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Phase resonance testing is one method for the experimental extraction of nonlinear normal
modes. This paper proposes a novel method for nonlinear phase resonance testing. Firstly,
the issue of appropriate excitation is approached on the basis of excitation power consid-
erations. Therefore, power quantities known from nonlinear systems theory in electrical
engineering are transferred to nonlinear structural dynamics applications. A new power-
based nonlinear mode indicator function is derived, which is generally applicable, reliable
and easy to implement in experiments. Secondly, the tuning of the excitation phase is auto-
mated by the use of a Phase-Locked-Loop controller. This method provides a very user-
friendly and fast way for obtaining the backbone curve. Furthermore, the method allows
to exploit specific advantages of phase control such as the robustness for lightly damped
systems and the stabilization of unstable branches of the frequency response. The reduced
tuning time for the excitation makes the commonly used free-decay measurements for the
extraction of backbone curves unnecessary. Instead, steady-state measurements for every
point of the curve are obtained. In conjunction with the new mode indicator function, the
correlation of every measured point with the associated nonlinear normal mode of the
underlying conservative system can be evaluated. Moreover, it is shown that the analysis
of the excitation power helps to locate sources of inaccuracies in the force appropriation
process. The method is illustrated by a numerical example and its functionality in experi-
ments is demonstrated on a benchmark beam structure.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Experimental modal analysis (EMA) is the most common procedure for the identification of linear dynamic structures. It
provides a very user-friendly way of extracting comprehensive information about the dynamic properties of a system. How-
ever, its limitation to linear systems has become more and more substantial as the complexity of engineering structures
grows and the demand for light-weight and efficient structures increases. Many of these requirements cannot be met with-
out explicitly taking into account nonlinearity in the design process. This development poses new challenges for the numer-
ical and the experimental analysis in structural dynamics.

On the experimental side this generates a need for reliable and easy to use nonlinear system identification techniques.
Even though there are numerous techniques for nonlinear identification [1,2] many of them are limited to small scale
systems, weak nonlinearity or are difficult to relate to a clear physical meaning [3]. Oftentimes, it is also required to inves-
tigate the linear structure separately from the nonlinearities which requires additional experimental effort.
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A promising concept to overcome some of these drawbacks is the concept of nonlinear modes, which provides global
information about the system’s linear and nonlinear dynamics along with a clear physical meaning [4]. The concept was
introduced in the 1960s by Rosenberg as an extension of linear normal modes (LNM) to nonlinear systems [5]. A nonlinear
normal mode (NNM) according to Rosenberg’s definition is a synchronous, periodic motion of a conservative system. This
definition provides a clear theoretical framework and a direct relation to linear modes. An extension of the concept of non-
linear modes to non-conservative systems was provided by Shaw and Pierre in the 1990s [6] who showed that the nonlinear
modal motion can be regarded as a motion on an invariant manifold in the phase space. Despite the generality of this def-
inition and its valuable theoretical insights to nonlinear modal dynamics most practical applications still basically rely on
Rosenberg’s definition. This is partly due to the fact that there are powerful and reliable numerical algorithms like the shoot-
ing method [7] or the Harmonic Balance Method (HBM) [8] for the calculation of the periodic motions on a NNM branch.
Moreover, nonlinear modal interactions can be resolved in a straightforward way by extending Rosenberg’s definition to
non-necessarily synchronous periodic motions as it has been done by Kerschen [4].

Generally, the modes of the underlying undamped system provide valuable insight into the dynamics of the damped sys-
tem and the assessment of the undamped modes is therefore for linear systems common practice [9]. The first approach for
nonlinear EMA, presented by Peeters [10], extended phase resonance testing to nonlinear structures, and also essentially
relies on the definitions of Rosenberg and Kerschen for conservative nonlinear modes. More recent phase separation meth-
ods for nonlinear modal analysis [11] are based on the same framework. The efficient numerical algorithms for the calcula-
tion of NNMs furthermore provide a powerful tool for parameter estimation based on experimental data [12]. In this paper
NNMs are defined according to Rosenberg’s definition with the extension of Kerschen, such that internal resonances are gen-
erally taken into account, even though they are not the main focus of this work.

The phase resonance method, which was proposed by Peeters in 2010 [10] and subsequently proved its applicability in
several experimental studies [10,13,14], poses some practical difficulties. In this approach the excitation frequency of a
forced and damped system is varied manually until the NNMmotion of the underlying conservative system is approximately
isolated. This is a difficult and very time consuming procedure. Especially lightly damped systems, which are indeed the sys-
tems of interest in an NNM analysis, are very sensitive to changes of the excitation frequency near sharp resonance peaks of
the frequency response. The increments of the excitation frequency have therefore to be very small near resonance in order
to isolate an NNM motion. Furthermore, in the case of strong nonlinearities where a jump occurs in the frequency response
function (FRF) in the vicinity of the resonance even small perturbations lead to a premature jump and require the experi-
mentalist to start the elaborate tuning process all over again. Due to this extensive effort for the appropriation of a single
NNM typically the invariance property of the invariant manifold of the associated free and damped system is exploited to
extract the remaining NNMs of the same branch: Once the NNM is isolated by an appropriate force, the excitation is switched
off and it is assumed that the motion of the damped system decays on the invariant manifold of the free and damped system.
For light damping the motion of the free and damped system closely resembles the motion of the free and undamped system,
i.e. the NNM motion. Due to the dissipation the vibration energy decreases successively such that an approximate NNM
motion for different energy levels can be obtained. To extract the frequency-energy dependence of the NNM, a time fre-
quency analysis is carried out on the recorded free-decay data. This requires sophisticated signal processing such as wavelet
transform (WT) [15], Hilbert transform [16] or short time Fourier transform [17] and the degree of damping limits the res-
olution of the recorded backbone curve. The influence of transient effects is not clear for all systems, particularly when the
excitation system, e.g. the shaker, remains connected to the structure during free-decay measurement. Moreover, there
exists no method for the evaluation of the quality of the NNMs obtained by analyzing the free-decay data.

This paper presents a new approach for phase resonance testing to overcome the practical issues of the previous method.
Therefore, the objective of the paper is twofold: Firstly, criteria for the evaluation of the NNM quality are derived and sec-
ondly a user-friendly way of force appropriation is presented. For the evaluation of the NNM quality a series of steady-state
measurements for varying excitation levels is used instead of the free-decay measurements that are used in traditional phase
resonance testing. The time consuming tuning of the excitation frequency has therefore to be simplified in order to obtain
results within reasonable time. Thereto, a Phase-Locked-Loop (PLL) controller is implemented. The PLL is used for maintain-
ing the phase lag quadrature criterion for the fundamental harmonic of the excitation. The desired phase of the excitation is
reached automatically and very fast by the closed loop control. The frequency of excitation is inherently obtained by the
structure’s response. Thus, additional benefits of phase control like its robustness in lightly damped systems and the possi-
bility of stabilization of unstable branches can be exploited. By the use of steady-state measurements transient effects are
eliminated and the resolution of the measured backbone curve can be chosen arbitrarily. Furthermore, the steady-state tests
with a known excitation force make it possible to evaluate the quality of the NNM appropriation for every point on the back-
bone curve.

When an approximate fundamental harmonic forcing is used for the excitation of the structure it is not sufficient to solely
consider the phase of the fundamental harmonic as a quality indicator for the NNM isolation, as higher harmonics may be
present in the forced response as well as in the NNM motion. Therefore, Peeters proposed a response based modal purity
index (MPI) [10], which basically considers the phase of the fundamental and higher harmonics of the response. This MPI
is restricted to monophase motions and theoretically has to be evaluated for all points on the structure simultaneously,
which requires high experimental effort. Moreover, the result is highly dependent on the number of harmonics considered
[18]. In contrast, in this paper a novel, excitation power based mode indicator function (PBMIF) will be presented which is
simpler to implement experimentally, more reliable and general. The central quantity which has to be considered to calcu-
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late this PBMIF is the mechanical power of the excitation. In order to assess the characteristics of the excitation power in
context with a nonlinear phase resonance test, power quantities known from nonlinear electrical systems are transferred
to nonlinear mechanical systems. The power of the excitation can be easily obtained in experiments by measuring only
the force and the response at the excitation point. The new PBMIF is independent of the number of harmonics considered
and also valid for situations where there is a phase difference between different harmonics. In addition to the global indi-
cation of the NNM appropriation quality with the PBMIF, the analysis of the excitation power components also offers prac-
tical indications how to improve the force appropriation quality.

The paper is organized as follows. In Section 2 the methodology of phase resonance testing is briefly reviewed and a poin-
ter notation for the dynamic forces in the frequency domain is introduced. This pointer notation is then used in Section 3 to
explain the role of the excitation power in nonlinear modal testing and derive a power based mode indicator function. Sub-
sequently, in Section 4 the control concept of the PLL is briefly explained and the specific implementation used for nonlinear
phase resonance testing is discussed. The application of the PLL and the tuning of the PLL parameters for phase resonance
testing is illustrated on the basis of a numerical example in Section 5. In Section 6, the method is applied experimentally
to a benchmark beam structure featuring a cubic nonlinearity. The paper concludes with Section 7.

2. Phase resonance testing

The phase resonance method, in the linear as well as in the nonlinear case, aims at exciting a damped structure such
that the normal mode motion of the underlying conservative system is approximately obtained. In real life structures, of
course, there is always some source of damping present such that the excitation has to be chosen such that it compensates
for the damping without having any influence on the motion of the underlying undamped system. For linear structures
phase resonance testing is mostly used for an extraction of close or coupled modes or in cases where the modal param-
eters have to be estimated with the highest possible confidence [19,20]. In linear phase resonance tests the appropriate
force vector can often be calculated beforehand with high accuracy based on FRF matrices such that it can directly be
applied to the structure and the tuning effort during test is minimized. In the nonlinear case frequency-energy depen-
dence and the lack of the superposition principle makes this generally impossible, such that the appropriate excitation
has to be found during the test through successive tuning. Theoretically, the perfect excitation vector for nonlinear phase
resonance tests can be derived as follows.

The equation of motion of a mechanical system with conservative nonlinearity can be written as
M€xðtÞ þ D _xðtÞ þ KxðtÞ þ f nlðxðtÞÞ ¼ f excðtÞ; ð1Þ

where M 2 Rm�m denotes the mass matrix, D 2 Rm�m the viscous damping matrix, K 2 Rm�m the linear stiffness matrix and
f nlðxðtÞÞ 2 Rm�1 represents a vector of nonlinear, restoring forces. The vector of external excitation forces is represented by
f excðtÞ 2 Rm�1. If it is now desired to enforce a NNM motion of a system governed by Eq. (1), then the response of this forced
and damped system must also satisfy the differential equation of the underlying conservative system
M€xðtÞ þ KxðtÞ þ f nlðxðtÞÞ ¼ 0: ð2Þ

Comparing Eqs. (1) and (2), this can only be achieved if the forcing f excðtÞ in Eq. (1) balances out the damping for all times, i.e.
D _xðtÞ ¼ f excðtÞ; 8t: ð3Þ

Similarly to the approach of Peeters [10], it is now assumed that the motion of the system is periodic and can therefore be
described by a Fourier series
xðtÞ ¼
X1
n¼�1

xneinxt ; ð4Þ
where xn denotes the vector of complex Fourier coefficients of the nth harmonic. The assumption of a periodic response to a
periodic excitation must generally not hold for nonlinear systems. However, if we seek to measure the NNMmotion, which is
periodic per definition, then this does not present any limitation. The previous approach [10] was restricted to monophase
motions, which implies that not only all degrees of freedommove with the same phase but also all harmonics have the same
phase. This assumption limits the subsequent considerations to symmetric nonlinearity, where all harmonics have the same
phase, and also excludes phase differences, which may appear in the case of internal resonances [7]. In contrast, the complex
notation used in the following allows for such effects. Using Eq. (4) and its derivative with respect to time the damping forces
in Eq. (1) can be written as
f DðtÞ ¼ D
X1
n¼�1

inxxneinxt ¼ D
X1
n¼�1

vneinxt; ð5Þ
where vn ¼ inxxn. This means that all harmonics of the damping forces are rotated by p=2 in the complex plane compared to
the displacement. If the excitation forces in Eq. (3) are also assumed to be periodic, then they can be written in the form of a
Fourier series as
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f excðtÞ ¼
X1
n¼�1

f n;exceinxt : ð6Þ
Inserting Eqs. (5) and (6) in Eq. (3) yields the condition for the appropriate NNM excitation for every harmonic component
individually
f n;exc ¼ Dvn; 8n: ð7Þ
Taking into account the phase difference between the damping forces and the displacement as stated in Eq. (5) the phase
difference between the excitation and the displacement has to be p=2 for every DOF and every harmonic individually in
order to achieve perfect NNM isolation. This condition is in analogy to linear EMA often referred to as phase lag quadrature
criterion. Note that a perfect excitation force appropriation according to Eq. (7) does not only require quadrature for all har-
monics but also for all DOFs, which means that a distributed force vector would be necessary depending on the spatial dis-
tribution of the damping and the desired NNM shape.

Graphically, the dynamic equilibrium for each harmonic n can be represented as a family of pointers rotating with the
angular velocity nx in the complex plane as is shown in Fig. 1. For simplicity the pointer diagram is drawn for a cophasal
motion in the representative harmonic, i.e. the pointers for all DOFs pointers overlay each other in the complex plane.
The application of pointers as a graphical representation of a signal is more common in electrical engineering but was also
used e.g. in [21] in the context of multi-frequency excitation of linear mechanical systems. Using this representation it can be
seen that in order to achieve a NNM motion, which is depicted in Fig. 1a, the pointer of the excitation force must be shifted
by p=2 in phase with respect to the displacement and be equal in magnitude to the damping forces for each harmonic.

2.1. Modal purity index

The phase lag quadrature relation provides the basis for the nonlinear modal purity index (MPI) proposed by Peeters [22]
to assess the quality of the NNM isolation. The MPI is briefly introduced here, as it is used for comparison throughout the
paper. Under the assumption of monophase motion, all harmonics of the excitation can be shifted in phase such that they
are represented by a purely sinusoidal signal with the respective frequency. Subsequently the response is sought to have a
phase lag of p=2 with respect to the excitation which means that it should be purely cosine shaped. Using a complex notation
the modal purity index can be defined for each harmonic individually as
Dn ¼ R �xTn
� �

R xnf g
�xTnxn

; ð8Þ
where �xn denotes the complex conjugate of the complex Fourier coefficient xn. Accordingly, �xTn denotes the Hermitian xH
n . The

vector xn contains the nth harmonic component of all DOFs of the structure. Eq. (8) represents a response based indicator for
the modal purity. In analogy to linear mode indicator functions a value of unity indicates perfect appropriation of the respec-
tive harmonic. As a global indicator for the appropriation quality the arithmetic mean of all N harmonic indicators taken into
account is used, yielding the global indicator function
D ¼ 1
N

XN
n¼1

Dn: ð9Þ
In this indicator function the number of harmonics taken into account has to be chosen a priori, e.g. based on observations
during experimentation. The value of the MPI can be highly dependent on the number of harmonics considered in the cal-
culation as the phase of higher harmonics with low amplitudes is treated in the same way as harmonics with high ampli-
tudes, even though they might not have significant influence on the NNM motion [18]. In practice, often only the first
harmonic is taken into account for the assessment of the modal purity as this is usually the harmonic where the forcing
is applied [23]. This might also be misleading, because even for single harmonic forcing the higher harmonics can have sig-
nificant effects on the NNM motion, e.g. in the case of internal resonances. In the following a more robust and general non-
linear mode indicator function is derived.

3. Power quantities for nonlinear modal testing

For an excitation based assessment of the quality of the NNM isolation the central quantity is the mechanical power of the
excitation. The power quantities used in this context are largely based on analogies to power definitions in electrical engi-
neering. Specifically Budeanu’s definition of electrical powers in nonlinear systems [24] can be regarded as the foundation of
the following derivations. The method can also be regarded as an extension of the so-called reactive power method which
can be used in phase resonance testing of linear systems for the measurement of modal parameters and the derivation of the
phase lag quadrature criterion [20]. A reactive power related method was also used in [23] for the calculation of the forcing
which is necessary for the excitation of a NNM motion in a damped system. In this context it is referred to as Energy Balance
Method as all calculations are carried out on an energy level. However, in order to use the Energy Balance Method the sys-



Fig. 1. (a): Pointer diagram for the dynamic force equilibrium for a NNM motion of the conservative system response of a representative harmonic n. (b):
Pointer diagram for the dynamic force equilibrium for a NNM motion of the forced response of a representative harmonic n.
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tem’s matrices, specifically the damping matrix, has to be known a priori. This is obviously not the case if one aims on exper-
imentally identifying the characteristics of an unknown structure as it is done in the present study.

For nonlinear systems the power of the excitation can be related to the NNMs of the underlying conservative system and
can therefore also be used as a criterion for the quality of the NNM isolation. The instantaneous mechanical power is defined
as the inner product of a force with the velocity. Thus, for the excitation forces the instantaneous power reads as
pðtÞ ¼ f TexcðtÞ _xðtÞ: ð10Þ

The excitation force f excðtÞ is a force in the generalized coordinate space Rm and therefore a generalized force. The excitation
is applied on p physical points on the structure with scalar local forces kjðtÞ in generalized force directions wj 2 Rm for
j ¼ 1 . . . p, i.e.
f excðtÞ ¼
Xp

j¼1

wjkjðtÞ; ð11Þ
which shows how the individual excitation forces kjðtÞ contribute to the generalized force f excðtÞ. Then the excitation power
in Eq. (10) can be written as
pðtÞ ¼
Xp

j¼1

kjðtÞwT
j
_xðtÞ ¼

Xp

j¼1

kjðtÞnjðtÞ ¼
Xp

j¼1

pjðtÞ; ð12Þ
where pjðtÞ represents the instantaneous power of the excitation at the jth excitation point. For the nonlinear modal test it is
reasonable to assume that both the excitation forces and the velocity at the excitation points are periodic with some funda-
mental frequency x. Hence, these quantities can be represented by complex Fourier series yielding
pjðtÞ ¼
X1
n¼�1

kj;neinxt
X1
k¼�1

nj;keikxt ; ð13Þ
where n indexes the harmonic of the forces and k indexes the harmonic of the response. This product of Fourier series can be
split into a time-constant part for n ¼ �k and an oscillating part for n – � k. In analogy to the definitions in electrical engi-
neering the constant part is referred to as active power and can be calculated as
Pj ¼
X1
n¼�1

kj;n�nj;n ¼
X1
n¼�1

jkj;njj�nj;njeiðcj;n�#j;nÞ; ð14Þ
where cj;n and #j;n denote the phase angle of the nth harmonic of the force and velocity and the j:j operator the magnitude of
the respective complex coefficient. Using the relation between the complex conjugate coefficients
jkj;nj ¼ j�kj;nj and jnj;nj ¼ j�n
j;n
j; ð15Þ
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and the fact that the velocity oscillates around a mean value of zero (see Eq. (5)), i.e. jnj;0j ¼ 0 the sum can be rearranged
yielding
1 For
Pj ¼
X1
n¼1

jkj;njjnj;njðeiðcj;n�#j;nÞ þ eið�cj;nþ#j;nÞÞ ¼
X1
n¼1

jkj;njjnj;njðe�iuj;n þ eiuj;nÞ; ð16Þ
where uj;n ¼ cj;n � #j;n. This sum can be written in a trigonometric form using Euler’s formula yielding
Pj ¼
X1
n¼1

2jkj;njjnj;nj cosðuj;nÞ: ð17Þ
For convenience, this sum is simplified by the introduction of root mean square values of the nth harmonic component of the
force Fj;n ¼

ffiffiffi
2

p
jkj;nj and the velocity Vj;n ¼

ffiffiffi
2

p
jnj;njat the jth excitation point to
Pj ¼
X1
n¼1

Fj;nVj;n cosðuj;nÞ: ð18Þ
The active power can be interpreted as the mean value of the power brought into the system by the excitation forces over
one period, which will be explained in more detail in Section 3.1. Following Budeanu’s [24] definition, the reactive power can
be introduced as
Qj ¼
X1
n¼1

Fj;nVj;n sinðuj;nÞ: ð19Þ
Note that this definition of reactive power is a based on a rigorous extension of linear theory in the case of harmonic exci-
tation as we will show in Section 3.4 and is not related to a measurable physical quantity. The apparent power can be defined
as the product of the total root mean square values of the force FRMS and the velocity VRMS, which can be calculated based on
the root mean square values of the individual harmonic components as
Sj ¼ FRMSVRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼1

F2
j;n

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
k¼1

V2
j;k

s
: ð20Þ
This definition represents a straightforward extension of linear theory but is also valid without any limitations in nonlinear
situations. It is important to notice that the apparent power includes all components of Eq. (13) in an exact way, whereas the
active and reactive power only contain parts of the sums with n ¼ �k. Therefore, unlike for linear systems with single har-
monic excitation, the apparent power cannot be calculated solely based on the active and reactive power. In other words, the
power triangular equation well known from linear electrical systems theory turns into an inequality
S2j P P2
j þ Q2

j : ð21Þ
This inequality can be transformed into the power triangle for the higher harmonic case by the introduction of the distortion
power Dj which contains all parts of the sums in Eq. (13) which are not covered by Eq. (14) or Eq. (19) yielding
Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
j þ Q2

j þ D2
j

q
: ð22Þ
This power triangle relation is visualized in Fig. 2 for an example case with three harmonic components. Assume that the
system is excited at the fundamental and second harmonic with some arbitrary force. Then the power triangle for the first
and second harmonic can be drawn, as it is done in Fig. 2, taking into account the active powers Pj;1 and Pj;2 as well as the
reactive powers Qj;1 and Qj;2. Furthermore, there may be a power transfer from one harmonic to another, visualized by the1

green, dotted vectors Dj;1 and Dj;2. Note that there is also the possibility of a power transfer to a harmonic at which no excitation
is applied, in this case the third harmonic. Clearly, in contrast to linear systems with single harmonic excitation, the total appar-
ent power Sj is not equal to the Pythagorean sum of the active and reactive power. Additionally, also the power transfer to har-
monics which are not excited is included in the apparent power Sj. It becomes obvious that for nonlinear systems the apparent
power is a central quantity for the analysis of the excitation forces. The quality of the NNM isolation can be evaluated by relating
the active power to the apparent power yielding a power based indicator
Kj :¼ �Pj

Sj
2 �1;1½ �; ð23Þ
which will be explained in more detail in the subsequent sections. Therefore, first of all, it is necessary to relate the derived
power quantities for the excitation to the dynamic forces which are relevant in phase resonance testing to explain the rel-
evance of the excitation power considerations.
interpretation of color in ‘Figs. 2 and 12’, the reader is referred to the web version of this article.



Fig. 2. Power triangle relation for nonlinear mechanical example system.
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3.1. Mechanical interpretation of power quantities

The pointer representation introduced in Fig. 1 can be used to associate the previously derived mathematical power quan-
tities to the dynamic force equilibrium introduced in Section 2. For the linear case some of these considerations, particularly
for the active and reactive power of single harmonic excitation forces, can be found in [20]. In the nonlinear case a gener-
alization is necessary.

For a representative DOF i all dynamic forces are depicted in individual pointer diagrams along with a pointer of the
velocity of the DOF v i;n for a representative harmonic n. Additionally, the complex conjugate pointers for the representative
harmonic are introduced, as these play a role for the derivation of active and reactive power. The phase angle between the
excitation force and the velocity at the representative DOF is denoted by ui;n. The excitation forces at the DOF i are repre-

sented in diagram ðaÞ by f exci;n , the inertia forces in diagram ðbÞ by fMi;n, the conservative restoring forces including linear

and nonlinear contributions of the respective harmonic in diagram ðcÞ by f Ci;n and the damping forces in diagram ðdÞ by f Di;n.
The power of each of the forces is the product of the pointers of the velocity and the respective force which can be rep-

resented as a pair of two complex conjugate pointers. Hence, a multiplication of these pointers (see Eq. (13)) results in overall
two pairs of complex conjugate power components for each harmonic, two of which have a constant phase angle and two
rotate with twice the angular velocity of the original pointers. All pointers must compensate one another for all DOFs and all
harmonics in the case of a dynamic equilibrium i.e. a steady-state motion. Recall that for the NNM motion the length of the
pointers of the excitation force and the damping force is zero, such that the pointers of the power of the inertia forces and the
conservative forces balance out. Hence, to ensure a NNM motion of the non-autonomous system the power of the excitation
force must balance out the power of the damping forces. This holds for the rotating pointers as well as the pointers with
constant phase angle. The real part of the pointers with constant phase is associated with the active power as defined in
Eq. (18) and the imaginary part to the reactive power as defined in Eq. (19). Thus, the conservative and inertia forces just
contribute to the reactive power, whereas the damping forces just contribute to the active power component of this har-
monic. Note that this is the case independent of the phase angle ui;n. The only power pointer which can have a contribution
to the active and reactive power, dependent on the angle ui;n is the pointer of the excitation power. If the excitation power
has a component contributing to the reactive power, then it would clearly affect the dynamic equilibrium between the con-
servative restoring forces and the inertia forces i.e. the NNM motion. Hence, the phase angle between the excitation force
and the velocity must be adjusted in a way that the reactive power of the excitation force disappears. Additionally, it must
be enforced that the length of the pointer of the excitation power must be the same as the length of the pointer of the power
of the damping forces but with an opposite sign to ensure the dynamic equilibrium for this excitation point. Note that if this
is the case, i.e. the angle ui;n ¼ p, then also the oscillating components of the pointer diagram compensate one another.

For a perfect appropriation of the NNM, the dynamic equilibrium condition must hold for all harmonics and for allm gen-
eralized coordinates. This means that for damping forces which are spatially distributed over the whole structure a spatially
distributed excitation force would be necessary for perfect NNM isolation. Furthermore, in contrast to linear systems, all har-
monics have to be considered. In experiments, it is impossible to realize such an excitation with reasonable effort. However,
the derived power quantities can still be used to assess the quality of the NNM isolation, especially in the case of an imper-
fect appropriation. For points and harmonics at which an excitation is applied, the phase of the excitation can be evaluated
by inspection of the reactive power. If additionally the pointers of the excitation forces and damping forces are equal in mag-
nitude, then no power is transferred to different points or different harmonics and the distortion power also disappears. For
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points where no excitation is applied, the active power of the excitation is zero, such that the dissipated power at these
points must theoretically also be zero in the case of an NNM motion. If this is not the case, additional power has to be intro-
duced at the excitation points to ensure power balance for the total structure. In this case the dynamic equilibrium at the
excitation points would be affected and the distortion or reactive power would not be zero. This means that by regarding
the excitation points, the quality of the NNM appropriation can be evaluated for the whole structure.

3.2. Power based mode indicator function

As already stated for an ideal compensation of the damping without any influence on the NNM motion the mean value of
the power of the excitation has to be located on the real axis for all harmonics (see Fig. 3a and d). In this case the reactive
power of the excitation vanishes such that
Qj ¼
X1
n¼1

Fj;nVj;n sinðuj;nÞ ¼ 0: ð24Þ
If additionally the magnitudes of the pointers for the excitation and the damping powers are equal for all harmonics and
DOFs individually there is no power transferred from one harmonic to another or to different points on the structure, then
the total power brought into the system over one period is equal to the active power observed at the excitation point:
Sj ¼ jPjj: ð25Þ

This also means that according to the nonlinear power triangle relation (see Eq. (22)) the distortion power disappears:
Dj ¼ 0: ð26Þ

Note that the active power (see Eq. (18)) has a sign depending on the angles uj;n, whereas the apparent power is positive per
definition (see Eq. (22)). The sign of the active power is negative in the vicinity of a mode:
uj;n � p 8n ) cosðuj;nÞ < 0: ð27Þ

By relating the apparent power to the active power, the quality of the excitation can be assessed. Hence, the power based
mode indicator function (PBMIF) Kj for the jth excitation point is defined as
Kj :¼ �Pj

Sj
2 �1;1½ �; ð28Þ
The negative sign is chosen for the sake of consistence to linear MIFs and the MPI which usually gives results of 1 in the case
of perfect NNM isolation. If the PBMIF is close to unity, then the excitation is appropriate for the extraction of an NNM. This
provides an easy to use indicator, as only the velocity and the force at the excitation point have to be measured, which can be
implemented little experimental effort. The calculation of the corresponding power quantities and the PBMIF is
straightforward.

3.3. Interpretation of the PBMIF in the time domain

In the previous sections the power components and the PBMIF are derived in the frequency domain. This is the most com-
mon way to derive power quantities in electrical engineering and it is consistent with the previous works regarding linear
and nonlinear phase resonance testing in structural dynamics. However, it should be noted, that the derivation of the PBMIF
is also possible in the time domain, where the active power Pj at excitation point j can be calculated as
Pj :¼ 1
T

Z T

0
kjðtÞnjðtÞdt: ð29Þ
This quantity represents the mean value of the power input to the system over one period. The apparent power Sj is defined
in the time domain as
Sj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

Z T

0
k2j ðtÞdt

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

Z T

0
n2j ðtÞdt

s
; ð30Þ
which can be interpreted as the norm of the function of the excitation force multiplied with the norm of the function of the
velocity at the excitation point. Then the PBMIF can be interpreted based on the Cauchy-Schwarz inequality:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ T

0
k2j ðtÞdt

Z T

0
n2j ðtÞdt

s
P

Z T

0
kjðtÞnjðtÞdt

����
���� or Sj P jPjj: ð31Þ
If the active power Pj is equal in magnitude to the apparent power Sj, then the equality in Eq. (31) holds and the PBMIF
defined in Eq. (28) is equal to unity. This is the case if the excitation forces and the damping forces have the same functional
form and are related by a time constant scaling factor. If the functions are expanded by means of a Fourier series, then the



Fig. 3. (a): Pointer diagram of excitation forces. (b): Pointer diagram of inertia forces. (c): Pointer diagram of conservative restoring forces. (d): Pointer
diagram of damping forces.
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frequency domain formulation follows from Parseval’s theorem. Up to this point both derivations are fully equivalent. How-
ever, the treatment of the excitation power properties in the frequency domain additionally provides a definition for the
reactive and distortion power, which cannot be obtained in a straightforward way by the derivation in the time domain.
3.4. Relation to linear systems

For linear modal analysis the mechanical power was used previously for the derivation of the phase lag quadrature cri-
terion [20]. In this context, the reactive power is used as a measure for the mode appropriation. Furthermore, modal prop-
erties like the modal mass and damping can be estimated directly based on the stationary reactive power criterion. This
methodology cannot be directly transferred to nonlinear systems, essentially because the reactive power is a purely math-
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ematical quantity with limited physical meaning in nonlinear systems. For illustration, consider the single harmonic case
where the mechanical power Eq. (13) can be transferred into the form
pjðtÞ ¼ Fj;1Vj;1 cosðuj;1Þ þ Fj;1Vj;1 cosðuj;1Þ cosð2xtÞ þ Fj;1Vj;1 sinðuj;1Þ sinð2xtÞ: ð32Þ

Using the definitions of the active and reactive powers (see Eqs. (14) and (19)) the instantaneous power is fully represented
by these to two quantities:
pjðtÞ ¼ Pj þ Pj cosð2xtÞ þ Qj sinð2xtÞ: ð33Þ

Owing to this it is sufficient to consider the reactive power to investigate the effectiveness of the excitation. Additionally, the
apparent power Sj can be calculated as the Pythagorean sum of the reactive and active power yielding
Sj ¼ Fj;1Vj;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
j þ Q2

j

q
: ð34Þ
Hence, the apparent power is fully described by the active and the reactive power and a disappearing reactive power
implies equality of apparent and active power. However, this relationship does not hold in the multi-harmonic case, as
it was stated in Eq. (22) and visualized in Fig. 2. In this case the reactive power has limited meaning, because it does
not resemble the effect of power transfer between different harmonics. Theoretically, the reactive power can vanish com-
pletely but the mode is still not isolated correctly. In Fig. 2 the pointer of the apparent power S would then lie in the P-D
plane but generally not on the P-axis. This would be the case, if the phase lag between excitation and response for all
harmonics was p=2 at the excitation point but the apparent power was not equal to the active power due to power trans-
fers. Hence, it is crucial to regard the relation of apparent and active power in nonlinear systems instead of the reactive
power.

3.5. Remarks on Budeanu’s power definition

It should be noted that the limited physical meaning of the reactive power for nonlinear systems is also the reason
why there is still a vivid discussion in electrical engineering about the definition of the reactive power and their appli-
cability. There are different definitions of reactive power, whereas the definition of active and apparent power are more
or less consensus [25]. Indeed, Budeanu’s definition is controversial for applications in electrical engineering like power
measurements [26]. Still, the choice of Budeanu’s definition as a basis for the application in nonlinear modal testing is
reasonable mainly due to two reasons. Firstly, it is a direct extension of the linear systems theory which is familiar to
most practitioners. Moreover, the linear theory was applied to linear mechanical systems before and the new method for
nonlinear modal analysis is fully consistent with this approach. Secondly, although the concepts of reactive and distor-
tion power are purely mathematical constructs in Budeanu’s framework, they can be calculated based on experimental
data and related to physical effects in the context of nonlinear modal analysis. High reactive power indicates a poor com-
pliance of the phase criterion which can even be localized to a certain harmonic. High distortion power shows a strong
influence of power transfers to higher harmonics and other DOFs, which can be reduced by improving the appropriation
quality of higher harmonics or the spatial distribution of the forcing. In conclusion, Budeanu’s definition provides a clear
theoretical framework as well as practical guidelines for the experimentalist in the context of experimental nonlinear
modal testing.

3.6. Global indicator for multi-point excitation

The extension of the PBMIF concept to multi-point excitation, e.g. in the case of multi-shaker excitation, is straightfor-
ward. The criteria derived for a single excitation point j must be satisfied for all excitation points individually in order to
obtain a NNM motion. Hence, the reactive power for all excitation points must disappear individually:
Qj ¼
X1
n¼1

Fj;nVj;n sinðuj;nÞ ¼ 0; 8j: ð35Þ
This means that the phase criterion is fulfilled for all excitation points and all harmonics. Furthermore, the distortion power
Dj must also disappear in the case of a perfect NNM appropriation yielding:
Sj ¼ jPjj; 8j: ð36Þ

In this case there is no power transferred from one excitation point to another excitation point, because the dynamic equi-
librium holds for all excitation points individually. As a result the PBMIF for all p excitation points must be equal to unity in
the case of perfect NNM isolation. Therefore, a global indicator for the NNM appropriation in the case of multi-point exci-
tation can be defined as
K :¼ 1
p

Xp

j¼1

Kj 2 �1;1½ �; ð37Þ
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which is unity in the case of perfect NNM appropriation. This choice for a global indicator in the case of muli-point excitation
is motivated by the fact that the power balance must hold for all points individually for perfect NNM appropriation, as
explained in Section 3.1.

4. Phase-locked-loop for backbone curve tracking

For phase resonance testing the phase of the excitation has to be adjusted with respect to the response. In the first
approaches of nonlinear phase resonance testing [10] the phase is adjusted manually by changing the excitation frequency
of the fundamental harmonic of the excitation, which is a challenging procedure. Recently, Renson proposed to use control
based continuation methods [27] to make the tuning process more robust. In both cases, only the phase of the fundamental
harmonic component is considered. This implies the influence of the phase and amplitude of the higher harmonics is
assumed to be negligible for the NNM isolation. This assumption was found to provide reasonably accurate results in exper-
imental tests and is also the basis for the following control algorithm. In this paper, a PLL controller is used for a direct and
automated tuning of the phase of the fundamental harmonic force. Compared to the previous methods this controller pro-
vides the advantages of being robust and very fast. The PLL controller is a concept well known in radio technology and elec-
trical engineering. The PLL is a nonlinear oscillator, which generates a harmonic signal with a frequency which is tuned based
on the phase difference with respect to a reference signal. Generally, the PLL consists of three blocks, namely the phase
detector, the loop filter and the voltage controlled oscillator (VCO). The structure of the PLL is shown in Fig. 4. There are many
different implementations of the PLL for different applications and a detailed review of these is beyond the scope of this
paper. The interested reader is referred to the numerous references about the design of PLLs [28–30]. The implementation
used for nonlinear modal testing is briefly sketched in the following and the tuning of the controller for this purpose is
addressed on the basis of a numerical example in the next section.

The first block of the PLL is the phase detector which extracts the phase of the output of the system with respect to the
reference signal. In the following a mixing phase detector is used which is comparing a reference signal rðtÞ with the output
of the PLL uðtÞ by a multiplication yielding
wðtÞ ¼ rðtÞuðtÞ: ð38Þ

For the nonlinear modal analysis the displacement xðtÞ, velocity _xðtÞ or acceleration €xðtÞ can be used as a reference signal
depending on which quantity is measured. However, as was shown by Fan [31] it is advantageous to modify the signal of,
for instance the displacement, by replacing it with its sign
rðtÞ ¼ signðxðtÞÞ ¼ �1 xðtÞ < 0
1 xðtÞ P 0:

�
ð39Þ
This modification can be regarded as a sort of amplitude normalization of the reference signal. On the one hand this is
advantageous when the reference signal is small in amplitude, e.g. in regions which are far from resonance. Then the nor-
malization leads to an amplification which increases the speed of the PLL. On the other hand the stability criteria for the
controller become independent of the amplitude [31]. Both properties are advantageous in the context of nonlinear modal
testing, as the system is a priori unknown, such that the location of resonances and amplitude values at specific frequen-
cies cannot be estimated beforehand. The multiplication of the reference with the PLL output signal yields an output of the
phase detector which consists of a constant component, which is a function of the phase difference of the input signals he,
and an oscillating component. The output of the phase detector is passed to the second part of the PLL, the loop filter,
consisting of a low pass filter and a proportional-integral (PI) controller. The low pass filter is described by the differential
equation
1
xl

_eþ e ¼ wðtÞ; ð40Þ
with the cutoff frequency xl. The idea of the low pass filter is to suppress all oscillating terms of the output of the phase
detector in Eq. (38). Thus, the output of the low pass filter eðtÞ is solely a function of the phase error he. The signal eðtÞ is
then used as a control input of a PI-controller that can be described by the state space model
_z ¼ e

y ¼ KP eþ 1
Ti
z

� �
:

ð41Þ
The parameters KP and Ti are the tuning parameters of the proportional and integral part of the controller. The PI-controller
provides the control signal for the third part of the PLL, the Voltage-Controlled-Oscillator (VCO), that generates a harmonic
signal for the excitation of the structure. The VCO uses the fact that the frequency is the derivative of the phase. Hence, the
instantaneous phase can be obtained by an integrator
hv ¼
Z t

0
xc þ yðsÞds; ð42Þ



Fig. 4. Schematic structure of PLL controller.
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with the center frequency xc . The center frequency xc is the frequency with which the VCO oscillates in an open loop state.
The output of the VCO is generated by inserting the instantaneous phase into a cosine function:
uðtÞ ¼ cosðhvÞ: ð43Þ

The cosine function is used to shift the phase by p=2 compared to the reference signal, i.e. the displacement. A sine function
would yield a synchronous oscillation of the output with the reference signal. The signal uðtÞ is firstly fed back into the phase

detector and secondly multiplied by the excitation amplitude f̂ exc yielding the excitation force
f excðtÞ ¼ f̂ excuðtÞ; ð44Þ

which is applied to the structure. Once the phase difference is successively minimized by the controller, the PLL is said to be
in a ‘‘locked state”. The practical application of the PLL for nonlinear modal testing and the tuning of the PLL parameters is
addressed by a numerical example in the next section.

4.1. Remarks on phase-control

In most structural dynamics applications frequency-controlled measurements are used to experimentally investigate the
system of interest, i.e. the frequency of excitation is preset by the external source of excitation and the response is measured.
By the use of the PLL the phase of the excitation is controlled and the frequency of excitation is the result of the response of
the system, which is used as feedback in the control circuit. The vibratory system together with the controller can thus be
regarded as an autoresonant system. This type of excitation provides several advantages for testing near resonance, which
are investigated by Sokolov [32] through detailed analytical studies of academic examples. The most relevant findings of
these analytical studies for nonlinear modal analysis can be explained based on the amplitude-phase relation of the system.
In contrast to the FRF (see Fig. 6a), which is classically considered in structural dynamics, the phase-amplitude relation (see
Fig. 6b) is single-valued, at least locally around a resonance. This means that if it is possible to control the phase lag of the
response with respect to the excitation to a certain value, then a unique point of the response curve is obtained. Moreover,
the phase amplitude relation is also bell-shaped with a flat region in the vicinity of the resonance, whereas especially for
lightly damped systems the FRF has a sharp peak at resonance. As a consequence perturbations of the phase only have small
influence on the response amplitude, whereas perturbations of the frequency have strong influence and can even lead to
jumps in amplitude. The single-valuedness and flatness of the phase amplitude relation has the following advantages:

� All points of the FRF can be measured if the phase is controlled successfully. Even unstable periodic solutions can be sta-
bilized and measured in experiments using phase-control [33].

� For weak damping, phase-control simplifies maintaining the resonant vibration. Small phase errors have minor influence
on the measured amplitude response.

Sokolov also shows that the flatness and single-valuedness of the phase-amplitude relation is largely independent of most
relevant system parameters like the damping coefficients, forcing amplitudes and even nonlinear restoring forces. This
makes phase-controlled or autoresonant systems particularly interesting for maintaining resonant vibrations of weakly
damped systems, which is, for instance, exploited in frequency modulated atomic force microscopy [34] or ultrasonically
assisted machining processes [35]. For the application of nonlinear EMA, where unknown, weakly damped, nonlinear sys-
tems are the subject of interest, these properties are particularly beneficial.

5. Numerical example for PLL method

This section considers a numerical example to illustrate the methodology of phase resonance testing with the PLL method
and assess the quality of the results. The objective of this numerical study is twofold: first, the tuning of the PLL controller is
investigated, such that the robustness of the method can be illustrated. Second, the actual NNM cannot be obtained in an
experiment such that it is difficult to evaluate the quality of the results on this basis. For this reason the results of the
PLL method are compared to the results of numerical continuation of the NNM. The numerical test structure consists of
the FE-model of a beam which is fixed on one end and supported by a nonlinear spring, with linear and cubic spring stiffness,
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on the other end. A schematic sketch of the structure is shown in Fig. 5. The FE-model consists of seven Euler–Bernoulli beam
elements and features in total 21 DOFs. For the forced response and the PLL test the structure is excited at the second node by
a harmonic function. At the tip of the beam, similarly to the following experimental study, a constant preload can be applied.
The linearized system matrices M and K including the static preload are calculated by a nonlinear static FE-calculation. The
preload is chosen such that the structure can be tested in the highly nonlinear range without the influence of internal res-
onances. The damping matrix is assumed to be proportional of the form
D ¼ a1Mþ a2K; ð45Þ
where a1 ¼ 1 and a2 ¼ 10�5 are chosen such that the damping is weak and resembles the ones observed in similar experi-
ments. The parameters of the numerical model are listed in Table 1.

The procedure of phase resonance testing with the PLL method is illustrated in Fig. 6a. The test is started at a low exci-
tation level at a specific center frequency of the VCO f c ¼ xc=2p. The PLL automatically adjusts the forcing frequency based
on the phase difference to the first harmonic of the response, which is referred to as ‘‘PLL tuning”. Once the phase difference
is p=2, i.e. a mode is reached, the PLL is in the locked state, generating a harmonic signal with a specific frequency f. The
response of the system is then assumed to be approximately on the backbone curve and the data is recorded. Once this is
done, the force level is incrementally increased. The higher forcing level leads to a higher energy input into the system
and in the case of a nonlinear structure the NNM frequency may depend on the energy. Thus, the excitation frequency
has to be adapted to be able to appropriately excite the NNM, i.e. to meet the phase criterion. This is automatically done
by the PLL as the controller is always tuning the frequency such that the phase lag of the the first harmonic is p=2. As soon
as the locked state of the PLL is reached, a new data point on the backbone curve can be recorded. This procedure is repeated
until a desired forcing level is reached.

As derived in Section 4, there a several parameters in the PLL controller which need to be tuned. This tuning has to be
done in a heuristic way, which makes it important to show that the procedure is generally robust in a wide parameter range.
Especially for the use in nonlinear system identification, it is desired to be able to perform measurements with minimal pre-
vious knowledge of the structure. First of all, the stability bounds of the controller can be determined, e.g. using Lyapunov
methods [28], yielding the following restrictions for the parameters:
KP;xl;
1
Ti

> 0 and xl >
1
Ti
: ð46Þ
The cutoff frequency of the low pass filterxl is usually chosen to be much lower than the expected NNM frequency, because
one aims at suppressing all oscillating components of the output of the phase detector. In all numerical and experimental
studies within this paper the frequency is set toxl ¼ 2p rad=s, which is approximately 2–3% of the lowest natural frequency
of the beam. The tuning parameter of the integral part of the controller has to be positive but smaller than xl and its influ-
ence on the performance of the PLL was found to be small such that a detailed numerical study of this parameter is omitted.
In the numerical and experimental studies this parameter was set to Ti ¼ 2=xl. Subsequently some simulation results are
shown to illustrate the influence of the remaining tuning parameters KP and xc . Firstly, the proportional factor KP is inves-
tigated by the simulation of a specific test case with varying values for KP . The test case consists of two measured points on

the backbone curve: One point for an excitation level of f̂ exc ¼ 0:5 N which yields a response which is approximately in the

linear range of the first mode. Then the excitation is stepped up to f̂ exc ¼ 2 N which is already in the nonlinear range. The
tuning time which is required for the measurement of this test case is shown in Fig. 7 for different tuning factors KP . It
can be observed, that the PLL test is successful for the whole parameter range and tuning time decreases with increasing
value of KP . However, in a parameter range from KP > 50 the tuning time stabilizes around 10 s for this test case. The factor
KP amplifies the output of the loop filter. If its output is biased by noise, then a high value of KP may increase the sensitivity
of the PLL to noise. In the following experimental study it was observed that the measurement noise did not significantly
affect the functionality of the PLL. Another factor influencing the reaction time of the PLL is the cutoff frequency of the loop
filter xl. The cutoff frequency is held constant for the comparability of the performance of the PLL for different values of KP .
However, it should be noted that the total tuning time is influenced by both parameters. The numerical study illustrates that
the performance of the PLL is not very sensitive to the tuning of the PI-controller, which is important if one aims on inves-
tigating unknown structures. Similar behavior was also observed in different numerical as well as experimental studies and
also reported in [33] for a slightly different implementation of the PLL. A second numerical study is carried out to illustrate
the influence of the center frequency. Therefore, the structure was tested at a low excitation level of 0:5 N as it is usually
done for finding the first point of the backbone curve. The center frequency of the PLL is varied from 5 Hz to 155 Hz.
Fig. 7 shows the FRF of the beam in this frequency range and the response for the investigated center frequencies. After
the PLL reaches a locked state, the respective point on the FRF is calculated again. It can be observed that the PLL is able
to find the first mode for all starting points marked in blue and the second mode for the starting points marked in red. It
can be clearly seen that independently of the center frequency a mode is found by the controller. Whether the PLL locks
to the first or second resonance, solely depends on the location of the anti-resonance which separates the two modes in
the FRF. This shows that generally no a priori knowledge about the eigenfrequencies of a structure is necessary to carry
out the nonlinear modal test with the PLL method.



Fig. 5. FE-model of the numerical beam structure.
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After these preliminary considerations about the tuning of the PLL controller, the numerical study assesses the capability
of the controller to keep track of the backbone curve, the speed and the accuracy of the method. Therefore, the complete
backbone curve is tracked for the example system for forcing values from 0:5 N to 8 N. The excitation level is incremented
in steps of 0:25 N yielding in total 31 measured points. The total time required for this test, including tuning and measure-
ment times, is 250 s. The results of the PLL test are transformed into the frequency domain with a Fast Fourier Transform
(FFT) and compared to the simulated backbone curve and FRF in the three dimensional frequency-phase-amplitude space
in Fig. 8. To avoid leakage effects in the FFT, an integer multiple of the period length of the excitation signal can be chosen
for the analysis here and in the following evaluations of the PBMIF. The same approach can be used for the experimental
evaluation as the excitation frequency is a known output of the PLL. The backbone curve was calculated by solving Eq.
(2) and the FRF by solving Eq. (1). Both calculations were carried using the harmonic balance method taking into account
nine harmonics and the first harmonic component is displayed. For the details of the numerical method see [36]. It can
be seen that the results for the first harmonic of the PLL method perfectly agree with the first-order simulated backbone
curve and FRF results. Apparently, the NNM seems to be isolated very well even with a single harmonic, single point force.
However, to be able to judge the quality of the NNM isolation, also the level and the phase of the higher harmonics has to be
evaluated. Therefore, the new PBMIF K is calculated for each measured point as well as the MPI proposed by Peeters [10]. The
MPI can be calculated in this case, because a monophase motion of the NNM is expected due to symmetric nonlinearity and
the absence of internal resonances. As already discussed in Section 2, the number of harmonics considered in the MPI has to
be chosen beforehand. In this test firstly only the fundamental harmonic MPI is considered, denoted by D1. Secondly, the MPI
D10 is calculated, taking into account all harmonics which reach a relative amplitude of 10% of the fundamental harmonic. In
contrast, no preliminary assumptions have to be made for the PBMIF made, as all frequencies are naturally taken into
account. The results in Fig. 8 show the comparison of these three measures. The value of D1 indicates a perfect NNM isolation,
which means that all DOFs vibrate in phase for the first harmonic and with a phase lag of p=2 compared to the excitation.
However, this is still inconclusive for the assessment of the influence of higher harmonics. If one takes into account higher
harmonics and calculates D10, then there is a large variance from one measured point to another, which is basically due to
two reasons. First, the phase of the higher harmonics is not controlled and thus solely depends on the phase response of the
system. Second, the D10 is calculated as a arithmetic mean of MPIs for each individual harmonic. Thus, small amplitudes of
higher harmonics are weighted in the same way as the fundamental harmonic. Clearly, neither of these measures is conclu-
sive to assess the quality of the NNM appropriation. In contrast, if one regards the results for the PBMIF, then the picture
becomes clear. For low level excitation K is close to unity, which is reasonable as higher harmonics do not play a role in
the almost linear range and the first harmonic results are very close to the backbone curve. For higher excitation levels
the value of K decreases to approximately 0:95, which still indicates a very good NNM approximation. The small deviation
from unity in this case is caused by the distortion power component of Eq. (22) as for single harmonic forcing neither the
active power P nor the reactive power Q have higher harmonic content. Furthermore the reactive power of the fundamental
harmonic Q1 is also close to zero because the phase angle of this harmonic is close to p=2. This also makes the need for the
evaluation of the apparent power S clear if one seeks to evaluate the quality of the NNM isolation.
6. Experimental results

To demonstrate the applicability of the proposed method an experimental study is carried out. The subject of this study is
a clamped steel beam with a thin steel beam at its tip, which is also clamped. This beam structure is similar to the so called
Table 1
Parameters of numerical beam structure.

Parameter Value Unit

E 185 GPa
q 7830 kg=m3

b 8� 109 N=m3

kt 1000 N=m
f pre 500 N



Fig. 6. (a): Demonstration of PLL method in the frequency-amplitude domain. (b): Demonstration of PLL method in the phase-amplitude domain.

Fig. 7. (a): Tuning time for PLL test case depending on the parameter KP . (b): FRF of beam structure and different starting points (⁄) and end points ðIÞ for
varying center frequencies of the VCO (blue, locked to first mode, red locked to second mode). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. (a): First harmonic of numerical PLL test (o), simulated backbone curve (- -) and forced response in frequency-phase-amplitude space with
projections onto FRF and phase-response plane (black: stable, red: unstable). (b): Fundamental harmonic MPI D1, higher harmonic MPI D10 and PBMIF K.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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‘‘ECL beam” which was proposed by Thouverez [37] in 2003 and subsequently used in various configurations as a benchmark
for nonlinear system identification by numerous researchers [38,10,39]. A photo of the test rig used in this paper is shown in
Fig. 9.

The clamping mechanism of the small beam is moveable to adjust the pretension f pre of the specimen. The pretension can
be measured using a full bridge circuit of strain gauges applied to the thick beam. This mechanism is primarily used to avoid
buckling phenomena (e.g. due to thermal expansion of the setup). The structure is excited by an electrodynamic shaker and
the response is measured using in total seven accelerometers. The force at the excitation point f excðtÞ is measured by an
impedance head. The PLL controller and all data acquisition functions are implemented on a DSpace 1103 rapid prototyping
system. The control is based on the force f excðtÞ and the reference acceleration €xrefðtÞmeasured at the excitation point and the
output of the DSpace system is amplified and used as input voltage tðtÞ for the shaker. A schematic sketch of the experimen-
tal setup is shown in Fig. 10. Note that unlike in the numerical study the force amplitude cannot directly be preset in the



Fig. 9. Photo of the test rig used for the experimental study.
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experiment, because the actual force at the excitation point is the reaction force between the shaker and the structure at a
specific input voltage. However, the measured force can still be used as control input for the phase control of the output volt-
age. The amplitude level of the output voltage is incrementally stepped up from low to high during the test until a critical
force level is reached. This provides the advantage that no additional effort has to be made to control the force amplitude
which simplifies the control algorithm and reduces the measurement time. Nevertheless, the PLL controller can be combined
with amplitude control if this is desired. The optimal choice of the reference acceleration for the PLL controller is generally
not a priori known. Clearly, the reference node should not be located near a nodal line of the vibration mode of interest,
because then obviously the reference signal would be very small and possibly biased by noise. A natural choice is the point
of excitation as reference node because at this point all excited modes can also be measured. The linear modes of the beam
can be shifted within certain bounds by adjusting the pretension of the setup. The linear eigenfrequencies of the first two
modes depending on the pretension of the setup are shown in Fig. 11a. The nonlinearity which is caused by the large dis-
placement of the thin beam at the tip has the largest influence on the first mode. This mode is therefore chosen for the exper-
imental demonstration. The influence of the nonlinearity decreases with increasing pretension as the tip displacement of the
thick beam also decreases. Furthermore, the ratio of the first two eigenfrequencies can be changed such that internal reso-
nances can be avoided for the test case. Based on these considerations, the first mode is chosen for the test, with a small
tensile pretension in the setup of 20 N to avoid buckling but to have the largest possible influence of the nonlinearity without
an internal resonance. For the test the input voltage of the shaker is incrementally increased over time as is shown in
Fig. 11b, yielding an increasing excitation force. The total time required for the measurement including tuning times and
measurement times is 236 s. Fig. 12a shows the backbone curve which was obtained by the PLL test (green circles). Obvi-
ously, the system shows a strong stiffening behavior and the NNM frequency is shifted by almost 20% while the excitation
is stepped up. To evaluate the relation between the measured points on the first-order backbone curve and the associated
NNM, the same mode indicator functions as in the previous section are evaluated in Fig. 12b. Therefore, all measured points
are taken into account for the calculation of the MPI, whereas only the excitation point needs to be evaluated to obtain the
PBMIF. Because a single excitation point is used, we omit the index of the excitation point j for brevity. First of all, the value of
the fundamental harmonic MPI D1 is close to unity even in the highly nonlinear range. This shows that the phase lag of the
fundamental harmonic response of all measured points is approximately p=2 with respect to the fundamental harmonic of
the force. Clearly, the PLL is capable of keeping track of the nonlinear backbone curve of the first harmonic. However, as dis-
cussed previously, it does not necessarily mean that the NNM is appropriated perfectly. If one considers higher harmonics
with a relative amplitude of 10% or more in the MPI D10, then the results become ambiguous as D10 keeps moving from high
to low values for increasing frequency. This once again shows that the MPI is highly dependent on the number of harmonics
taken into account, which makes it difficult to evaluate the overall quality of the NNM appropriation. In contrast, the PBMIF
automatically takes into account all frequencies and it becomes clear that the for larger amplitudes the value of the PBMIF
decreases successively. Compared to the MPI, the PBMIF shows a clear trend that indicates that the fundamental harmonic
forcing might not be sufficient to isolate the NNMwith high confidence in the frequency range above 28:5 Hz. The analysis of
the excitation power components shown in Fig. 13 provides a conclusive explanation for the decrease of the PBMIF for higher
amplitudes. In Fig. 13a the fundamental and third harmonic component of the reactive power, denoted by Qn, related to the
active power of the fundamental harmonic P1 are shown. The other harmonic components of the reactive power were found
to be negligible. It can be seen that the reactive power of the fundamental and third harmonic is also comparably small.
Moreover, for the fundamental harmonic there is no clear trend in the reactive power correlated to the decrease of the PBMIF
in Fig. 12b. In contrast, the third harmonic component of the reactive power shows a monotonic increase for increasing forc-
ing level but the overall level of the third harmonic of the reactive power is with less than 5% of the active power still com-
parably small. The evaluation of the relative distortion power D=S in Fig. 13b shows that this power quantity also increases
with increasing excitation level (or frequency respectively). This increase of the distortion power indicates that for higher



Fig. 10. Schematic sketch of the experimental setup.

Fig. 11. (a): Eigenfrequencies of mode 1 and 2 depending on pretension. (b): Normalized shaker input voltage over time for PLL test.

Fig. 12. (a): Measured backbone with PLL method, WT of free-decay and corrected WT of free-decay. (b): Fundamental harmonic MPI D1, higher harmonic
MPI D10 and PBMIF K.

Fig. 13. (a): Relative reactive power of first, third and fifth harmonic component of the excitation. (b): Distortion power over frequency.
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Fig. 14. (a): WT of the force signal at node 2. at the instant of switching off the shaker. (b): WT of the acceleration signal at node 2. at the instant of
switching off the shaker.

156 S. Peter, R.I. Leine /Mechanical Systems and Signal Processing 96 (2017) 139–158
forcing levels there is increasing power transfer to higher harmonics and other DOFs. Indeed the influence of the relative
distortion power on the value of the PBMIF is, in this case, much higher than the influence of the reactive power Q. For
an improvement of the NNM appropriation quality therefore the power considerations indicate that the phase (to decrease
the relative reactive power of the third harmonic) and amplitude (to decrease the distortion power) of higher harmonics, in
this case mostly the third harmonic, need to be controlled. Additionally, the location and spatial distribution of the forcing
can be changed in order to reduce the relative distortion power. Nevertheless, the test also shows that the PLL method is
generally capable of tracking the first order backbone curve with the same accuracy as the previous methods that used single
harmonic, single point forces [27,10]. The method provides steady-state measurements within a very short measurement
time for which the force appropriation quality of the NNMs can be easily evaluated by the PBMIF. For comparison the results
obtained by free-decay testing are shown in Section 6.1.

6.1. Comparison to free-decay test

The results obtained by the PLL method are also compared to the free-decay method which is most commonly used for
nonlinear phase resonance testing. To this end, the shaker was switched off after the PLL measurement at a measurement
time of 236 s. At this time an imperfect single harmonic force appropriation is reached by the PLL excitation, as it was pre-
viously done by manual tuning of the excitation frequency. After the shaker is switched off, the free-decay is recorded. The
time history of the free-decay is analyzed using a Morlet WT to obtain the time-frequency dependence and the ridge of the
WT is reconstructed to recover the time amplitude dependence. For details regarding the implementation of the WT and the
ridge reconstruction used in this paper the reader is referred to [40,15]. The ridge of the WT is displayed in Fig. 12a as blue
curve. Compared to the PLL test, two major differences are evident: Firstly, there is a deviation for high amplitudes and, sec-
ondly, there is a shift in frequency which seems to be constant over the amplitude range from 0 to 7 m=s2.

The first difference can be explained by analyzing the force signal when the shaker is switched off. Therefore, a WT is
applied to the recorded force signal (see. Fig. 14a). At the instant when the shaker is switched off (236 s) a significant impul-
sive force is induced which also increases the instantaneous forcing frequency for a short time. This impulsive force also dis-
turbs the response such that the frequency amplitude dependence is biased at the time when the shaker is switched off. It is
interesting to note that the impulsive force, which is obvious in the force signal, is hardly visible in the WT acceleration sig-
nal (see Fig. 14b). This can also be one explanation that after the initial perturbation dies out the course of the backbone
curve obtained by the free-decay of the acceleration resembles the one obtained with the PLL method. This observation also
matches previous experimental studies that found the influence of the shaker on the free-decay response to be small [22].
Nevertheless, there is still a significant force measured in the load cell at the excitation point during the whole decay process.
This force is induced by the inertia of the shaker and the stiffness of the stinger attached to the structure. The influence of
these attachments was assessed experimentally by two sets of linear EMAs: One EMA with active shaker (low level random
shaker exciation) and one EMA with passive shaker attached to the structure (low level impact hammer exciation). The dif-
ference of the eigenfrequencies for both tests can directly be attributed to the influence of the passive shaker as for the first
test the input for the EMA is measured directly at the excitation point on the structure, i.e. the reaction force between shaker
and structure. Thus the influence of the shaker and stinger is eliminated. In contrast, for the second test the input force is
measured with the load cell of an impact hammer independently of the shaker structure interaction, such that the modes
of the structure including the stinger and passive shaker are obtained. The first eigenfrequency with the passive shaker
attachment was found to be 0:42 Hz higher than the eigenfrequency of the structure with the active shaker. If one assumes
that this influence is approximately linear (i.e. independent of amplitude), then one can shift the backbone curve of the free-
decay results with passive shaker depicted in Fig. 12a (blue curve) by 0:42 Hz yielding the red curve corresponding to the
free-decay of the structure without influence of the passive shaker. The obtained curve shows an excellent agreement with
the PLL results after the initial disturbance dies out. Thus, on the one hand this shows that the results of the new method are
comparable to the results obtained with free-decay measurements. On the other hand this helps to evaluate the quality of



S. Peter, R.I. Leine /Mechanical Systems and Signal Processing 96 (2017) 139–158 157
the previously used free-decay measurements, as for the steady-state results obtained with PLL excitation the quality of the
NNM approximation can actually be evaluated with the PBMIF. A comparison of both results therefore helps to understand
the accuracy and limitations of the free-decay method. For the present experimental example the influence of the shaker was
found to be non-negligible in free-decay measurements but it could be minimized by additional consideration of the shaker
dynamics. Of course, the results of the free-decay method can also be improved by non-contact excitation techniques.
7. Conclusion

This paper proposes a novel framework for nonlinear phase resonance testing that relies on excitation power consider-
ations in conjunction with steady-state phase control measurements. It is shown that the mechanical power of the excitation
is a central quantity by means of NNM isolation. Therefore, power definitions well-known from nonlinear electrical systems
are transferred to nonlinear structural dynamics applications. The new definitions are fully consistent with power consider-
ations known from linear phase resonance testing. The fundamental difference caused by the limited physical meaning of the
reactive power in nonlinear situations is emphasized. The apparent power provides a more meaningful quantity in the non-
linear case and has a high relevance in nonlinear phase resonance testing. On this foundation a new type of mode indicator
function for nonlinear modal testing, the PBMIF, is defined. This mode indicator is easy to implement, robust and reliable.

For the evaluation of the excitation power quantities the backbone curve has to be measured in terms of a series of
steady-state measurements. To circumvent the issues related to manual tuning of the excitation frequency an automated
controller is implemented. For this purpose the PLL concept is used which provides a very fast and robust method of gen-
erating and adjusting the excitation signal based on its phase with respect to a reference signal. With this controller the
advantages of in terms of robustness of phase control over traditional frequency-controlled measurements can be exploited.
Using the PBMIF the confidence of every measured point on the backbone curve can be directly evaluated.

Both, the PBMIF and the PLL excitation are shown to be user-friendly methods also in experimental situations. The exper-
imental demonstration on a benchmark beam structure exhibiting stiffening behavior shows the robustness and speed of the
PLL controller for nonlinear phase resonance testing. The PBMIF clearly indicates the confidence of the isolated NNMs, also in
the presence of higher harmonics, and additional power considerations help to locate possible sources of inaccuracies. The
comparison to the previously used free-decay method shows an excellent agreement. Even more importantly, the confidence
of the free-decay tests can be evaluated on the basis of the PLL tests. In this paper the free-decay tests are obtained by simply
switching off the shaker and it is shown that the influence of the passive shaker attached to the structure is twofold: At the
instant of switching off the excitation an impulsive force is induced on the structure and the passive shaker shifts the eigen-
frequencies by its additional mass and stiffness properties. Whereas the former effect is difficult to quantify the latter can
easily be identified quantitatively by simple linear EMAs. Nonetheless, the analysis shows that the influence of the shaker
in free-decay measurements is generally non-negligible such that this type of measurements should be handled with care.
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