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Abstract

In many assembled structures local nonlinearities can be found, whiett &fie overall dynamics of the
system. Typical examples are joints which show nonlinear behavior duétoriras well as clearance.
Another example are bushing elements which are used as connectors iridhmtive industry, showing
a stiffening effect and frequency dependence. In both examplesfiinsevest to model the effect of such
local nonlinearities on the dynamics of large scale finite element (FE) assernmbiie context of substruc-
turing. In this contribution a clearance nonlinearity is considered leadingntmessmooth, nonlinear force
resulting in similar dynamics like in classical vibro-impact-systems. In contrastyubhing elements can
be modeled by a smooth nonlinear function characterizing a progregsing $ehavior. Nevertheless, in
both cases similar nonlinear phenomena like the occurrence of predomieahtigrmonic solutions and
strong influence of higher harmonics can be observed. Thus, Fregiresponse Functions (FRFs) are
calculated using a generalized Harmonic Balance Method (HBM) taking #ffeses into account. For both
nonlinearities the resonance peaks are bent towards higher frégmi@rith increasing amplitude, resulting
in a frequency range with multiple solutions. Also, the existence of predomhyrsubharmonic solutions
results in additional bends in the FRFs. To be able to capture the existenudtipie, stable and unstable
solutions at certain frequencies a Predictor-Corrector continuation cheshused for the calculation of the
solutions. Additionally, the dependence of the backbone curve on the adgpbiuthe total energy in the
system respectively, is visualized in Frequency Energy Plots (FEBshdfmore, the corresponding Non-
linear Normal Modes (NNM) are depicted. In these plots also the effectanfal interactions, like energy
transfer between modes can be shown. To demonstrate the proposed mé&tho mass oscillator is used.
This oscillator consists of two linear substructures which are coupled hyahinear elements. However,
the methods can be easily extended to FE models with local nonlinearities anukedontext of substruc-
turing. The methods are used for further investigations of beam stredéhale@ding such nonlinearities and
will be validated by experimental data.

1 Introduction

Local nonlinearities can have strong influence on the vibrations of assdratsuctures. Therefore, it is
crucial to take these nonlinearities into account when simulating the behdwaoclo systems. In this paper
a method for efficient calculation of assembled structures with local noniliilesais proposed. For these
calculations a generalized version of the Harmonic Balance Method, takingénount higher harmonic as
well as subharmonic responses, is used. This method can be combinegméthid substructuring and re-
duction methods, like the Frequency Based Substructuring (FBS) methadfbmponent Mode Synthesis
(CMS) [2, 4], to be able to calculate large scale finite element models. In thiexddhe local nonlinearities



can be regarded as nonlinear coupling elements like it is shown in Fig. 1.

In the following, two different nonlinearities are considered. The fing epresents clearance in assembled
structures and the second one a nonlinear bushing element showingirsgifteeehavior. The nonlinearities
are described in detail in Section 2. As both nonlinearities discussed in thes pee of the stiffening type,
which causes resonance peaks to bend towards higher frequeitbigsowing amplitude, frequency ranges
with multiple solutions occur. To capture these multiple solutions, the HBM is combiitec continuation
method [3]. As a part of the solution algorithm, a purely analytical appréadhe computation of the non-
linear forces and the Jacobian matrix of the system is presented, resulieny fiast and robust calculations.
This solution method is described in detail in Section 3 for the calculation ollErexry Response Functions
(FRF). Some features of the systems regarded in this paper, like thefi@genergy dependence or modal
interactions, can be visualized and explained by Nonlinear Normal Mdade®j and Frequency Energy
Plots (FEP) [5, 6]. Section 4 briefly mentions some aspects of the NNM aRdcREulations based on the
HBM. The proposed methods are demonstrated on a four mass oscillatationS® The paper closes in
Section 6 with a conclusion and suggestions for future research.

2 System representation and types of nonlinearity

In this Section, the system to which this paper refers to is described. folesrirstly a substructure formu-
lation is briefly reviewed and the coupling is explained. For the sake offfassfthe coupling is sketched
in the physical domain only, however it can be performed analogous imghadncy domain using an FBS
formulation [1] or it can be combined with model reduction techniques yieldiay1& formulation [2, 4].
The equation of motion for a general mechanical system consisting ofediffsubstructures can be written
in the physical domain according to [7] as

MX-+ DX+ Kx=f+g (1)

whereM, D andK contain the mass, damping and stiffness matrices of all substructures irkedidgonal
form. The vector of external forces ,e.g. excitation forces, is denogefl &ind the vector of connecting
forces between the substructuresgoyn the interfaces between the substructures the force equilibrium can
be written as

L'g=0, 2)

whereL is a Boolean matrix localizing the interface DOFs within the set of global DORsoducing a
Boolean matriB"™ = null(L") the interface forces can be expressed using Lagrange multipligiesding

g——BA. 3)

In this equatiomA represents the interface forces which can be expressed as a fuofctienrelative dis-
placemenu in the interface as
A =Fp(u,0) 4)

which is related tx by the Boolean matriB as
u=Bx (5)

Within this contribution nonlinear coupling elements are considered leadinguping forces related ta

in a nonlinear way. Therefore the Harmonic Balance Method is utilized taappate the nonlinear inter-
face forces. For simplicity in the following only one DOF of both substruaiseoupled with a nonlinear
element reducing to a scalar quantity.

Before the HBM is explained, the two different local nonlinearities cotingdinear substructures are char-
acterized. On the one hand clearance in joints of assembled structurpeeserged by a piecewise linear
function and on the other hand a nonlinear bushing element of an autorhmake assembly is modeled as
cubic nonlinearity of the stiffening type. Both systems are depicted schethatickig. 1, where the linear
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Figure 1. Schematic system representation and nonlinear forces: ndeananlinearity (left) and cubic
nonlinearity (right)

parts of the assembly are represented by the substructures A and B.

Fig. 1 also displays the nonlinear forces due to clear&ggg and a cubic nonlinearitk.,, which depend
on the relative displacement in the coupling interface x, — Xx3. Hence, the nonlinear force caused by the
clearance can be calculated dependingi gielding a piecewise defined function

ko(U-2) u<-2
Felear= 0 —Zp<u<2 (6)
—ko(U—20) Uu>2,

wherekg is the contact stiffness in the interface, which has to be taken into accdamt the relative dis-
placement is larger than the clearanes.

In the case of the nonlinear bushing element the force in the interfacerisdppted as a cubic nonlinearity
with the cubic spring constait and can be calculated by

Feub = BU3 (7)

which also depends on the relative displacemanta nonlinear way.

3 Harmonic Balance Method for sub- and higher harmonic response

The HBM is a method to approximately compute the steady state response oeaoslstems [8, 9]. The
method is based on the assumption that every nonlinear steady state eesparss/stem which is driven

by an excitation frequencg can be expressed by a Fourier series with an infinite humber of harmonics
of this frequency. In its original version only the fundamental respismsensidered such that the method
represents a rough approximation. For a consideration of a higheuahdrsnonic response like it is done

in this contribution the underlying ansatz must be extended to

X(t) = ap+ i i av/ucos(Za)t)+bv/“sin(Za)t). 8)
v=1u=1

This ansatz now takes higher harmonics into account forl and subharmonics are representediby 1.
The constant padg considers the mean position of the vibration. Note, that with this ansatz omhohérs



in a rational condition are respected. Linear combinations of the harmoniepresent combination reso-
nances [10] are not considered here since the excitation for thenpedsgystem is excited with only one

frequency. Using this ansatz for the calculation of the response fran@Bthe nonlinear forceB,(u, u,t)
in Eq. (6) and (7) can be developed in a Fourier series dependeneaeldiive displacement in the
coupling interface which is related by equation (5) leading to

This Fourier series as well as the ansatz in Eg. (8) is truncated to a finiteenofrittarmonicN including all

FaGut)=Ao+H 5

v=1lu=1

00

Y .V
Ay cos(ﬁwt) +By/y sm(ﬁwt).

(9)

harmonicsy, and subharmonicg;,, whose numbers have to be chosen depending on the kind of nonlinearity

and the desired precision of the calculation. The Fourier coefficientg.of% can be written as a vector

which can be determined via integration of

with

r.= [%,cos(wt),cos(%wt), ...,cos(;hwt), ...,cos(:an),sin(wt),sin(;wt), .y SIN(

IEnI,reI = [AO)A17A1/27°"7A1/[Jh)"‘JAVh/uhuBlaBl/Z)"‘aBl/[,lha "'7th/[1h]T7
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(10)

(11)
L ot), o sin( Loty
Hh h

(12)

For the calculation of these coefficients, the regarded period |&vein/w has to have at least the length

of one full period, also for the subharmonic terms which hay¢imes the period length of the excitation.

The vector of the nonlinear fordf'enhrm depends on the relative displacement and can be localized in the
global set of DOFs analogous to Eq. (5) yielding a generalized vectordinear forcesfn,(f(, w). Assum-

ing harmonic excitation and steady state behavior the equations of motion eaittkea in a matrix form

as
[K 0 0 0 0 ][ % |
0 Hj,i1 O 0 0 >:<1/1
0 0  Hijipe 0 0 X1/2
: : : 0 0 :
0 0 0 0 Hlin,l/uh 0 )A(l/uh
: : : : 0 :
|0 0 0 0 0 Hlin-,Vh/Hh_ _f(Vh/IJh_
~—_——
|-llin 5(
. . [V
with  Hiiny, /p, = K+ (mw)D—<

3.1 Solution Method
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(13)
(14)

The nonlinear system given in Eq. (14) cannot be solved explicitly asdhi&near forces depend dn

Hence, they are transformed in an implicit form such that a resid&al wm) can be iterated to zero

F(% @) = Hin%+ f1(% @) — Forc = 0.

For this task a predictor-corrector method is used including a tangeritpoadstep

Xp =X+ 0V,

(15)

(16)



whereX denotes the previous solution axXigthe predicted point which is calculated along the tangent vector
of the solution curver by multiplication with the step size factdr. For the calculation of the actual solution
at the new point a corrector step is performed which can be interpretadrésimization problem of the
form [11]

min{|X—X,|;r(X,w) =0} . a7)

This means that the point on the curve is found which is closest to the prkdihee. This minimization
problem can be solved iteratively using a Gauss-Newton like method leaditegations of the following

form .
GWn 1 G Vin o |

whereJd(Xmn, wrn) denotes the Jacobian matrix of the functidi,, wm) andvy, the tangent vector at iteration

m. This tangent vector is updated at each iteration by

a -1 A
——L | 0o
m
This method provides super-linear convergence properties [12] aretysrobust as the predicted values
are usually already near the solution. However, a drawback of this métttbdt the Jacobian matrix of
the system has to be calculated at each iteration step. A popular methodcidaian of the Jacobian
in the context is the finite differences method which is applicable in a veryrgeway to all kinds of
nonlinearity. As this method needs numerous evaluations of the funtian ) it is computationally
very expensive and restricted to systems with a limited number of DOFs anobhiass. Additionally, the
guality of the computed Jacobian matrix is a critical point in the algorithm comggthe robustness. Thus,
in the following a more efficient, analytical alternative is proposed for arswell as cubic nonlinearities.
Generally, the Jacobian matrix of the system in Eq. (15) can be written as

I(Xm, () = [ 0’(;(;:1%) 0r(§$nmn)} (20)
with W:KM (,ﬁw)D—(Z:w)zm‘Ziﬂ (1)
and ‘W: <i (m)o—z(::w)M)merz:ﬂ (22)

The differentiation of the linear parts of the function can be calculated ktfargvard. Whereas differen-
tiation of the nonlinear forces is more complex and explained in the next sedti@ome detail for both
nonlinearities regarded in this contribution.

Besides the calculation of the Jacobian matrix, the control of the ste@ dimethe prediction step is an-
other key factor to achieve both, robustness and reasonable compaitatish In this case the step size is
controlled by a desired number of iteratioms,; along with a multi-level trial and error method [3]. This
approach is advantageous in case of strong and sudden changedundtien [13] such as sharp bends
caused by non-smooth nonlinearities.

3.2 Nonlinear Force and Jacobian calculation for clearance nonlinearity

The analytical formulation for the calculation of nonlinear contact foreestd clearance and their contri-
bution to the Jacobian matrix of the systems is based on the method proposépandbriefly reviewed in
this section.
For the following calculations of the nonlinear forces the relative displanemi@ the coupling element is
written as a vector product of the form

ut)=rru (23)



with I representing the sine and cosine terms of a Fourier series like in Eq. (8)

[ = [1,cog(t), Cos( 2 aat), ... cOS = t), ..., cos{ L eat), sin(ct), Sin( Zeet), .., Sin( = cat), ..., sin( P cot)]T
2 Hn Hn 2 Hn h
(24)
andU representing the Fourier coefficientsugf)
U= [aU.Oaau,l/laau,l/Za "'>au,l/[1ha "'aau,vh//,lha bu,l/la bu,l/Za ) bu,l/uha X3 bu,vh/uh]T (25)

The nonlinear force due to clearance can be calculated by evaluatingebeairin Eq. (11) which leads to
a piecewise defined function of the form

: (26)
0 separation

Fo — { 3 ST Fa(0,ut) dt - contact
wherei numbers all sections in which contact in the interface ocadrsepresents the points in time when
the contact happens atglthe points times when separation happens within the period of integya{ion
The nonlinear forcé e in the interface for the clearance nonlinearity can be represented usingadtor
notation introduced in Eq. (23) yielding

2 (i T
—= [ +kol . ("' U —25) dt contact
I:clear = HnT ftc' o +( ZO) . (27)
0 separation
Since the vectad does not depend drthe nonlinear force can be written as
+(koWU — kgwz) contact
I:clear = { ( ) . (28)
0 separation
whereW is anj x j matrix with j = 2N + 1, consisting of sine and cosine functiong of
W= 25 [“r.rma (29)
T .z W '
andw is anj x 1 vector also consisting of sine and cosine functionis of
2 5 [*r.d 30
W= —— t.
I"lhT |z tei " ( )

This integral can be calculated analytically which reduces the computatitiogl fer the calculation of
the nonlinear force to simple evaluations of gr j Matrix. For the calculation of the Jacobian matrix the
nonlinear force has to be differentiated with respedfl teading to

0Fc|ear:{ +koW contact (31)

ouU 0 separation

meaning that also the calculation of the Jacobian is reduced to a single evalfadioj x j matrix. This
obviously reduces the computational effort dramatically compared to thediffdeences method. Another
advantage is that the analytical formulation is very exact compared to finiéeatites or Discrete Fourier
Transform based methods like used by [15]. Therefore, it also isesethe quality of the Jacobian matrix
and the nonlinear force resulting in remarkably higher robustness obligos algorithm.



3.3 Nonlinear Force and Jacobian calculation for cubic nonlinearity

In this Section an extension of the previously described method for thetimahbtalculation of the Jacobian
matrix to polynomial nonlinearities is proposed resulting in a slightly more complaxuiation. As in the
previous Section the nonlinear forég(u,u,t) can be calculated according to Eqg. (11). For the cubic force
F cup this leads under application of the vector formulation introduced in Eq. (23) to

2 (HT Ty 1\3
Fcub:—/ Br, (FTU)3 dt (32)
HT Jo

Analogous to the previous Section it is desired to decompose this integralrim® dependent anand onu
to be able to calculate an analytical transformation matrix from time domain into tipesiney domain and
vice versa. However, this decomposition is not as straightforward asitnmthe case of clearance because
the exponent of the polynomial induces cross terms leading to all sortsrdfications of entries df and
U as well as their squares and cubes.
For clarity in the following the entries of the vectoFsandU will be numbered and denoted &fis=
[F1,F2,...,Tj]T andU = [U,Ua,...,U;j]T with j = 2N+ 1, whereN represents the total number of harmonics
taken into account. With this notation a general polynomial of pgnefra vector product can be written as
multinomial sum in a multi-index notation

(FTU)P = (MUg +MUp+ ... +TUj)P = ) (MU (MUp)ke... (UM, (33)

( p
kl+k2++k]:p k17 k2, 7k]

This multinomial expression contains

summands each one consisting of a factor which can be traced ddward a factor which can be traced
down toU as well as a constant multiplier represented by the binomial coefficient. Thimomaial can be
decomposed into two vectoFs andU*, both of the size) x 1, with " containing all factors coming from
I combined with the constant multipliers of the binomial coefficientdridncluding the factors dependent
onU, respectively. This means that as desiféddepends on the time adi* on the relative displacement
only.

Exemplary this decomposition is demonstrated in the following for the case djia polynomial and one
harmonic. In this case the power of the polynomiapis 3 and the length of the example vectdrs and
Uexis j = 3 reducing Eq. (35) to

T

M Uz

) ) 3
Mo [Ua| | =(MUi+ T+ Tels) = 5 (k . K;) (F1U1)k (FUz)e(TjUg). (35)
3 Us ki+koFka=3 \" 122

Expansion of this multinomial expression yields

(FeUex)® =T3U7 + 303 + 303
+3M3UZMUs 4 33U 3Uz + 31U M 3U2 + 3M3U2TM 3Us + 31 1U1M3U2 + 3MU,M3U2  (36)
—+ 6l 1U1MUolM3U3

The summands of Eq. (36) can now be decomposed into two vdcipandU ;, both of size 10« 1 yielding
re,=1[r3, 13, 3, 3rar,, 3rars, 3rqrs, 3rars, 3rir3, ror3, 6rrors)’ (37)
which is only dependent on entrieslofx combined with constant multipliers and

UL =[U3, U3, U3, U2U,y, U2Us, UjUZ, U2Us, UUZ, UsU2, UgUoUs)" (38)



which only depends on the vectdry leading to the desired decomposition of time and displacement depen-
dency. The same method as illustrated in this example for the fundamental haandrcubic polynomial

is applicable in a very general way according to Eq. (35) for highersattharmonic ansatz functions as
well as for general polynomials of power

Using the decomposition of the ansatz éanto vectors thd™* andU* the cubic force can be written as

F 2 r.rTu* dt 39
cub—-u1-]£ B + . ( )

Now, analogous to the previous section the integration can be separatethé& calculation of the nonlinear
force yielding a matrix

s 2 HT *T
w :uT/o F.r dt (40)

of the sizen x (2N + 1) which can be calculated analytically. Using this matrix the nonlinear force ean b
calculated by evaluation of the equation
Feoun=BWU™. (41)

As already shown for the clearance nonlinearity, the contribution of thie ¢arce to the Jacobian matrix
can also be calculated analytically. Therefore, the cubic force has tdfbeedtiated with respect tb
yielding
chub (9U*
= BW*
ou P ou
where the partial derivativ%%i can be calculated analytically. This means that the calculation of the cubic
force as well as the calculation of their contribution to the Jacobian matrix isceedto simple matrix
evaluations and multiplications. So the same advantages in terms of speed@arataare obtained for the
cubic nonlinearity as mentioned in the previous Section. Despite it has to be mezhtfat the matrices are
of a bigger size than for the clearance nonlinearity.

(42)

4 Calculation of Nonlinear Normal Modes and Frequency Energy Plots

The fundamental properties of Nonlinear Normal Modes are subjeatroerous publications [5, 16] and
thus this paper only briefly reviews some aspects about the calculation methddvithin this publication.
According to Rosenberg [17] the NNMs can be defined as synchsopertiodic motion of a conservative
system. Referring to this definition the NNMs represent the underlyingésgmonse of an undamped system
of the form

M-+ KX+ Fr(x,t) = 0. (43)

This approach seems restrictive as it is limited to undamped systems. Thalsmestensions to this basic
definition taking nonlinear damping into account [18]. However, eversidening the basic definition can
be of interest as the dynamics of a moderately damped system often oolesio the dynamics of the
underlying conservative system. Eg. the resonance peaks of lightlyedasystems as regarded in this
paper follow the backbone curve represented by the FEP of the uimgeclnservative system quite well.
For the calculation of NNMs the previously described method for the calcolafi&RFs was adapted. In
the following the conservative system is regarded which means that tBe phgle remains constant. This
reduces the size of the system fr¢8N + 1)nto (N+ 1)n as it is sufficient to either consider a pure sine or
cosine ansatz function in Eq. (8), resulting in faster computations thandéiRifrs.

The total energy in the system directly corresponds to the amplitude. Itecaalbulated as a sum of the
energieE, of all massesn, which can be expressed in the frequency domain as

[o0] oo}

2
En(R, w) = ;mn<z zll‘:wf(nv/“> . (44)

v=1u=



For the calculation of FEPs the energy is regarded as a parameter aratrggponding frequency of the
NNM is calculated. Besides, the same solution algorithm using the same continoegtthod is used than
for the calculations of FRFs.

An interesting property of this method compared to the shooting methods wieichidely used eg. by [6,
19] is the filtering characteristic of the HBM, meaning that not all internalmaaces are captured depending
on the number of harmonics considered [20]. This leads to the computadidveattage that certain tongues
of the FEP can be neglected if they are of minor interest to speed up caloalatio

5 Numerical Examples

In this Section the functionality of the method is demonstrated by coupling two éagnmgubstructures,
each consisting of a linear 2DOF-oscillator, by a nonlinear coupling elermbatfirst subsection considers
the effect of the clearance nonlinearity. The scope of the seconeédidsis to show some special char-
acteristics of the proposed method, like the filtering of modal interactionsg tisthexample of the cubic
coupling element.

5.1 Coupling with clearance nonlinearity

Firstly, the element with clearance nonlinearity is used for coupling of twdiickdrinear substructures of
which one is excited harmonically. The setup displayed in Fig. 2 and the pimanaee listed in Tab. 5.1.
The clearance in the regarded examplgis- +£0.5m and the stiffnesk = 1IN/mleading to a non-smooth

A 1 X2 ’ X3 X4 B
Ka r_’ Ka = ke = K = K

A mAWWNWVmBW%W
= HH Wy e

Figure 2: 4 DOF system with clearance coupling element

function for the nonlinear force. To approximate the sudden change imothimear force at the instant the
clearance is reached a numbeiNbf= 10 harmonics is considered for the following calculations.
The FEP of the system is regarded in Fig. 3 to visualize the effect of th@ingwvith clearance. Therefore,

Parameter Value Unit Parameter Value Unit
Ma 1 kg ms 1 kg

ka 1 N/m ks 1 N/m
da 0.02 Ns/m (03} 0.02 Ns/m
ke 0.1 N/m 5 +0.5 m

ko 1 N/m

Table 1: Parameters for 4DOF-Oscillator with clearance nonlinearity

the modes of the uncoupled systems (green dots) and the fully couplethsysthout clearance (red Xx) is
compared to the coupling with clearance (blue). It is obvious that the deaiaduces strong frequency
dependence for two of the modes whereas the others remain unchdihggetehavior can be explained by
regarding the mode shapes of the fully coupled system which are depjetdmbkically in Fig. 3 (left). It

can be seen that for the modes 1 and 3 the DOFs 2 and 3 vibrate in unistireamds no nonlinear force



as the relative displacement in the coupling elements is zero, wheres thieptiatse modes induce energy

dependence due to nonlinearity. Depending on the total energy theitwebfthe system can approach the
uncoupled or fully coupled system.

On the right side of Fig. 3 the total energy of the forced response fi@relift forcing amplitudes is plotted
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Figure 3: Left: FEP for uncoupled system (green dots), fully coupjestiesn (red x) and system coupled
with clearance. Right: FEP and total energy of forced response éitaérn with Fexc = {0.1,0.3,1,5} N.

into the FEP. It can be observed that the peaks of the FRF follow the A&¢h wieans that the frequency
where the peaks are located changes depending on the forcing lewditioAdlly, several small peaks at
lower frequencies are induced by the influence of higher harmoniexiadly for the high forcing levels.
Fig. 4 shows the receptance of DOF 4 for different forcing amplitudes.cBmparison also the FRF for
the fully coupled system is plotted. It can be observed that for there imagsthange in the FRF with
the changing forcing amplitude leading to bends and multiple solutions. At higiméplevel the FRF
approaches the linear FRF of the fully coupled system as also shown ikBeldefore. The smaller peaks
in the FRF at low frequencies especially for forcing amplitude§f = {1,5} N are caused by higher
harmonics which can be seen in Fig. 4 on the right where the sum of allrighmonics is depicted for the
different forcing levels. For the lower excitation amplitudgs: = {0.1,0.3} N there are no such peaks as
the contact point is not reached in this low frequency range.
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Figure 4: Left: FRF for DOF 4 for excitation witRexc = {0.1,0.3,1,5} N compared with fully coupled
system (blue dotted). Right: Sum of higher harmonics for the differenirfg amplitudes.

5.2 Coupling with cubic nonlinearity

In the following the cubic spring element representing the automotive bushirsgd to couple two different
substructures A and B like it is shown in in Fig. 5. Each subsystem congstsptary of a linear 2DOF-



Oscillator. The parameters of the example are listed in Tab. 5.2.

A 1 X X3 X4 B
Ka ’LkA |_>kc |_>ks |_>ka

A mAWmeBWWW
1 it L I i B

{

Figure 5: 4 DOF system with cubic coupling element

Parameter Value Unit Parameter Value Unit
Ma 1 kg mg 1 kg

Ka 2 N/m ks 1 N/m
da 0.05 Ns/m &k 0.05 Ns/m
ke 0.1 N/m B 0.5 N/m?

Table 2: Parameters for 4DOF-Oscillator with cubic nonlinearity

The FEP for this example is calculated, taking into account the harmbhiesl — 5. Fig. 6 shows the
FEP for the coupled system and also the total Energy of the forcednaspath three different forcing
amplitudes. It can be observed the FRF evolves with increasing forcied) dang the backbone curve
represented by the FEP. Additionally some smaller side peaks in the FREjadlgpat low frequencies,
appear due to higher harmonics. It is also apparent that all modesfectedfby the nonlinear coupling
element. A closer look on the first three modes on the right of Fig. 6 reveaésa tongues in the FEP
which are caused by modal interactions. In this plot also the filtering pyopéthe HBM is shown by
comparing the FEP calculated with five harmonics to the fundamental harmgmicxapation. As the
single frequency sinusoidal approximation cannot represent NNM nsotigth multiple frequencies the
internal resonances cannot by captured. However, apart fromtéreal resonances the FEP is represented
quite exact even for this rough approximation. This demonstrates how d#ttils FEP can be neglected to
speed up the calculations. Any number of harmonics can be chosen fandirigible trade-off between level
of detail and computational efficiency of a numerical analysis. This is péatiy interesting in the case of a
high modal density and many modal interactions. Still it has to be kept in mindepanding on the ansatz
certain modal interactions cannot be captured.

Fig. 7 shows exemplary the evolution of the shape of the second NNM fqudimés P, to P for five
harmonics (blue) and for one harmonic (dotted purple). The shape todilgasntify the internal resonances
as1:3and1l:5resonances. It can also be seen that not only the &ffPogimated with a single harmonic
quite well in a broad energy range but also the shape of the NNM. Inargmtear the internal resonances
like at P; the approximation is not as accurate and for polRit&and Py not even a poor single harmonic
approximation can be found.
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Figure 6: Left: FEP for cubic coupling element with N=5 harmonics and tatatgy of forced response
(dotted lines) for excitation witlrexc = {3,9,18} N. Right: Comparison of FEP for the first three modes
with 1 (dotted purple) and 5 harmonics with zooms on internal resonances.
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Figure 7: Evolution of NNM shape of mode 2; comparison of fundamentahbaic approximation (dotted
purple) and approximation with 5 harmonics (blue)

6 Conclusion and Future Work

This paper presented a method for including nonlinearities in coupled seadiy combining substructure
formulations with the HBM. Using these methods along with a Continuation Methogbdssible to com-
pute FRFs as well as NNMs. The continuation method makes it possible to eaptitiple solutions in
FRFs and internal resonances in FEPs. For the calculations of the raorfiinees and the Jacobian ma-
trices, which are necessary for the solution algorithm, analytical formukatidrere used for the clearance
nonlinearity. Additionally, the analytical formulation was extended to polynonualinearities leading to
vector formulation for multinomial ansatz functions. The analytical calculationiges the advantage of
fast and exact calculations of nonlinear forces and Jacobian matEspscially the analytical computation
of the Jacobian matrix increases the robustness of the solution algorithmkedatyacompared to DFT based
methods and the computational efficiency compared to finite differences asethioe simple numerical ex-
amples illustrate the effect of coupling with nonlinear elements like energyndepee as well as some
properties of the proposed method. For instance the influence of the nofrtiemonics on the quality of
the approximation. In this context also the filtering characteristic of the HBBldeanonstrated.



In future the robustness and speed of the calculation method is on themhealicable to large scale FE
models but on the other hand also new applications are conceivablexdropke the use of NNM calcula-
tions for nonlinear model updating based on experimental data is within.réaxither future topic could
be the extension of the analytical formulations to other nonlinearities like airgspr
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