jump of a Floquet multiplier
from � < �1 to � > 1, was identi�ed as a combined fold{ip bifurcation. The
existence of a multiple-crossing bifurcation was demonstrated.

� The switch model was developed, being an extended version of the Karnopp
model, for the description of systems with dry friction. The switch model
proved not only to be valuable as a numerical tool but also for the theoretical
understanding of periodic solutions in systems with dry friction.

� In�nitely unstable periodic solutions were shown to exist and explained by
Filippov theory and the switch model. A path of in�nitely unstable periodic
solutions was followed with path-following techniques in reverse time. A dis-
continuous fold bifurcation was found at which a Floquet multiplier jumps
from zero to in�nity, crossing the unit circle through +1.

7.2 Recommendations

Many problems are still open for further research. This section gives recommenda-

tions and starting points for further research.

Terminology and De�nitions

Di�erent de�nitions exist for the term `bifurcation' (Section 5.1). The di�erent
de�nitions for a bifurcation can lead to confusion when they are applied to discon-
tinuous systems. This urges for a consensus about what is to be understood by
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Figure 7.1: Topological transitions of periodic solutions.

`bifurcation'. De�nition 5.3, based on the topological (non-)equivalence of the phase
portrait, de�nes also `sliding bifurcations' [Di Bernardo et al., 1999a] as bifurcation.
The word `bifurcation' suggests that a branch bifurcates from another branch. A
`sliding bifurcation', however, does not imply branching behaviour or a turning point
of the branch. The application of De�nition 5.3 to discontinuous systems, as well as
the term `sliding bifurcation' seem therefore awkward. De�nition 5.1, based on the
number of �xed points and (quasi-)periodic solutions, seems to be a good candidate
as it is very clear from the bifurcation diagram whether or not a point on a branch is
a bifurcation point or not. The number of �xed points or (quasi-)periodic solutions
changes at a bifurcation point (according to De�nition 5.1), which can be inferred
from the bifurcation diagram. This de�nition implies therefore branching behaviour
or a turning point of the branch. In the context of non-smooth and discontinu-
ous dynamical systems, De�nition 5.1 as de�nition for bifurcation therefore seems
preferably over other de�nitions.

A distinction needs to be made between a topological change of the phase por-
trait and a bifurcation. This may require some new terminology. We recommend
to call a topological change of the phase portrait, a topological transition (instead
of `bifurcation'). A bifurcation should be de�ned by De�nition 5.1. Every bifurca-
tion is a topological transition but not every topological transition is a bifurcation.
Topological changes of a periodic solution with sliding mode to a periodic solution
without sliding mode can be named topological sliding mode transitions (instead of
`sliding bifurcations'). A topological sliding mode transition can be a bifurcation

or a non-bifurcating topological transition. The topological structure is depicted in
Figure 7.1. It is unknown whether there exist non-bifurcating topological transitions
that are not sliding mode transitions.
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Topics for Further Research

The lack of a theory for discontinuous bifurcations or more general of discontinuous
di�erential equations, which embraces the theory for smooth systems, is felt as a
shortcoming in current research. Conjectures 5.1 and 6.1 were formulated about
existence of discontinuous bifurcations and an attempt to a partial classi�cation of
those bifurcations is made in Conjectures 5.2 and 6.2. Further research is needed in
order to reject or prove the conjectures.

Bifurcations of �xed points of non-smooth continuous systems were studied. Dis-
continuous bifurcations were found to be located on hyper-surfaces at which the
vector �eld is non-smooth. The stability of a �xed point on a hyper-surface was not
investigated. Further research could study branches of �xed points that are located
on a hyper-surface and bifurcation of those branches.

In the thesis bifurcations of �xed points in non-smooth continuous systems and
bifurcations of periodic solutions in discontinuous systems were studied. Bifurca-
tions of �xed points in discontinuous systems of Filippov-type, however, were not
studied. In fact, this problem is even more complicated. Some results on stability of
�xed points in discontinuous systems exist [Anosov, 1959; Brogliato, 1999; Heemels,
1999; Roxin, 1965]. Brogliato [1999] also gives results on stability of �xed points in
impacting systems. Although extremely complicated, further research could study
bifurcations of �xed points in Filippov and impacting systems.

Two combined bifurcations were treated in this thesis: a discontinuous Hopf{
pitchfork bifurcation and a discontinuous fold-ip bifurcation. It should be investi-
gated whether other examples of combined bifurcations exist that show phenomena
not exposed by the two bifurcations separately. It is interesting to know whether a
combination exists of more than two conventional bifurcations.

The possibility of accumulation points in the solution of a Filippov system was
briey mentioned in Chapter 2. This phenomenon of Filippov systems was not
further addressed in this thesis and it was assumed that no accumulation points
occur. It would be interesting to investigate whether periodic solutions in Filippov
systems can contain accumulation points. The occurrence of in�nitely many mode
switches in the periodic solution causes in�nitely many jumps of the fundamental
solution matrix which complicates the determination of the fundamental solution
matrix after the period time. The appearance or disappearance of accumulation
points in periodic solutions under variation of a parameter might create a bifurcation.

Many aspects of discontinuous bifurcations of periodic solutions in Filippov sys-
tems are shown in the thesis. Much work still has to be done on the numerical aspects
of continuation of branches of periodic solutions in discontinuous systems. Standard
numerical path-following methods are developed for smooth systems. Application
of these methods to Filippov systems leads to numerical di�culties especially at
discontinuous bifurcation points.

The Zhuravlev-Ivanov transformation [Brogliato, 1999; Ivanov, 1993] is a non-
smooth transformation that transforms a system with a single frictionless impact
(like system (3) of Table 1.1) to a Filippov system. Periodic solutions of simple

impacting problems can therefore be transformed to periodic solutions of Filippov
systems which are described in this thesis. The results in this thesis on discontinuous
bifurcations of Filippov systems can therefore be used as a stepping stone to bifur-
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cations in impacting systems. Further research should study how the discontinuous
bifurcations of Filippov systems are related to bifurcations in impacting systems.

From the previous chapters it seems that we are still very distant from a uni-
�ed theory of bifurcations in discontinuous systems. Many examples are discussed in
this thesis, which expose a variety of discontinuous bifurcations. The examples show
that on the one hand discontinuous bifurcations occur which can be considered to
be counterparts of conventional bifurcations. On the other hand, discontinuous bi-
furcations exist which behave qualitatively di�erent from conventional bifurcations.
All encountered discontinuous bifurcations show a common characteristic (jump of
an eigenvalue/Floquet multiplier (or pairs of these) over the imaginary axis/through
the unit circle). This has led to the formulation of conjectures about existence and
classi�cation of discontinuous bifurcations. It would be of interest to investigate
whether or not these conjectures can constitute (part of) a basis for a (possible)
uni�ed theory of bifurcations in discontinuous systems of Filippov-type.
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The theory developed in the preceding chapters will be applied in this appendix to
a simple model of drillstring dynamics.

A.1 Motivation

Deep wells for the exploration and production of oil and gas are drilled with a
rock-cutting tool driven from the surface by a slender structure of pipes, called the
drillstring (Figure A.1). Drillstring vibrations are an important cause of premature
failure of drillstring components and drilling ine�ciency. Stick-slip vibration causes
violent torsional vibration of the drillstring and whirl leads to lateral vibrations
with large amplitudes. Extensive research on this subject has been conducted for
the last four decades, both theoretically [Jansen, 1993; Van den Steen, 1997; Van der
Heijden, 1994] and experimentally (for instance [Pavone and Desplans, 1994]). Most
of the experimental investigations were only based on �eld measurements recorded
at the surface. Stick-slip vibrations can indeed be detected from the surface, at
least in a straight well, but detailed information about the mechanism downhole
can not be obtained. Downhole measurements, briey presented in this appendix,
reveal stick-slip vibration coexisting with whirl vibration. Uncertainty exists on the

1The experimental data in this appendix were analyzed in cooperation with ir. J. Manie.
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downhole mechanism which determines whether stick-slip or whirl will be prevalent.
This appendix presents a low-dimensional dynamical model, describing stick-slip
and whirl in its most elementary form. The system is analyzed with the methods
presented in the preceding chapters. This appendix does not aim to present a model
which fully explains the observed phenomena in the measurements. The objective
of this appendix is to illustrate the theory presented in the preceding chapters and
to show that discontinuous bifurcations can arise in simple models of mechanical
systems. This appendix is meant as an illustration and we will discuss in Section A.10
the possible merits of this appendix to the insight into drillstring vibration.

The principles of oilwell drilling are �rst briey explained in Section A.2. Down-
hole measurements, which reveal stick-slip motion and whirl in a drillstring, are
presented in Section A.3. A simple mathematical model for the investigation of stick-
slip and whirl is constructed and analyzed in Sections A.4 to A.9. The theoretical
and numerical results will be compared with the measurements in Section A.10.

A.2 Principles of Oilwell Drilling

Oil and gas wells are predominantly drilled using rotary drilling. The basic elements
of a rotary drilling system are shown in Figure A.1. A rotary drilling system creates a
borehole by means of a rock-cutting tool, called a bit. The oldest type of rotary bit is
the roller-cone bit which essentially comprises three metal rollers covered with hard
steel teeth that crush the rock. An alternative type of bit is the PDC (Polycrystalline
Diamond Compact) bit consisting of a steel body with inserts made of arti�cial
diamond and tungsten carbide. The energy to drive the bit is generated at the
surface by a motor with a mechanical transmission box. Via the transmission the
motor drives the rotary table: a large disc that acts as kinetic energy storage. The
medium to transport the energy from the surface to the bit is formed by a drillstring,
mainly consisting of drill pipes: slender tubes, about 9 m (30 ft.) long, coupled with
threaded connections, having a typical outside diameter of 127 mm (5") and a wall
thickness of 9 mm. However, smaller (e.g. 3.5") and larger (6.5") drill pipe diameters
are also used.

The lowest part of the drillstring, the Bottom-Hole-Assembly (BHA), consists of
thick-walled tubulars, called drill collars. Dependent on the diameter of the hole,
these drill collars usually have an inner diameter of 2.5-3" (64-76 mm) and an outer
diameter of 4.75"-9.5" (120-240 mm). The BHA can be several hundreds of meters
long, and often contains dedicated downhole tools. The drill collars in the BHA are
kept in position by a number of stabilizers, which are short sections with nearly the
same diameter of the bit.

The drilling process requires a compressive force on the bit of some 104-106 N.
This dynamic force is commonly denoted as Weight On Bit (WOB), although force-
on-bit would be a more appropriate name. The entire drillstring is suspended by a
hoisting system, consisting of a travelling block with hook, drilling line and winch.
The drillstring rests with the bit on the bottom of the hole and is pulled at the hook

by a force called the hookload. The hookload ensures that the drill pipe is kept in
tension to avoid buckling. The graph at the left of Figure A.1 shows the axial force
as a function of the position along the borehole. While the drill pipes run in tension,
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Figure A.1: Drilling Rig.

the BHA is partly loaded in compression. Buckling of the BHA is prevented by the
large wall thickness of the drill collars and the placement of stabilizers.

Torque is transmitted from the rotary table to the drillstring. The torque re-
quired to drive the bit is referred to as the Torque On Bit (TOB).

A uid called mud is pumped down through the hollow drillstring, through noz-
zles in the bit and returns to the surface through the annulus between the drillstring
and the borehole wall. The mud compensates the pressure in the rock, lubricates
and removes the rock cuttings from the hole.

The drilling process is steered by the hookload, the rotary table speed at the
surface (the angular velocity of the top end of the drillstring) and the ow rate of
the mud. The downward speed of the drillstring gives an accurate measure of the
rate of penetration (ROP). The standpipe pressure (the pressure in the owline at
the top of the drillstring) indicates the total pressure drop in the drillstring and
annulus. The ROP and standpipe pressure indicate the progress and state of the
drilling process which are interpreted by drilling engineers to adjust the steering
parameters.

The drillstring undergoes various types of vibration during drilling [Van den
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Steen, 1997]

� Axial (longitudinal) vibrations, due to bouncing of the drilling bit on the rock
during rotation (called `bitbounce').

� Bending (lateral) vibrations, often caused by pipe eccentricity, leading to cen-
tripetal forces during rotation, named as drillstring whirl:

{ forward whirl: the rotation of a deected drill collar section around the
borehole axis in the same direction as it rotates around its axis.

{ backward whirl: a rolling motion of the drill collar or the stabilizer over
the borehole wall in opposite direction as it rotates around its axis.

� Torsional (rotational) vibrations, caused by non-linear interaction between the
bit and the rock or the drillstring with the borehole wall, named as

{ stick-slip vibration: the torsional vibration of the drillstring character-
ized by alternating stops (during which the BHA sticks to the borehole)
and intervals of large angular velocity of the BHA.

� Hydraulic vibrations in the circulation system, stemming from pump pulsa-
tions.

These vibrations are to some degree coupled: e.g. the interaction between TOB and
WOB will link the axial vibrations to the torsional vibrations.

A.3 Downhole Measurements

In the late 1980s the Institut Fran�cais du P�etrole designed the Trafor system, a
research tool to measure downhole and surface data to improve knowledge about
drillstring dynamics. The Trafor system consists of a downhole measurement de-
vice, called the T�el�evigile, and a surface measurement device known as the Survigile.
The signals of the T�el�evigile and Survigile are gathered by a computer and synchro-
nized. The great merit of the Trafor system is the ability to measure both downhole
and surface data at real-time. Pavone and Desplans [1994] give a description of
the Trafor system. The T�el�evigile is equipped with sensors that measure Weight
On Bit, downhole torque, downhole accelerations in three orthogonal directions and
downhole bending moments in two directions. Three magnetic �eld sensors, known
as magnetometers, measure a projection of the earth magnetic �eld in three orthog-
onal directions co-rotating with the T�el�evigile.

The measurements reported in this section were recorded at the research rig
Ullrigg in Rogaland, Norway between 1990 and 1993, being a joint project of A/S
Norske Shell and Elf Aquitaine. The well is nearly vertical and about 1080 m deep.
Various tests with di�erent WOB and angular velocity of the rotary table were
conducted. A few tests are used for this appendix, all conducted with the same
drillstring setup. The drillstring consisted of 5" drill pipe, 8" drill collars and a
12 1/4" roller-cone bit.

Figure A.2 shows a time history of the downhole angular velocity, calculated
from the magnetometer signals. The angular velocity at the surface !, WOB and
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Figure A.2: Measured downhole angular velocity versus time.

other parameters were almost kept constant during the experiment. The drillstring
clearly performs stick-slip motion for t < 985 s. At t = 985 s the stick-slip motion
suddenly disappears and backward whirl is prevalent for t > 985 s. The stick-slip
motion is caused by the dry friction between the BHA and the rock. The friction
is due to the drilling bit, which cuts the rock, but also due to the stabilizers, which
have contact with the borehole wall. The friction curve of the part of the BHA
beneath the T�el�evigile, relating the torque to the downhole angular velocity, could
be reconstructed from the measurements (Figure A.3). The torque on the T�el�evigile
consists of the friction torque of the bit, the torque created by contact (if present)
of the drill collar beneath the T�el�evigile with the borehole wall and by the viscous
torque of the drilling mud. During the stick-slip motion the part of the friction curve
is traversed with the negative slope. The negative slope of the friction curve causes
steady rotation of the drillstring to be unstable, which induces the stick-slip motion.
At the transition to whirl, a switch is made to another part of the friction curve
with a higher value of friction and a slightly positive slope. The drillstring is not
deected in lateral direction during stick-slip motion. Consequently, the torque on
the T�el�evigile is during stick-slip motion mainly due to the friction torque on the
bit. The whirl motion has been identi�ed as being backward whirl caused by rolling
of a drill collar section over the borehole wall (with a small amount of slip). The
drillstring must consequently be deected during whirl motion. The torque on the
T�el�evigile will be higher during whirl motion due to the additional torque created by
the contact between drill collar and borehole wall and increased drag forces of the
mud on the whirling drill collar. This additional torque increases with increasing
angular velocity. This would account for the higher torque and slightly positive
slope of the friction curve during whirl motion. The slightly positive slope causes
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Figure A.3: Measured downhole friction curve.

the constant rotation to be stable which prevents stick-slip motion as is observed in
Figure A.2.

Figure A.4 shows the mean bending moment measured by the strain gauges in
the T�el�evigile versus the prescribed angular velocity at the surface !. During this
experiment, the value of ! was varied with a sweep-up followed by a sweep-down.
The mean bending moment is to some extent a measure for the radial displacement
of the drillstring. The system was �rst in stick-slip motion with a low value of the
mean bending moment (consistent with an undeected drillstring) at low !. As !
is increased the mean bending moment increases slightly but at ! = 11:5 [rad/s]
the motion switches from stick-slip to whirl and the mean bending moment jumps
to a higher value, indicating a large radial deection of the drillstring. The sweep-
up test reaches its maximum at ! = 12:5 [rad/s] after which ! is decreased. The
drillstring remains in whirl motion down to ! = 2 [rad/s]. The bending moment
during whirl motion is not constant for varying !. The part with positive slope for
2 < ! < 7 [rad/s] is consistent with an increasing radial deection for increasing
!. At ! = 7 [rad/s] the T�el�evigile probably touches the borehole wall and for

increasing values of !, a larger part of the drillstring will become in contact with the
borehole wall which decreases the bending moment. We conclude from Figure A.4
that stick-slip and whirl can coexist for an interval of rotary table speed !. Combined
stick-slip whirl motion, however, in which the drillstring performs stick-slip motion
with a large radial deection, is not observed.

The mechanism downhole, which causes the transition from stick-slip to whirl
and vise-versa, is not satisfactorily understood. The transition from stick-slip to

whirl is presumably caused by an interaction between bending and torsion which
destabilizes the concentric position of the drillstring for high values of !. Possible
ways of interaction can be caused by
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Figure A.4: Measured downhole bending moment versus surface angular velocity.

� Drillstring eccentricity. This causes the drillstring to whirl violently only in the
neighbourhood of the bending critical eigenfrequency. The drillstring would
not whirl for very high values of !, contrary to what has been observed from
the measurements.

� Gyroscopic e�ects. They are negligible because the clearance between drill-
string and borehole is much smaller than the length of the drillstring.

� Anisotropic bending sti�ness of the drillstring. This causes the drillstring to
whirl in a small interval of ! which is inconsistent with the measurements.

� Fluid mud forces. They destabilize the concentric position of the drillstring
for !-values higher than a critical value consistent with measurements.

Insight into the mechanism downhole and the possible interaction between bending
and torsion can be obtained by studying a simpli�ed model of the drillstring. In the
next sections we will study whether uid forces of the drilling mud can explain the
observed phenomena. A low-dimensional model will be analyzed with both torsional
and lateral degrees of freedom in a uid. This small model will be discontinuous
of Filippov-type and shows a complicated dynamical behaviour. Bifurcations in
Filippov systems were investigated in the preceding chapters but we did not arrive
at a uni�ed theory and many questions are still left open. Still, the results of
the preceding chapters will be of use to partly explain the complicated dynamical
behaviour of the model.
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A.4 Modeling of Stick-slip Whirl Interaction

A simple model for the whirling motion of a drill collar section has been developed
by Jansen [1993] and has been further analyzed by Van der Heijden [1994]. A
simple model to describe the torsional stick-slip motion of a drillstring was presented
in Jansen [1993] and extensively analyzed by Van den Steen [1997].

In the following sections we will develop a model which can describe whirl and
stick-slip motion in their most elementary form, under inuence of uid forces. The
model consists of a submodel for the whirling motion, called the Whirl Model, and
a submodel for the stick-slip motion, called the Stick-slip Model. The full model
will be named the Stick-slip Whirl Model. Elementary whirling can be described by
at least 2 lateral degrees of freedom and stick-slip motion by one torsional degree
of freedom. The Stick-slip Whirl Model has therefore 3 degrees of freedom. The
Stick-slip Whirl Model is a simpli�cation of a drillstring con�ned in a borehole wall
with mud.

The interaction between torsional vibration and whirl of a rotor was already
studied by Lee [1993] and Tondl [1965] but a dry friction torque on the rotor and
uid forces were not considered.

We consider a rigid disk (which models the BHA) at the end of a massless exible
shaft (the drill pipe) as is depicted in Figure A.5a. The shaft and disk are con�ned
in a stator (the borehole) �lled with uid (drilling mud). The upper end of the
shaft is driven with constant rotation speed ! (constant speed of the rotary table).
The shaft is subjected to bending and torsion with bending sti�ness k and torsion
sti�ness k'. The disk with mass m and inertia J is attached to the lower end of
the shaft. The displacement of the geometric center of the disk is denoted by x

and y in the stationary coordinate system or by the polar coordinates r and � (see
Section A.11). The disk is twisted with an angle ' with respect to the upper end of
the shaft and with an angle � with respect to the �xed world

� = !t+ ': (A.1)

On the disk or rotor acts a friction torque Tf (the Torque On Bit). The lateral
motion of the disk is constrained by the stator. The rotor has a radius R and the
stator a radius Rb. Contact is made when the radial (lateral) displacement of the
rotor r equals Rc, where Rc = Rb �R is the clearance.

A.5 Fluid Forces

The uid forces on the drillstring are extremely complicated as the uid motion
is non-stationary and possibly turbulent. However, analytical results are available
for a constantly rotating rotor in a stator for small clearance and small lateral

displacement (Rc � R and r � R) [Fritz, 1970; Muszynska, 1986]. As a �rst
approximation we will use these analytical results for non-stationary motion of a
rotor which is con�ned in a large stator for arbitrary lateral displacements. The
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where mf is the added uid mass and D the uid friction coe�cient.
The uid forces, depicted in Figure A.5b, can be transformed to polar coordinates

Ffr = �mf (�r � _�2r � !
2

4
r + ! _�r)� (D +  2(r)) _r �  1(r)r

Ff� = �mf (��r + 2 _r _�� ! _r)� ( _�� !

2
)(D +  2(r))r:

(A.3)

The nonlinear functions  1 and  2 depend on the radial displacement r. It
is assumed (following Muszynska [1986]) that these functions are analytic (with
 1(0) =  2(0) = 0). As a �rst approximation, only the following symmetric terms
will be taken into account:

 1(r) = B1r
2
;  2(r) = B2r

2
; (A.4)

where B1 and B2 are constants.
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A.6 Contact Forces

The stator wall will induce normal and tangential forces (Figure A.5b) on the rotor
if the radial displacement becomes larger than the clearance, r > Rc. The normal
contact force can be modeled (in its most simple form) to stem from a linear spring
with spring sti�ness kb,

FbN =

�
kb(r �Rc) r > Rc

0 r � Rc:
(A.5)

The normal contact force induces a tangential contact force due to dry friction
between the rotor and the wall. We assume a constant friction coe�cient �b. If the
relative velocity between the rotor and the stator wall is nonzero, then the tangential
contact force is

FbT = ��bsign(vrel)FbN ; vrel 6= 0; (A.6)

with the relative velocity being given by vrel = _�r+!R (for constant rotation of the
rotor). During pure rolling (vrel = 0) the tangential contact force must be between

��bFbN � FbT � �bFbN : (A.7)

The contact forces can be expressed in stationary coordinates as

Fbx = (�FbT y � FbNx)=r; Fby = (FbTx� FbNy)=r: (A.8)

The friction due to rotor-stator contact can be treated numerically by making use
of the switch model (see Section 2.4 and Leine et al. [1998]).

Torques on the disk

We assume that a dry friction torque Tf is acting on the rotor, which only depends

on the angular velocity _�,

Tf = � sgn _�
T0

1 + �j _�j : (A.9)

Contact between the rotor and stator induces the contact forces FbN and FbT . The
tangential contact force induces a torque on the rotor,

Tb = FbTR: (A.10)

The uid forces Ffr and Ff� (A.3) are derived for stationary motion of the rotor
_� = !. We will assume that they also hold for non-stationary motion, _� 6= !, and
we replace ! by _� in (A.3),

Ffr = �mf (�r � _�2r � _�2

4
r + _� _�r)� (D +  2(r)) _r �  1(r)r

Ff� = �mf (��r + 2 _r _�� _� _r)� ( _� � _�
2 )(D +  2(r))r:

(A.11)

The uid forces Ffr and Ff� act on the rotor but their working lines are through
the origin. The force Ff� has therefore an arm �r and gives the torque

Td = �Ff�r: (A.12)
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A.7 Whirl Model

In this section we study only the Whirl Model. We assume the rotor to rotate
constantly (no torsional vibration). This allows us to �nd analytical results for the
pure whirling motion, which are equilibria of the Whirl Model in polar coordinates
and periodic harmonic solutions in stationary coordinates. Polar coordinates are
therefore more convenient for the Whirl Model. The equilibria of the Whirl Model
are also equilibria of the total Stick-slip Whirl Model but the eigenvalues of the
Stick-slip Model may change the stability.

Equations of Motion

The equations of motion for a whirling rotor with uid and contact forces in sta-
tionary coordinates are

m�x+ c _x+ kx = Ffx + Fbx

m�y + c _y + ky = Ffy + Fby;
(A.13)

where m is the rotor mass, k the lateral bending sti�ness and c the lateral bending
damping constant. In polar coordinates these equations become

m(�r � _�2r) + c _r + kr = Ffr � FbN

m(��r + 2 _r _�) + c _�r = Ff� + FbT :
(A.14)

Substitution of the uid forces (A.3) gives

ma(�r � _�2r) + (c+D +B2r
2) _r + (k � !

2

4 mf +mf! _�+B1r
2)r = �FbN

ma(��r + 2 _r _�) + (c+D +B2r
2) _�r = mf! _r + (D +B2r

2)!
2
r + FbT ;

(A.15)

with ma = m+mf . This fourth-order system can be transformed into a third-order
system with the whirl velocity 
 = _�,

ma(�r �
2
r) + (c+D +B2r

2) _r + (k � !
2

4
mf +mf!
+B1r

2)r = �FbN
ma( _
r + 2 _r
) + (c+D +B2r

2)
r = mf! _r + (D +B2r
2)!2 r + FbT :

(A.16)

Equilibrium without contact

The equilibrium without contact (re;
e) of (A.16) has to obey _r = �r = _
 = 0 and
r < Rc. The whirl velocity can be derived from the second equation of (A.16),


e =
D +B2r

2
e

c+D +B2r
2
e

!

2
: (A.17)

Consequently, the rotor is whirling forward in the equilibrium without contact. The
�rst equation of A.16 gives

(k � !
2

4
mf +mf!
e �ma


2
e
+B1r

2
e
)re = 0: (A.18)
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Solving the latter equation gives two equilibrium branches of the system without
contact. The �rst branch is the trivial solution

re = 0; (A.19)

and the second branch can be derived from

k � !
2

4
mf +mf!
e �ma


2
e
+B1r

2
e
= 0: (A.20)

The trivial branch becomes unstable when it meets the second branch. We denote
the frequency at which the trivial branch becomes unstable by !c. Substitution
of (A.17) and (A.19) into (A.20) gives !c

!
2
c
= 4k

(c+D)2

c2mf +D2m
: (A.21)

Two limiting cases are of special interest: a) c > 0 and D = B2 = 0 , b) c = 0 and
D > 0; B2 > 0.

Case a) implies that we consider the system to rotate in a frictionless uid. The
rotor will not whirl due to the absence of uid friction,


e;a = 0: (A.22)

The quasi-static motion of rotor gives

c _re;a = (
!
2

4
mf � k)re;a �B1r

3
e;a
: (A.23)

The two stationary solutions (for re;a � 0) are

re;a = 0; re;a =

s
!2

4
mf � k

B1
(A.24)

We conclude that case a) gives a supercritical pitchfork bifurcation (B1 > 0) at

!c;a = 2

s
k

mf

(A.25)

Case b) implies that we consider the system to have no structural damping but
only uid damping. The rotor will whirl with half the rotation speed ( 1

2
!-whirl),


e;b =
1

2
!: (A.26)

The quasi-static motion of rotor gives (with ma = m+mf )

(D +B2r
2
e;b
) _re;b = (

!
2

4
m� k)re;b �B1r

3
e;b
: (A.27)
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Figure A.6: Whirl Model, equilibrium branches.

The two stationary solutions (for re;b � 0) are

re;b = 0; re;b =

s
!2

4
m� k

B1
: (A.28)

We conclude that case b) also gives a supercritical pitchfork bifurcation at twice the
natural frequency,

!c;b = 2

r
k

m
: (A.29)

For
mf

m
< 1 it can be shown that !c;b < !c < !c;a. The pitchfork bifurcation is

shown in Figure A.6 for the parameter values given in Appendix C.6. The trivial
branch e1a is stable and meets the bifurcation (denoted by c) after which it is
unstable and continues as e1b. From the bifurcation point starts a branch of stable
forward whirl solutions e2.

Equilibrium with pure rolling

The rotor rolls over the stator wall without slipping under three conditions:

1. the relative velocity is zero, vrel = 
r + !R = 0,

2. positive normal contact force, FbN > 0,

3. the tangential contact force does not exceed the maximal friction force,
��bFbN � FbT � �bFbN .
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The pure rolling equilibrium (r = rp;
 = 
p) has to obey _r = �r = _
 = 0.

The whirl velocity can be derived from condition 1,


p = �R
rp
!: (A.30)

Consequently, the rotor rolls backward over the stator wall. The equilibrium condi-
tions give

�ma

2
p
rp + (k � !

2

4
mf +mf!
p +B1r

2
p
)rp = �FbN

= �kb(rp �Rc)

(A.31)

and

(c+D +B2r
2
p
)
prp = (D +B2r

2
p
)
!

2
rp + FbT : (A.32)

Substitution of 
p in (A.31) gives a third-order polynomial in rp. If we neglect the
nonlinear uid term B1, (A.31) reduces to a second-order polynomial

(k + kb � !
2

4
mf )r

2
p
� (kbRc +mf!

2
R)rp �ma!

2
R
2 = 0: (A.33)

Solving for rp gives two roots of which only one ful�lls condition 1,

rp =
kbRc +mf!

2
R+

q
(kbRc +mf!

2R)2 + 4ma!
2R2(k + kb � !2

4 mf )

2(kbRc +mf!
2R)

:

(A.34)

The limit of kb to in�nity gives of course lim
kb!1

rp = Rc.

If we assume directly an in�nitely sti� wall of the stator without neglecting B1,
then we can solve for the contact forces,

FbN = ma!
2R

2

Rc

� (k � !
2

4
mf +B1R

2
c
)Rc + !

2
Rmf ; (A.35)

FbT = �(c+D +B2R
2
c
)!R� (D +B2R

2
c
)
!

2
Rc: (A.36)

Equation (A.35) should ful�ll condition 2,

!
2
> !

2
b
=

(k +B1R
2
c
)Rc

ma
R2

Rc
+mf

1
4
Rc +mfR

: (A.37)

If B1 is not too large, then !b < !c;b.
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However, pure rolling near ! = !b is not possible because (A.36) has to ful�ll
condition 3. We de�ne that condition 3 is violated at ! = !d. Substitution of (A.35)
and (A.36) into ��bFbN = FbT gives a second-order polynomial in !d,

� �b

�
ma

R
2

Rc

+mf (
Rc

4
+R)

�
!
2
d
+

�
cR+ (D +B2R

2
c
)(R +

Rc

2
)

�
!d +

�bRc(k +B1R
2
c
) = 0:

(A.38)

If the uid damping (D, B2) and structural damping (c) are small compared to the
dry friction caused by �b, then we can make the following approximation

!
2
d
� !

2
b
+
cR+ (D +B2R

2
c
)(R + Rc

2 )

�b

�
ma

R2

Rc
+mf (

Rc

4
+R)

�!b: (A.39)

Fluid damping and structural damping cause that !d > !b.
The pure rolling branch for the parameter values of Appendix C.6 is depicted in

Figure A.6 as branch e4. The point at which the branch stops (! = !d) is denoted
by d. The value Rc is taken as unity. A larger value for the borehole sti�ness kb will
cause the pure rolling branch to come closer to r = Rc.

Branch e2, with stable forward whirling solutions without contact, is connected
to branch e4, with stable backward whirling pure rolling solutions, by the unstable
branch e3. Branch e3 consists of equilibria with slipping contact.

Equilibrium with slipping contact

The relative velocity vrel between rotor and stator is positive for forward whirling
solutions without contact (branch e2), whereas it is zero for pure rolling solutions
(branch e4). The relative velocity during slipping contact (branch e3) should be in
between. There are two conditions for slipping:

1. the relative velocity is positive, vrel = 
r + !R > 0,

2. positive normal contact force, FbN > 0.

The slipping equilibrium (r = rs;
 = 
s) has to obey _r = �r = _
 = 0. The
equilibrium conditions give

�ma

2
s
rs + (k � !

2

4
mf +mf!
s +B1r

2
s
)rs = �FbN ; (A.40)

(c+D +B2r
2
s
)
srs = (D +B2r

2
s
)
!

2
rs � �bFbN ; (A.41)

where FbN = kb(rs �Rc). This system of equations can be solved to give rs, which
will not be done in this section. The insight can be gained from other considerations.
The limit of kb to in�nity gives of course

lim
kb!1

rs = Rc
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The branch of slipping equilibrium begins at the point where the equilibrium without
contact touches the stator wall re = Rc (denoted by f in Figure A.6) and the branch
ends at the point where the pure rolling branch begins (point d). Consequently,
the slipping branch connects the stable no-contact branch to the stable pure rolling
branch. Of much interest is to know how the slipping branch is located between the
two end-points, which is closely related to its stability. We therefore try to �nd an
expression for @r

@!
at the point where the slipping branch and the no-contact branch

e2 connect. To simplify the results we will assume B2 = 0. At the connection point
to the no-contact branch we have at rs = re = Rc. The following equations hold at
this point


s = 
e =
D

c+D

!

2
; (A.42)

(k � !
2

4
mf +mf!
e �ma


2
e
+B1R

2
c
)Rc = 0: (A.43)

We now di�erentiate (A.40) with respect to !. This gives

� 2ma
s

@
s

@!
rs �ma


2
s

@rs

@!
+ (k � !

2

4
mf +mf!
s +B1r

2
s
)
@rs

@!
+

(�!
2
mf +mf
s +mf!

@
s

@!
+ 2B1rs

@rs

@!
)rs = �kb @rs

@!

(A.44)

and when we substitute (A.42) and (A.43),

�ma

D

c+D
!
@
s

@!
Rc + (�1

2
+

1

2

D

c+D
+
@
s

@!
)mf!Rc = �(2B1R

2
c
+ kb)

@rs

@!
:

(A.45)

Di�erentiating (A.41) gives

@
s

@!
rs +
s

@rs

@!
=

1

2

D

c+D
(rs + !

@rs

@!
)� �bkb

c+D

@rs

@!

or

@
s

@!
=

1

2

D

c+D
� �bkb

c+D

1

Rc

@rs

@!
: (A.46)

After substitution of (A.46) in (A.45) we arrive at an expression for @rs

@!
,

kb

�
1 + 2

B1

kb
R
2
c
� �b!

(c+D)2
(mf c�mD)

�
@rs

@!
=

1

2

!Rc

(c+D)2
(D2

m+ c
2
mf ):

(A.47)

The limit of kb to in�nity gives of course lim
kb!1

@rs

@!
= 0. Two limiting cases are of

special interest:
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Case a) c > 0, D = 0 and kb � B1R
2
c

After substitution in (A.47) we obtain

kb

�
1� �b!mf

c

�
@rs

@!
=

1

2
!Rcmf : (A.48)

Consequently, when
�b!mf

c
> 1 =) @r

@!
< 0;

�b!mf

c
< 1 =) @r

@!
> 0:

Case b) c = 0, D > 0 and kb � B1R
2
c

After substitution in (A.47) we obtain

kb

�
1 +

�b!m

D

�
@rs

@!
=

1

2
!Rcm: (A.49)

Consequently, it must hold that @r

@!
> 0:

The parameter values of the structural damping and uid damping are c =
0:3 N/(ms) and D = 0:1 N/(ms). The numerical example is similar to case a)
with

�b!mf

c
> 1. The derivative @r

@!
at point f is therefore negative which causes

the branch e3 to be unstable and to connect point d with point f directly. If the
parameter values would be di�erent, such that

�b!mf

c
< 1, then branch e3 would

start at point f with a positive slope as a stable branch. It will at some point turn
around and continue as an unstable branch in the direction of point d.

Bifurcation points d and f are discontinuous saddle-node bifurcations of the equi-
librium branch e2{e3{e4. An eigenvalue jumps over the imaginary axis through the
origin at those bifurcation points. At bifurcation point d, being the transition from
contact to no-contact, this is caused by the non-smoothness of the normal contact
force (A.5). At bifurcation point f, being the transition from slip to stick, this is
caused by the non-smoothness of the tangential contact force (A.6). Remark the
angle between the branches at a discontinuous bifurcation point.

A.8 Stick-slip Model

In this section we study only the Stick-slip Model. We assume the rotor to rotate
concentricly in the stator (no lateral vibration, r = 0). As there is no radial dis-
placement, the torques due to uid forces and contact forces vanish (Td = 0, Tb = 0).
The equation of motion for pure torsional motion is

J �' = �k''+ Tf : (A.50)

The Stick-slip Model has an unstable equilibrium branch (' = Tf (!)=k; _' = 0),

which corresponds to the trivial equilibrium branch (r = 0, ' = Tf (!)=k) of the full
Stick-slip Whirl Model. The trivial equilibrium branch was denoted in the Whirl
Model as branch e1.
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Figure A.7: Stick-slip Model.

Periodic Stick-slip Vibrations

The periodic solutions of the Stick-slip Model are also periodic solutions of the Stick-
slip Whirl Model. The periodic stick-slip vibration is depicted in Figure A.7a. The
twist ' is on the horizontal axis and the angular velocity _� = _'+ ! on the vertical
axis. The limit cycle is traversed clock-wise. The slip part of the motion takes place
at _� > 0. When the velocity is decreasing during the slip part, it arrives at _� = 0 and
continues with backward rotation ( _� < 0). This backward slip motion is followed by
the stick part _� = 0, which completes the limit cycle.

The branch of periodic stick-slip solutions (p1) is numerically determined for
varying values of ! and depicted in Figure A.7b. The minimal value of _� is set on
the vertical axis. For the trivial equilibrium branch holds min _� = ! and this branch
is unstable as the friction torque Tf decreases with increasing angular velocity _�.

The periodic stick-slip branch has a minimal value of _�, being smaller or equal
than zero depending on the backward slip part. As can be seen from Figure A.7b,
backward rotation becomes more pronounced at higher values of !.

A.9 Stick-slip Whirl Model

The Stick-slip Model and the Whirl Model will be combined in this section which
gives the Stick-slip Whirl Model.

Equations of Motion

Combining the lateral and the torsional model and taking into account the non-
stationary uid forces, uid torque and contact torque (Section A.6) gives the fol-
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Figure A.8: Stick-slip Whirl Model, equilibrium branches.

lowing set of equations of motion

ma(�r �
2
r) + (c+D +B2r

2) _r + (k � _�2

4
mf +mf

_�
 +B1r
2)r = �FbN

ma( _
r + 2 _r
) + (c+D +B2r
2)
r = mf

_� _r + (D +B2r
2)

_�
2
r + FbT

J �' = �k''+ Tf + Tb + Td:

(A.51)

Equilibrium Branches

Equilibrium positions of submodels are in general not equilibrium positions of the
total model. The torsional and lateral degrees of freedom of the Stick-slip Whirl
Model however, are to some extent uncoupled. From (A.51) it follows that for an
equilibrium position must hold that _r = 0, _
 = 0 and _' = 0. The angular velocity

of the rotor is therefore constant, _� = !, which means that the Whirl Model is not
inuenced by the Stick-slip Model. The equilibrium branches e1 to e4 of the Whirl

Model are also equilibrium branches of the Stick-slip Whirl Model, denoted by E1

to E4 (Figure A.8). The twist angle 'eq in an equilibrium position can be found
from substitution of an equilibrium position of the Whirl Model req and 
eq in

k''eq = Tf (!) + Tb(
eq; !; req) + Td(
eq; !; req): (A.52)

Some stable branches may become unstable due to an added eigenvalue of the Stick-

slip Model. The trivial branch E1 of the Stick-slip Whirl Model is totally unstable
whereas it was partly stable for the Whirl Model. The branch E2 contains a Hopf
bifurcation which splits the branch in a stable and an unstable part.



128 Appendix A

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r

!

E2

E3

E4

P1a P1b

P2

P4

Figure A.9: Stick-slip Whirl Model, periodic branches (bold).

Periodic Branches

The periodic branches of the Stick-slip Whirl Model are depicted in Figure A.9 and
partly enlarged in Figures A.10, A.11 and A.12.

As for equilibrium positions, periodic solutions of submodels are in general not
periodic solutions of the total model. The torsional and lateral degrees of freedom
of the Stick-slip Whirl Model are however uncoupled for r = 0 (because Td and Tb
vanish). The Whirl Model has an equilibrium position r = 0. Branch p1 of the
Stick-slip Model (Section A.8) therefore also exists for the Stick-slip Whirl Model as
branch P1 with r = 0. Whereas branch p1 is stable, branch P1 is partly stable due
to the added eigenvalues of the Whirl Model.

Branch P1 consist of pure stick-slip vibrations with x = 0 and y = 0. The radial
deection is therefore r =

p
x2 + y2 = 0 but the angular position � = arctan( y

x
) is

not de�ned. Branch P1 can therefore only be described in the stationary coordinate
system (x; y; ') and not in the polar coordinate system (r; �; '), which was used for
the Whirl Model.

Branch P1, described in the stationary coordinate system, contains a Neimark-
Sacker (or secondary Hopf) bifurcation after which the branch is unstable.

The equilibrium branches E2 to E4 (which are pure whirl solutions) and the
pure stick-slip branch P1 both have a bifurcation point in the Stick-slip Whirl Model
which was not existing in Stick-slip or Whirl Model. The equilibrium branches E2

to E4 contain equilibria in polar coordinates but are periodic solutions in stationary
coordinates with period times T = 2�

!
. From the Hopf bifurcation on E2 emanates

a branch P6 (Figure A.10), which is periodic in polar coordinates and quasi-periodic
in stationary coordinates. Branch P6 is connected through branches P5, P4 and
P3 with branch P2 (Figure A.11). Branch P2, which contains periodic solutions in
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Figure A.10: Stick-slip Whirl Model, zoom of Figure A.9.

polar coordinates and quasi-periodic solutions in stationary coordinates, ends at the
Neimark-Sacker bifurcation on P1. The Neimark-Sacker bifurcation therefore gives
rise to quasi-periodic solutions which is consistent with the theory.

Branches P2 to P6 connect the solutions found from the Whirl Model with the
solutions found from the Stick-slip Model. Branches P2 and P3 are periodic solutions
(in polar coordinates) that perform both stick-slip and whirl motion. The periodic
solutions on branches P3, P4 and P5 contains contact events between the rotor and
the stator wall.

Branch P4 is divided in stable and unstable parts P4a to P4d. Branch P4a is
connected to P4b by a Neimark-Sacker bifurcation. Branches P4b, P4c and P4d are
connected to each other by two ip bifurcations. The branches with period-doubled
periodic solutions and quasi-periodic solutions, which start at these bifurcations,
have not been calculated.

A number of discontinuous bifurcations exist on the branches P2 to P6. Branch
P2 is connected to P3 (Figure A.12) by a discontinuous ip bifurcation (the period-
doubled branch has not been calculated). The bifurcation occurs when the periodic
solution touches the stator, r = Rc. The discontinuity of the contact forces causes
the discontinuous bifurcation. Similarly, branch P5 is connected to branch P6 (Fig-
ure A.12) by a discontinuous fold bifurcation at r = Rc. Branch P3 (with stick
events) is connected to branch P4 (without stick events) by a discontinuous fold
bifurcation. This bifurcation is due to the discontinuity in the dry friction force.

A remarkable bifurcation occurs on the equilibrium branch connecting branchE2b

with E3 at r = Rc (Figure A.12). This bifurcation point was already encountered
in the Whirl Model as a discontinuous saddle-node bifurcation at which the branch
turns around (bifurcation point f in Figure A.6). In addition, two periodic branches,
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Figure A.11: Stick-slip Whirl Model, zoom of Figure A.10.

P4 and P5, are connected to the bifurcation point in the Stick-slip Whirl Model. This
bifurcation point is therefore a combined bifurcation of a saddle-node bifurcation and
two Hopf bifurcations.

The bifurcation diagrams certainly do not show all periodic branches that exist.
Period-doubled branches were not calculated but also other branches may be missing
in the bifurcation diagrams.

A note has to be made concerning the chosen numerical values of the parameters
in the Stick-slip Whirl Model. Sti�ness and mass/inertia parameters are chosen such
that the torsional eigenfrequency of the rotor is close to the �rst torsional eigenfre-
quency of the drillstring. Similarly, the lateral eigenfrequency of the rotor is close
to the lateral eigenfrequency of the lowest drill collar section. Damping and friction
constants are more or less arbitrarily chosen. The equilibrium and periodic branches
in the bifurcation diagrams depend of course on the chosen constants. However, the
periodic whirl branches, P2 to P6, seem to be close to the equilibrium branch E2.
The equilibrium branches form a structure to which the periodic branches are at-
tached. A lot about the dynamics of this particular system can already be said
once the location of the equilibrium branches are known. The value !c, expressed
in (A.25) and (A.29), gives the location of branch E2. The ratio

�b!mf

c
determines

whether branch E3 proceeds to the right of bifurcation point f or folds to the left

(Figure A.6). The value !d (A.39) gives the starting point of branch E4. Conse-
quently, !c, !d and

�b!mf

c
determine the main structure of the bifurcation diagram.
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Figure A.12: Stick-slip Whirl Model, zoom of Figure A.11.

A.10 Discussion and Conclusions

In the previous sections a simple model was constructed, based on the assumption
that the uid forces are the cause of the phenomena observed in the measurements.
The Stick-slip Whirl Model was analyzed with path-following techniques and bifur-
cation theory of the preceding chapters. What can we conclude from the Stick-slip
Whirl Model with respect to the measurements?

The Stick-slip Whirl Model exhibits both stick-slip motion and whirl motion
(which is not possible in the models of Jansen [1993]). Stick-slip motion is prevalent
at low angular velocities and backward whirl (during which the rotor rolls backward
over the stator) is prevalent for high angular velocities consistent with the measure-
ments. Stick-slip and whirl motion coexist for an interval of ! both in the model
and in the measurements. Combined stick-slip whirl motion was not observed in
the measurements but was found in the Stick-slip Whirl Model (branches P2 and
P3). However, this combined motion occurs only in a very small interval of ! in the
model. The model is therefore consistent with the measurements in the sense that
stick-slip motion occurs or whirl motion (both possible for the same value of !), but
a combination is rare or not existing.

The measurements show a hysteresis e�ect for a sweep-up sweep-down test (Fig-
ure A.4). The drillstring starts in stick-slip motion at low angular velocity of the
rotary table. When the rotary table speed is increased with small steps, the motion
remains in the stick-slip mode but at 11:5 [rad/s] the drillstring suddenly stops to
operate in the stick-slip mode and starts to whirl backward. The drillstring remains

whirling for increasing rotary table speed also after the rotary table speed is dimin-
ished in small steps during the sweep-down test. The mean-bending moment (and
whirl radius?) drop between 7 and 2 [rad/s] and stick-slip recommences.
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A similar hysteresis e�ect can be seen for the Stick-slip Whirl Model. At low
values of ! the rotor is in stick-slip motion. When ! is increased quasi-statically,
branch P1a is followed (Figure A.9) and the rotor will remain in the stick-slip mode.
Branch P1 becomes instable for increasing ! due to the destabilizing uid forces and
the motion of the rotor will rapidly change via branches P2 and P3 to an oscillatory
whirl motion on branch P4. When ! is increased even more the motion will jump to
regular backward whirling motion without slip on branch E4. If ! is subsequently
quasi-statically decreased, the rotor will remain to operate on branch E4 until the
discontinuous saddle-node bifurcation between E3 and E4 is met. The motion will
then jump to the stick-slip mode and the hysteresis loop is complete.

The phenomena as described by the Stick-slip Whirl Model resemble to some
extent the phenomena observed in the measurements. The transition from stick-slip
motion to whirl motion is similar, but the transition from whirl to stick-slip motion
seems to be more gradual in the measurements than can be explained from the
model.

One could argue whether the observed phenomena in the measurements are really
due to uid forces and not to other possible ways of interaction between torsional
and lateral motion. Although the results on the Stick-slip Model look similar, they
do not prove that indeed uid forces are the cause for onset of whirl in drillstrings.
This appendix illustrates how the techniques and theory of the preceding chapters
can be used to analyze low-dimensional models with discontinuities, in this case
the Stick-slip Whirl Model. In the same way, other low-dimensional models can be
constructed which study for instance the inuence of mass unbalance on the dynamic
behaviour of a rotor with lateral and torsional degrees of freedom. The results of
the di�erent models can be compared with the experiments which can help to gain
insight into the complex dynamic behaviour of the drillstring. Knowledge about
bifurcations in discontinuous systems is therefore relevant to dynamic problems in
industrial applications.

A.11 Coordinate Systems

x = r cos�
y = r sin�

(A.53)

r =
p
x2 + y2 � = arctan(

y

x
) (A.54)

_� =
_yx� _xy

r2
_r =

x _x + y _y

r
(A.55)

�r =
_x2 + _y2 + �xx+ �yy � _r2

r
(A.56)
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Some Theoretical Aspects of

Periodic Solutions

B.1 Transformation to an Autonomous System

The theory and methods in the body of this thesis were derived for autonomous
systems. Some examples however, contain a time-periodic forcing which makes the
system non-autonomous. A class of non-autonomous time-periodic systems can be
transformed to autonomous time-periodic systems as described in this appendix (see
also Doedel et al. [1998]).

Consider an nth-order, non-autonomous, nonlinear dynamical system represented
by the di�erential equation

_xe(t) = fe(t; xe(t)); (B.1)

where _xe � dxe=dt, xe is a column with the n state variables of the system, t is time
and fe is a column of nonlinear functions of time t and the components of xe. Since fedoes depend on t, the system is called non-autonomous, as opposed to autonomous
systems, where fe is not a function of t.

System (B.1) is time-periodic with period time T if

fe(t+ T; xe) = fe(t; xe) (B.2)

and if T is the minimal number such that (B.2) holds. Assume that the time-periodic
system (B.1) can be written as

_xe(t) = fe�(sin(�t); cos(�t); xe(t)); (B.3)

where � = 2�
T
.

To the time-periodic system (B.1) we add a nonlinear oscillator with sin(�t) and
cos(�t) as its solution components. An example of such an oscillator is

_v = v + �w � v(v2 + w
2)

_w = ��v + w � w(v2 + w
2)

(B.4)
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with v(0) = 0 and w(0) = 1. The oscillator (B.4) has the asymptotically stable solu-
tion v(t) = sin(�t) and w(t) = cos(�t). We couple this oscillator to the system (B.3)
and obtain

_xe = fe�(v; w; xe)_v = v + �w � v(v2 + w
2)

_w = ��v + w � w(v2 + w
2)

: (B.5)

This set of di�erential equations is autonomous and periodic solutions of system (B.3)
are also periodic solutions of (B.5) with period T .

B.2 The Variational Equation

An nth-order, smooth nonlinear system is represented by the di�erential equation
with initial condition1

_xe(t) = fe(t; xe(t)); xe(t0) = xe0: (B.6)

The solution to this equation is written as �et(t0; xe0), so
_�et(t0; xe0) = fe(t;�et(t0; xe0)); �e0(t0; xe0) = xe0: (B.7)

Di�erentiating (B.7) with respect to xe0 gives
@ _�et(t0; xe0)

@xe0 =
@fe(t; �et(t0; xe0))

@xe
@�et(t0; xe0)

@xe0 ;

@�e0(t0; xe0)
@xe0 = I: (B.8)

De�ning �
t
(t0; xe0) � @�et(t0; xe0)=@xe0, Equation (B.8) becomes

_�
t
(t0; xe0) = @fe(t; �et(t0; xe0))

@xe �
t
(t0; xe0); �

t0
(t0xe0) = I; (B.9)

which is the variational equation for a periodic solution of (B.6). The fundamental
solution matrix after a period time T is called the monodromy matrix �

T
.

1The derivation, presented in this appendix, is taken from Parker and Chua [1989].
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Parameter Values

C.1 Switch Model

Section 2.4:

k = 1 N/m
m = 1 kg
vdr = 0:2 m/s
Fs = 1 N
� = 3 [s/m]
� = 10�6 m/s
TOL = 10�8

C.2 Stick-slip System

k = 1 N/m
c = 0 Ns/m in Section 3.4
c = 0:1 Ns/m in Section 6.7
m = 1 kg
vdr = 0:2 m/s in Section 3.4
Fslip = 1 N
Fstick = 2 N
� = 10�4 m/s
TOL = 10�8

C.3 Trilinear System

m = 1 kg

c = 0:05 N/(ms)
k = 1 N/m
xc = 1 m
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kf = 4 N/m
cf = 0:5 N/(ms)
f0 = 0:2 N

C.4 Forced Vibration with Dry Friction

m = 1 kg
c = 0:01 N/(ms)
k = 1 N/m
f0 = 2:5 N
Fslip = 1 N
Fstick = 2 N

C.5 Forced Stick-slip System

m = 1 kg
c = 0 N/(ms)
k = 1 N/m

vdr = 1 m/s
�0 = 1:5 N
�1 = 1:5 Ns/m
�3 = 0:45 Ns3/m3

f0 = 0:1 N

C.6 Stick-slip Whirl Model

m = 1 kg c = 0:3 N/(ms) k = 1 N/m
mf = 1 kg D = 0:1 N/(ms) R = 2 m
Rb = 3 m Rc = Rb �R = 1 m kb = 50 N/m
cb = 30 N/(ms) �b = 0:5 B1 = 0:1 N/m3

B2 = 0 N/(m3 s) J = 1 kg m2
k' = 1 Nm

T0 = 0:2 Nm � = 0:3
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