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Abstract

In this work, a novel framework for nonlinear experimental modal analysis
and its application to the identification of nonlinear dynamic structures
is presented. The method is based on the theory of nonlinear modes,
which provides a solid theoretical foundation along with intuitive concepts,
such as nonlinear eigenfrequencies and mode shapes. The thesis covers a
complete identification process including numerical analysis, measurement
and the derivation, validation and verification of predictive models. Special
emphasis is put on the development of a robust and efficient experimental
method for the extraction of nonlinear modal parameters, which has been
a major concern in previous approaches.
The measurement method relies on an extension of phase resonance test-

ing to nonlinear structures. It is proposed to automate the realization of an
appropriated excitation force by a Phase-Locked-Loop controller. Thereby,
the conventionally used combination of manual force appropriation and
free-decay analysis can be replaced, leading to a more robust, accurate
and efficient experimental approach. Furthermore, the issue of experimen-
tal mode isolation quality is assessed based on power characteristics of
the excitation force, providing a novel theoretical perspective on nonlinear
experimental modal analysis.
The use of experimentally extracted nonlinear modes for the deriva-

tion of predictive models of nonlinear structures is discussed and different
identification methods are presented. The functionality of the proposed
methods and the significance of experimentally extracted nonlinear modal
parameters is demonstrated in several laboratory experiments. The fo-
cus is put on systems with local conservative and smooth nonlinearities,
but the extendability to nonsmooth and nonconservative systems is also
demonstrated.
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Kurzfassung

In der vorliegenden Arbeit wird eine neue Methodik zur nichtlinearen ex-
perimentellen Modalanalyse und deren Anwendung auf die Identifikation
nichtlinearer dynamischer Strukturen vorgestellt. Die Methodik basiert auf
der Theorie nichtlinearer Moden, welche eine solide theoretische Grundlage
mit intuitiven Konzepten, wie nichtlinearen Eigenfrequenzen und Moden-
formen, vereint. Die Arbeit behandelt den gesamten Systemidentifikations-
prozess, welcher die numerische Analyse, die Messung, die Identifikation
sowie die Validierung und Verifikation prädiktiver Modelle beinhaltet. Be-
sonderes Augenmerk liegt dabei auf der Entwicklung einer robusten und
effizienten Methode zur experimentellen Extraktion nichtlinearer modaler
Parameter, die zu den Hauptproblemen vorheriger Ansätze gehörte.
Die Messmethode besteht aus einer Erweiterung der Phasenresonanzme-

thode auf nichtlineare Strukturen. Es wird vorgeschlagen, die Anpassung
der Anregungskraft mithilfe einer Phasenregelschleife zu automatisieren.
Dadurch kann die bisher verwendete Kombination aus manueller Anpas-
sung der Anregungskraft und Analyse des Abklingverhaltens ersetzt wer-
den. Dies ermöglicht eine robustere, genauere und effizientere experimen-
telle Vorgehensweise. Zudem wird die Frage der Beurteilung der Qualität
der Modenisolation anhand von Leistungsgrößen der Anregungskraft be-
leuchtet, was eine neue theoretische Sichtweise auf die nichtlineare experi-
mentelle Modalanalyse darstellt.
Die Verwendung experimentell bestimmter nichtlinearer Moden zur Ab-

leitung prädiktiver Modelle nichtlinearer Strukturen wird diskutiert und
verschiedene Identifikationsmethoden werden aufgezeigt. Die Funktiona-
lität der vorgeschlagenen Methoden und die Aussagekraft experimentell
bestimmter nichtlinearer Moden werden anhand verschiedener Laborexpe-
rimente veranschaulicht. Der Fokus liegt dabei auf Systemen mit lokalen
glatten und konservativen Nichtlinearitäten, jedoch wird auch die Erweiter-
barkeit auf nichtglatte und nichtkonservative Systeme demonstriert.
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Chapter 1

Introduction

The growing complexity of engineering structures together with an increas-
ing demand for light-weight and cost-efficient designs poses new challenges
in structural dynamics. Large deflections in slender structures, the use of
composite materials, or contact interfaces in jointed structures lead to vi-
bration behavior that cannot be predicted by linear models. Therefore, the
identification of nonlinear structural models has recently become an emi-
nent research topic in structural dynamics. For the identification of linear
structures, experimental modal analysis (EMA) is a standard procedure.
The individualistic nature of nonlinear structures, however, complicates
the development of such a standard identification approach in nonlinear
structural dynamics. Nonlinear modes are regarded as one promising con-
cept in this context, yet, nonlinear experimental modal analysis (NEMA)
is still in its infancy and the few existing approaches are associated with
numerous practical difficulties and conceptual limitations. This thesis ad-
dresses these issues and contributes to the development of a more versatile
NEMA method.
In this chapter, the motivation for the identification of nonlinear me-

chanical systems is explained in Section 1.1. The process of nonlinear
system identification is introduced in Section 1.2 and nonmodal and modal
approaches for system identification are briefly reviewed in Section 1.3. In
Section 1.4, it is explained why a modal approach is particularly suitable
for the identification of nonlinear vibrating structures and the objective of
this work is defined. The chapter closes, in Section 1.5, with the outline of
the thesis.

1.1 Motivation for Nonlinear System Identification

In many technical systems, structural vibrations are of major concern with
regard to failure, wear or discomfort. Therefore, the investigation of the vi-

1



2 1 Introduction

bration behavior is an important task in the design of mechanical systems.
Even though the importance of numerical investigations has increased in re-
cent years, the demand for experimental investigation is consistently high.
For mechanical structures that can accurately be described by linear mod-
els the identification and validation of models is rather mature. The EMA,
which has been developed since the 1960s, is nowadays considered a stan-
dard tool for the practicing engineer.

However, the examples mentioned in the introductory part of this chap-
ter lead to models in which the generalized forces may depend in a nonlinear
way on the generalized displacements or velocities. Such nonlinear depen-
dencies can significantly influence the dynamic behavior of the structures.
Characteristic features of nonlinear systems, such as resonance frequencies,
may depend on the vibration level. Moreover, frequencies which are not
present in the excitation spectrum may be important in the response spec-
trum. Coexisting attractors may occur, leading to different steady-state
vibrations dependent on the initial condition. Furthermore, nonlinearity
can lead to self-excited vibrations and quasi-periodic or chaotic response
to periodic excitation. All of these effects are missed out by the restriction
to linear models, resulting at best in a suboptimal design.

It is desired to include nonlinear effects in the design phase to achieve a
save design and to exploit the potential of nonlinearity as a design space.
Such a proactive approach inherently requires accurate numerical mod-
els including nonlinear effects leading to the problem of nonlinear system
identification, which is still a very active field of research. The main issue
complicating nonlinear system identification is the highly individualistic
nature of nonlinear structures. For instance, distributed geometric nonlin-
earities due to large deformation are of a totally different nature than local
nonsmooth nonlinearities such as friction in joints and may cause different
dynamic effects. The various forms of nonlinearity require each a different
treatment in the identification process. For this reason, the methodology
in nonlinear system identification is fundamentally different to linear sys-
tem identification in which most problems are treated with the same or
very similar approaches.
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1.2 A General Methodology for Nonlinear System
Identification

This section discusses the general structure of a nonlinear system identi-
fication process, giving the reader a means to orient himself throughout
the discussion of system identification methods in this thesis. The focus
is put on the identification of nonlinear effects in mechanical dynamic sys-
tems, although it is noted at this point that nonlinear system identification
in structural dynamics is greatly influenced by adjacent engineering fields
such as control and electrical engineering. The process for the identification
of such systems is shown in Fig. 1.1 and includes a classification of typical
errors that are encountered in a system identification process. Moreover,
typical actions to minimize the error are classified into the categories of
model upgrading and updating.
The aim of system identification is to derive a mathematical model of a

structure that is capable of predicting its dynamic behavior. This math-
ematical model is generally an approximation of reality and an optimal
mathematical model should capture all effects that are deemed relevant
within the operating range of interest with a minimal complexity of the
model. Therefore, the identification process typically includes a combi-
nation of the theoretical and numerical analysis of trial models and the
experimental analysis of the dynamic behavior of the structure under in-
vestigation. Modeling approaches that are based on first principles and
exclusively rely on theoretical analysis are termed white-box modeling ap-
proaches, whereas modeling approaches that exclusively rely on experimen-
tal data are called black-box modeling approaches (Isermann and Münch-
hof, 2010). Both approaches are rarely used in reality. Pure white-box
modeling requires exact a priori knowledge of all physical effects that are
relevant for the model, which is infeasible in real life structures. Pure
black-box approaches, however, lead to unnecessary identification cost as
some a priori knowledge of the physics involved in a dynamic structure is
at hand in most practical cases. Therefore, most identification approaches
rely on gray-box modeling of some shade.
To evaluate the validity of a model, a set of measurement data is com-

pared against the model predictions. If the model is capable of correctly
capturing this experimental data or training data, then the model is re-
garded as a validated numerical model. In most cases, a first trial model
is used that provides erroneous predictions of experimental reality. The
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Figure 1.1: General structure of a nonlinear system identification process.

model error can, according to Mottershead and Friswell (1993), be traced
down to three different error sources: errors based on (i) the model struc-
ture, (ii) the model order and (iii) the model parameters. The model struc-
ture error signifies that the model does not include all relevant features.
A typical example of a model structure error is the use of a linear model
for a system that actually shows nonlinear behavior. The model order er-
ror stems from the fact that models of mechanical structures are in most
cases discrete representations of continuous structures. This class of errors
includes errors that may occur due to an inappropriate spatial or temporal
discretization of the model. Examples include a too coarse discretization
of a finite element (FE) model or an inadequate number of harmonics in
harmonic balance simulations. The model parameter errors are caused by
wrongly estimated model parameters, such as a wrongly estimated Young’s
modulus or nonlinear spring coefficients.
The nonlinear system identification procedure is, following Kerschen

et al. (2006), divided into the three steps: nonlinearity detection, non-
linearity characterization and nonlinearity quantification. As a result of
the nonlinearity detection step the need for a nonlinear model is deter-
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mined. Although there are specific methods for nonlinearity detection,
in most cases the detection is naturally included in a linear identification
procedure such as an EMA. The inspection of the measured frequency re-
sponses or ambiguities in the pole calculation can often be the first evidence
of non-negligible nonlinear behavior. The nonlinearity characterization in
terms of the location, the type of nonlinearity and its functional form is
an important step in nonlinear system identification and marks a signifi-
cant difference to linear system identification, in which the structure of the
model is inherently determined by assuming linearity. The last step of the
identification is the nonlinearity quantification. Thereby, the coefficients of
the nonlinear functions are determined.
It is emphasized that the process for nonlinear system identification is

closely related to the type of model error that is sought to be minimized.
While the detection and characterization are mainly a way of improving
the model structure by additional features, e.g., nonlinear elements, or, less
common, choosing the model order based on experimental observations, the
quantification step is solely concerned with adjusting the model parameters
and thereby reducing the model parameter error. An interesting distinction
of the actions made to improve a model that has been proposed by Ewins
et al. (2015) is the distinction between model upgrading and updating.
Model upgrading is the extension of a model by adding new features that
essentially change the model structure. In nonlinear identification, this step
is based on the detection and characterization steps and aims at reducing
the model structure and model order error. In contrast model updating is a
method for reducing the model parameter error based on the nonlinearity
quantification.
Generally, all nonlinear system identification methods can be structured

based on the procedure proposed in Fig. 1.1. It should be noted, how-
ever, that the class of black-box identification methods and the class of
model updating methods, which recently attract increasing attention in
structural dynamics (Noël and Kerschen, 2016), represent extreme cases in
which the individual steps of the process become indistinct or are omitted.
Black-box methods aim at performing all three steps of the identification
process at once, without any knowledge of the involved physics. Mostly,
however, even for such approaches some a priori knowledge of the model
structure significantly improves the performance and accuracy of the iden-
tification leading to a (dark) gray-box strategy, which is embedded in the
process shown in Fig. 1.1. In contrast, model updating strategies require
an a priori estimate of the model, e.g., based on first principle white-box
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modeling. Depending on the quality of the white-box model one or more of
the identification steps become obsolete. Typically, such white-box model
updating focuses on the quantification of nonlinearity, leading to a (light)
gray-box strategy.
The last step of the identification procedure shown in Fig. 1.1 is the

verification of the obtained model. The goal of this step is to evaluate
the predictive accuracy of a model for situations that are not included in
the training data for which it is validated. Of course, a predictive model
for a wide range of operating conditions is the ultimate goal of system
identification. However, it is emphasized that particularly for nonlinear
systems special care must be taken if predictions are made for operating
ranges which have not been included in the range spanned by the training
data.

1.3 Literature Survey

This section gives an overview of the most important developments in the
identification of nonlinear dynamic structures. Detailed reviews of iden-
tification methods can be found in the book of Worden and Tomlinson
(2001) and the review articles of Kerschen et al. (2006) and Noël and Ker-
schen (2016). Most conventional nonlinear identification methods operate
in physical coordinates, i.e., are nonmodal based, and the following survey,
therefore, starts with a brief overview of nonmodal methods. However,
this thesis focuses on a modal approach towards nonlinear system identifi-
cation. Therefore, the developments in this particular class of methods is
described seperately in a more comprehensive way in Section 1.3.2.

1.3.1 Nonmodal Nonlinear System Identification

In the following overview, the identification methods are categorized into
methods operating in time domain, in frequency domain and in time-
frequency domain.
One widespread time domain methods is the Restoring Force Surface

Method (RFSM)1, which was originally proposed by Masri and Caughey
(1979) for single degree of freedom (DOF) systems with stiffness nonlinear-
ities. The fundamental idea of the RFSM is that, for single DOF systems

1The RFSM is also known as force-state mapping, which goes back to the work of
Crawley and O’Donnell (1986).



1.3 Literature Survey 7

with a known mass and measured acceleration, the restoring forces can be
directly estimated by the balance of linear momentum. The restoring force
is then plotted over the phase space and a surface is fitted to obtain the co-
efficients of the displacement and velocity dependent restoring forces. The
generalization to multi DOF systems was addressed by Masri et al. (1982)
and Al-Hadid and Wright (1989). Simple continuous structures were iden-
tified by Al-Hadid and Wright (1990) and Kerschen et al. (2001). Systems
with damping nonlinearities can be treated with a related approach as
shown by Gaul and Lenz (1997) for bolted joints with friction nonlinearity.
However, for systems with a larger number of DOFs, the nonlinearity quan-
tification remains difficult and time consuming (Worden and Tomlinson,
2001). Therefore, in most recent works the RFSM is solely used for the
characterization step2, for which it is regarded as one of the simplest and
most powerful approaches (Kerschen et al., 2006). A similar time domain
approach which can be used for multi DOF systems of limited complexity
is the direct parameter estimation method proposed by Mohammad et al.
(1992). This method uses a chain of lumped masses which are connected by
unknown force elements. Similarly to the RFSM the relative acceleration
between the lumped masses is measured to obtain an estimate of the rela-
tive restoring forces and a least squares fit is used to obtain an appropriate
force law. A black-box time domain approach originating from control
engineering is the Nonlinear Auto-Regressive Moving Average with Exoge-
nous inputs (NARMAX) method, which is based on a discrete-time form of
the dynamic system (Leontaritis and Billings, 1985a,b). In structural dy-
namics the method was, for instance, adopted by Thouverez and Jezequel
(1996) in modal coordinates or more recently by Worden and Barthorpe
(2012) and Worden et al. (2012) for simple hysteretic systems. A method
that recently attracted increasing attention in structural dynamics is Non-
linear Subspace Identification (NSID), which can be implemented either
in the time domain or frequency domain. The time domain version was
suggested by Marchesiello and Garibaldi (2008).
Many of the popular frequency domain methods for nonlinear system

identification are based on a generalization of the concept of Frequency
Response Functions (FRFs) to nonlinear systems. While the definition of
FRFs is clear for linear systems, the notion is ambiguous in the nonlinear
case, resulting in several different identification methods that claim to be

2This version of the RFSM is sometimes referred to as Acceleration Surface Method,
e.g., in Cooper et al. (2017).
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based on nonlinear FRFs. Probably the most straightforward approach of
extending FRFs to nonlinear systems is to relate a specific, usually har-
monic, excitation to the response of the system at a certain frequency. This
approach is typically used for the purpose of model validation, mostly in
conjunction with the numerical calculation of FRFs using the Harmonic
Balance Method (HBM) (see, e.g., Bograd et al. (2011); Schwingshackl
et al. (2012)). If the approach is used for identification purposes, then an
a priori model of the structure and nonlinearity has to be known and the
focus is put on the nonlinearity quantification step. For instance, Meyer
and Link (2003) propose to use a direct model updating procedure based
on measured FRF data and HBM simulations for the purpose of parame-
ter identification. A more sophisticated generalization of FRFs is provided
by the concept of higher order FRFs based on Volterra or Wiener series
(Storer, 1991). Due to the high computational and experimental effort,
applications of these concepts are relatively scarce and limited to examples
of moderate complexity (Khan and Vyas, 2001; Tawfiq and Vinh, 2004).
Further spectral methods for identification that are based on the separation
of the FRF of the underlying linear system and the distortions caused by
a nonlinear force, are the conditional reverse path method (Richards and
Singh, 1998) and the nonlinear identification through feedback of the out-
put method (Adams and Allemang, 2000). Both methods have in common
that they mainly focus on the quantification step and can be performed
with random excitation signals. A central idea of the nonlinear identifica-
tion through feedback of the output method is that the nonlinear forces
are regarded as internal feedback forces. This concept also forms the foun-
dation for the more recent NSID techniques. A frequency domain version
of NSID was proposed by Noël and Kerschen (2013) and compared to the
time domain NSID approach in Noël et al. (2014).
The class of time-frequency methods for nonlinear system identification

aims at extracting the instantaneous frequency of vibration, which may be
a function of time in nonlinear systems. In addition to the instantaneous
frequency, a time-frequency analysis (TFA) typically yields the envelope of
the time signal. Therefore, time-frequency methods are commonly used for
extracting damping characteristics of nonlinear systems by analyzing decay
processes of the free system. The most basic approach for time-frequency
analysis is the Short-Time Fourier Transform. More advanced methods for
TFA are the Hilbert Transform (Feldman, 1994) and the Wavelet Trans-
form (WT) (Staszewski, 2000). The extraction of the instantaneous fre-
quency is often used for free-decay processes starting at resonance yielding
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an approximation of the systems backbone curve, which can be regarded
as a means of extracting the nonlinear modal characteristics of the system.
This application of TFA is described in more detail in the following section.

1.3.2 Modal Nonlinear System Identification
Since a modal approach for system identification is common practice for
linear systems, it seems to be an obvious question to which extent modal
methods can be extended to nonlinear systems. Against this backdrop, it
is quite remarkable that the use of modal methods for nonlinear system
identification is a rather recent, yet active, field of research (Noël and
Kerschen, 2016). Probably, the backlog in research in this area can be
attributed to the fact that the standard linear EMA is conceptually built
upon the superposition principle, which immediately fails for nonlinear
systems. Therefore, a rigorous NEMA requires a fundamentally different
conceptual basis.
There are a few methods that provide reasonable approximations for the

case of weak nonlinearitiy which are based on concepts known from linear
EMA. A simple method to include a nonlinear analysis in the process
of an EMA using the phase separation method performed with stepped-
sine measurements, is the amplitude dependent linearization proposed by
Carrella and Ewins (2011). Force appropriation based EMA methods,
which are mostly used in ground vibration testing of aircraft, open the
door to the identification of amplitude dependent modal parameters and
the characterization of modal coupling as demonstrated by Atkins et al.
(2000). This idea has been augmented by Platten et al. (2009) using an
analysis of the free-decay from an appropriated mode or set of modes,
which is referred to as nonlinear resonant decay method. It should be
noted that these methods, which have successfully been applied to rather
complex structures, such as a full scale aircraft (Fuellekrug and Goege,
2012), are based on a linear modal framework combined with a modal
RFSM and are particularly attractive for large scale structures with weak
local nonlinearities.
A milestone in the development of NEMA was the work of Peeters et al.

(2011), who related concepts of force appropriation to the theory of non-
linear (normal) modes3. The method combines an approximate appropria-
tion of the nonlinear mode with a TFA using the WT of the free-decay from

3The word normal is omitted in the following for reasons which will be detailed in
Section 2.1.
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resonance. The experimental applicability was demonstrated at a bench-
mark beam structure in Peeters et al. (2010). Subsequently, this method
for NEMA in the framework of nonlinear modes has successfully been ap-
plied to several structures of moderate complexity (Ehrhardt and Allen,
2016; Londono et al., 2015; Zapico-Valle et al., 2013). Recently, Renson
et al. (2016) has proposed a method for a more robust force appropriation
procedure with which the free-decay analysis can be omitted. A differ-
ent approach to identify nonlinear modes is pursued by Noël et al. (2016),
who propose the use of a NSID technique in combination with a shooting
method for the extraction of nonlinear modal characteristics under broad
band excitation.
Another concept for modal identification of nonlinear systems is based on

a direct decomposition of experimental data into so-called intrinsic modal
oscillators. This method, which is based on a TFA of the recorded time
series using the Hilbert transform, is referred to as empirical mode decom-
position (Huang et al., 1998). The extracted modal oscillators are generally
neither the linear nor the nonlinear modes of the system, however, they
have successfully been used, e.g., to characterize the process of targeted
energy transfer (Lee et al., 2010) and to identify a beam featuring a bolted
connection (Eriten et al., 2013). A related modal approach is the method
of proper orthogonal decomposition, which is based on a statistical analysis
of the systems response. Applications of this method in structural dynam-
ics are reviewed in Kerschen et al. (2005). Similarly to the empirical mode
decomposition, a clear physical interpretation of proper orthogonal modes
remains difficult, particularly for nonlinear systems, but they have been
used for the identification of nonlinear systems, for instance, using a model
updating strategy (Lenaerts et al., 2001) or a machine learning framework
(Worden and Green, 2017).

1.4 Objective and Scope of the Thesis

In this section, the purpose and scope of this thesis are elucidated. The
section starts with an explanation why a modal approach towards nonlinear
system identification is found to be a necessary addition to the nonlinear
system identification toolbox. In the following, the shortcomings of current
modal approaches are summarized and the goals and scope of the present
thesis are derived.
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Advantages of a Modal Approach

Based on the fact that EMA is by far the most popular concept for the
identification of vibrating structures, it seems to be the most intuitive ap-
proach for nonlinear system identification to extend the concept of modes to
nonlinear systems. In this context, the theory of nonlinear modes provides
a solid theoretical foundation with a clear connection to linear modes. In
particular, a nonlinear system identification approach based on nonlinear
modes offers the following advantages:

• Nonlinear modes provide a clear physical meaning and the use of
modal characteristics, i.e., modal frequencies, deflection shapes and
damping measures, is an intuitive concept for most practicing engi-
neers, even though they may become energy dependent in the non-
linear case.

• Similarly to linear modes, nonlinear modes typically determine the
resonant behavior of structures, which is often the most relevant op-
erating condition in the design of vibrating structures. A model
identified based on nonlinear modes provides high confidence in such
operating conditions.

• Nonlinear modal characteristics are system properties and, thus, in-
dependent of a specific forcing scenario or load case.

• The theory of nonlinear modes is well-developed and provides a valu-
able tool for understanding nonlinear dynamics. This solid founda-
tion is helpful for the interpretation of the observed experimental
dynamics and the derived nonlinear modal characteristics.

Shortcomings of Nonlinear Experimental Modal Analysis

The application of nonlinear modes for the purpose of system identification
is still in its infancy and so far mostly academic structures of low complexity
have been successfully identified. The reasons for this are primary seen in
the following shortcomings of current NEMA approaches:

• The current experimental procedures, which are almost exclusively
based on the method proposed by Peeters et al. (2010), are very time
consuming and lack robustness.
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• The identification of predictive models based on experimental non-
linear modes has rarely been discussed in literature. The significance
of experimentally extracted nonlinear modal parameters for this pur-
pose has not sufficiently been demonstrated.

• The efficiency of numerical algorithms for the calculation of non-
linear modes has not fully been exploited for the purpose of system
identification.

• It is not clear whether current methods for NEMA can be generalized
to nonsmooth and nonlinearly damped systems and how this could
be accomplished.

Aim and Scope of the Thesis

The goal of this monograph is to develop a strategy for the nonlinear
system identification in the framework of nonlinear modes. The proposed
strategy shall pave the way towards nonlinear modal identification of more
complex real life structures. To this end, in particular, the following issues
are addressed:

• A reliable experimental strategy for the measurement and extraction
of nonlinear modal characteristics is proposed.

• An efficient numerical algorithm for the calculation of nonlinear modes
is derived, which is used to complement the experimental data with
numerical analysis.

• The experimental and numerical analysis are embedded in different
system identification strategies, providing a framework for the deriva-
tion of predictive models based on nonlinear modal data.

• The use of NEMA for nonlinear system identification is illustrated
with several experimental application examples. The validation and
verification of derived models is thoroughly discussed to shed light
on the significance of experimentally extracted nonlinear modal pa-
rameters.

The main focus of this thesis is put on the identification of structures with
smooth local stiffness nonlinearities. However, it is also demonstrated that
the methods can be generalized to systems with nonsmooth nonlinearities,
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such as unilateral constrained systems undergoing impacts, and systems
subjected to nonlinear damping, e.g., due to frictional joints. The gener-
alization to spatially distributed nonlinearities is possible, but considered
beyond the scope of this thesis. Moreover, the quantitative measurement
of internally resonant structures is an open research question that is con-
sidered beyond the scope of the thesis, although the methods proposed
here are likely to be extendable for this purpose.

1.5 Outline of the Thesis

In the first part of the thesis, modal based nonlinear system identification
methods have been set into the context of a more general identification
methodology. The current state of knowledge has been briefly introduced
and the need for research in this area has been identified.
In Chapter 2, the fundamental and more recent definitions of nonlinear

modes are reviewed. The definition used in this thesis is introduced and
important terminology in the field of nonlinear modes is clarified.
Chapter 3 is concerned with the numerical simulation of nonlinear modes.

Numerical simulations, which can be used for model validation or nonlin-
earity quantification, are an important addition to purely experimental
based identification methods, particularly, when complex nonlinear struc-
tures are investigated. Therefore, special emphasis is put on the suitability
of the numerical algorithm for the purpose of system identification with re-
gard to efficiency and robustness. The potential of the numerical algorithm
to treat complex real life structures is demonstrated using the numerical
example of an industrial scale model of a commercial vehicle.
The experimental extraction of nonlinear modes is addressed in Chap-

ter 4. Due to the numerous deficiencies of current approaches, a completely
new framework for NEMA is proposed. In particular, the practical real-
ization of nonlinear mode appropriation, the estimation of the quality of
the mode isolation and the extraction of nonlinear modal parameters are
discussed. The method is demonstrated using a numerical example and the
extension to structures subjected to nonsmooth and damping nonlinearities
is addressed.
In Chapter 5, the numerical and experimental developments of the pre-

vious chapters are put into the context of system identification procedures.
More specifically, three different identification strategies are proposed: a
gray-box strategy in nonlinear modal domain, an analytical-experimental
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approach in mixed-modal-physical coordinates and a white-box model up-
dating strategy in physical coordinates. The first approach is purely based
on experimental data, whereas the second approach combines experimental
data with analytical estimation of the nonlinear forces based on the HBM.
The third method integrates the numerical algorithm for nonlinear mode
calculation and the experimental data in a model updating procedure.
The derived methods are applied to three different test cases in Chap-

ter 6. In the first test case, the identification strategies are investigated
using a benchmark beam structure featuring a local stiffness nonlinearity.
The second test case illustrates the applicability of the proposed method
in the case of nonsmooth nonlinearities by studying the capability of non-
linear modal based model validation for an impacting beam. The third
test case examines the capability of treating nonlinearly damped struc-
tures by a purely experimental based identification strategy applied to a
simple benchmark structure showing nonlinear behavior due to a bolted
joint connection.
In Chapter 7, the main contributions of this thesis are summarized and

conclusions are drawn. Finally, open questions are highlighted and direc-
tions of future research are indicated.



Chapter 2

Nonlinear Modes

In this thesis, a modal approach towards the identification of nonlinear
systems is pursued. In contrast to linear systems, where the definition of
a mode is more or less consensus, there are several different definitions
of modes in nonlinear systems. Thus, this chapter briefly introduces the
most important definitions, clarifies the approach pursued in this study
and discusses some important terminology.
The chapter starts with the introduction of the fundamental definitions

of nonlinear modes in Section 2.1. In Section 2.2, recent developments
regarding the definition of nonlinear modes are briefly addressed. In Sec-
tion 2.3, important terminology used in nonlinear modal analysis is clari-
fied.

2.1 Fundamental Definitions of Nonlinear Modes

There are two fundamentally different definitions of nonlinear modes, on
which other definitions are based on. The first definition, which is at-
tributed to Rosenberg (1960), can be regarded as a straightforward ex-
tension of the concept on linear normal modes and is exclusively valid for
conservative mechanical systems. The details of this definition and a gen-
eralization used in this thesis are presented in the first part of this section.
The second basic definition by Shaw and Pierre (1991) views nonlinear
modes as an invariant manifold in phase space and is also valid for non-
conservative nonlinear systems. This definition is introduced in the second
part of this section.

2.1.1 Nonlinear Modes of Conservative Systems
Periodic solutions of autonomous nonlinear systems have been studied for
more than a century (Ljapunov, 1992; Poincaré, 1892), but the notion of
nonlinear modes emerges in the work of Rosenberg (1960). Rosenberg

15



16 2 Nonlinear Modes

highlighted the analogy of linear normal modes and periodic solutions of
nonlinear autonomous systems to define a nonlinear normal mode (NNM).
However, it is interesting to note that the book of Kauderer (1958) al-
ready contains a major part of the derivations and similar terminology
(in German language) as the work of Rosenberg. A NNM according to
Rosenberg is a synchronous periodic vibration of a nonlinear conservative
system with symmetric potential. In the displacement space, which is
sometimes referred to as configuration space in later publications, this mo-
tion forms a line1 which intersects lines of constant potential orthogonally.
The notion of a synchronous periodic motion implies that all points of a
structure vibrating in a NNM reach their maximum displacements simul-
taneously, as in the case of linear normal modes. Rosenberg’s definition
subsequently served as a basis of hundreds of publications which are sum-
marized in a book of Vakakis et al. (1996) and several review articles by
Vakakis (1997), Kerschen et al. (2009), Mikhlin and Avramov (2010) and
Avramov and Mikhlin (2013). It can be observed that the initial defini-
tion of Rosenberg evolved over the years. In particular, the requirements
for a symmetric potential and a synchronous motion have been relaxed to
include more generic nonlinearities and the effect of internal resonances.
Internal resonances are caused by nonlinear interactions of different non-
linear modes, typically when their frequencies are (nearly) commensurable
(Nayfeh, 2000).
In this thesis, an extended version of Rosenberg’s definition, includ-

ing generic conservative nonlinearities and internal resonances, serves as
a foundation2.

Definition 2.1. Consider an autonomous, conservative, nonlinear system
in a discrete form

Mẍ(t) + Kx(t) + fnl(x(t)) = 0, (2.1)

where M = MT ∈ RN×N denotes the positive definite mass matrix, K =
KT ∈ RN×N the positive definite linear stiffness matrix, x(t) ∈ RN repre-
sents the vector of generalized coordinates and fnl(x(t)) ∈ RN represents
the vector of nonlinear conservative forces. A nonlinear modal motion is
a periodic solution xnm(t) = xnm(t + T̃0) of Eq. (2.1) with the nonlinear

1NNMs describing a straight line are referred to as similar NNMs, NNMs describing
a curved line are referred to as nonsimilar NNMs.

2It is assumed for simplicity that continuous systems have been discretized, e.g., using
the FE method.
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modal frequency ω̃0 = 2π
T̃0

. A nonlinear mode is a family of nonlinear modal
motions, which are connected in a frequency-energy diagram.

The theory of nonlinear modes shall not be reviewed at length here,
however, a few important characteristics of nonlinear modes are briefly
recapitulated. The first important characteristic is that nonlinear modes
do generally not, in contrast to linear normal modes, possess any simple
orthogonality relations, which is also the reason why the author refrains
from using the notion NNM. Another important difference to linear modes
is that the principle of superposition does not hold for nonlinear modes.
These two properties, however, are essential in most applications of linear
modes such as EMA and model order reduction. Additional important
differences with respect to linear modes are the energy dependence of the
frequency and shape (for nonsimilar modes) and the occurrence of mode
bifurcations. Finally, it is noted that the number of nonlinear modes may
exceed the number of linear modes of a system.
Despite all differences, some important properties of linear modes also

hold for nonlinear modes. First of all, nonlinear modes are invariant, i.e.,
a motion initiated on a nonlinear mode remains on the nonlinear mode for
all times. Other than that, the resonant behavior of nonlinear systems is
typically determined by its nonlinear modes. This feature is particularly
appealing in the context of system identification, because a model identified
based on nonlinear modes promises to accurately capture the technically
relevant resonant behavior of a system.

2.1.2 Nonlinear Modes of Nonconservative Systems: The
Invariant Manifold Approach

A major limitation of the previously mentioned definitions is that they
are only valid for conservative systems. To overcome this limitation Shaw
and Pierre (1991) proposed a new definition of nonlinear modes which is
inspired by the center manifold theory:

Definition 2.2. Consider an autonomous, nonconservative, nonlinear sys-
tem in a discrete form

Mẍ(t) + Dẋ(t) + Kx(t) + fnl(x(t), ẋ(t)) = 0, (2.2)

with M = MT ∈ RN×N , D ∈ RN×N , K ∈ RN×N and the general-
ized nonlinear forces fnl(x(t), ẋ(t)) ∈ RN , which include conservative and
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nonconservative forces. A nonlinear mode of a nonconservative system is
a motion governed by Eq. (2.2) which takes place on a two dimensional in-
variant manifold in the phase space of the system. The invariant manifold
has its origin in a stable equilibrium point x∗ = ẋ∗ = 0 and is tangent to
the eigenspace of the system’s linearization about x∗, i.e., fnl(x∗, ẋ∗) = 0.
The motion on the invariant manifold can be fully described as a function
of the set of master coordinates xm, ẋm.

The description of the systems dynamics in terms of the master coordi-
nates corresponds to constraining the motion to a two dimensional subspace
in the phase space. Therefore, the dynamics of the constrained system can
be interpreted as a single DOF oscillator on the invariant manifold. The
dependence of the remaining coordinates on the master coordinates is cal-
culated similarly to the center manifold reduction technique (Khalil, 1996)
and is not reviewed here in detail. The fact that the nonlinear modal
dynamics of potentially high dimensional systems is described by a single
DOF oscillator on the invariant manifold motivates the primary applica-
tion of the invariant manifold definition, namely, the use for model order
reduction (Pierre et al., 2006). Finally, it is noted that the definition only
includes nonlinear modes which are a continuation of linear modes and that
the treatment of internal resonances requires a different parameterization
yielding a multi DOF modal oscillator (Blanc et al., 2013).

2.2 Recent Definitions of Nonlinear Modes

Although nonlinear modes have been studied for more than half of a cen-
tury and most of the work, particularly until the last decade, focused on
theoretical and analytical developments, there are still recent attempts for
novel definitions of nonlinear modes addressing deficiencies of the funda-
mental definitions. The work of Haller and Ponsioen (2016) aims at theo-
retical ambiguities of different approaches based on the invariant manifold
theory. The notion of spectral submanifolds is used to propose a unified
definition of invariant manifolds for autonomous, nonautonmous, conser-
vative and nonconservative systems.
A completely different, application driven perspective motivates the def-

inition of Laxalde and Thouverez (2009). According to their definition
nonlinear modes are characterized by complex nonlinear eigenvalues and
eigenvectors, representing the fast oscillatory behavior as well as the slow
amplitude modulation due to damping (or self-excitation). The definition
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is based on a straightforward extension of complex eigenvalues of linear
systems with the main objective of efficient numerical calculation of the
nonlinear modes of damped systems using a generalized Ritz-Galerkin ap-
proach. A salient feature of this method is that the nonlinear modes are by
definition approximate solutions to the system’s equation of motion. The
definition of Laxalde and Thouverez (2009) is conceptually similar to the
extended periodic motion definition, which is also used in this thesis and
therefore described in some detail in the following.

2.2.1 The Extended Periodic Motion Concept for
Nonconservative Systems

The limitation of Definition 2.1 to conservative systems and numerical diffi-
culties related to Definition 2.2 motivates the following definition proposed
by Krack (2015):

Definition 2.3. An enforced periodic nonlinear mode (ENM)3 is a peri-
odic solution xem(t) = xem(t+ T̃em) of the equation

Mẍ(t) + Dẋ(t) + Kx(t) + fnl(x(t), ẋ(t))− ξMẋ(t) = 0. (2.3)

with M = MT ∈ RN×N , D ∈ RN×N , K ∈ RN×N and the generalized
nonlinear forces fnl(x(t), ẋ(t)) ∈ RN , which include conservative and non-
conservative forces. The term ξMẋ(t) represents an artificial mass pro-
portional self-excitation. The parameter ξ is chosen such that the motion
becomes periodic. If the system is conservative, the parameter ξ = 0, such
that the definition reduces to Definition 2.1.

Similarly to the definition of Laxalde and Thouverez (2009), Defini-
tion 2.3 aims at exploiting numerically efficient methods for the calculation
of damped nonlinear modes. The advantage of Definition 2.3 lies in the
fact that the ENMs are by definition periodic, i.e., can be calculated with
the mature numerical methods for calculation of periodic solutions of or-
dinary differential equations (ODEs). Another advantage pointed out by
Krack (2015) is that the ENMs often provide a good approximation for
steady-state vibrations of the forced system, which is of great practical
relevance. Furthermore, it will be shown in this thesis that the extended

3In the work of Krack (2015) ENMs are simply referred to as nonlinear modes. In
this thesis, the notion ENM is used to differentiate ENMs from nonlinear modes of
conservative systems.
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periodic motion concept can be easily adapted to experimental methods
forming the basis of a novel method for NEMA of damped systems.

2.3 Auxiliary Terminology

This section contains a collection of important terminology related to non-
linear modes to avoid ambiguities. The terminology supplements Defini-
tion 2.1 and shall provide orientation throughout the thesis. Because a
system governed by Eq. (2.1) may generally posses infinitely many peri-
odic solutions, a subset of nonlinear modes of great practical relevance is
pointed out:

Definition 2.4. A fundamental nonlinear mode is a nonlinear mode ac-
cording to Definition 2.1 which forms a continuation of the linear modes
of the linearized system in a frequency-energy diagram.

A different graphical representation of nonlinear modes yields the fol-
lowing definition:

Definition 2.5. A backbone curve is a nonlinear mode plotted in the
amplitude-frequency plane. Herein, the word amplitude, denotes the mag-
nitude of the fundamental harmonic Fourier coefficient, i.e., at the non-
linear modal frequency ω̃0.

It is pointed out that, although the notion backbone curve is almost
colloquially used in literature, there are two concurrent meanings: the
backbone curve is defined (a) in the framework of nonlinear modes (c.f.
Definition 2.5) or (b) as the curve connecting the maxima of FRFs for
different excitation levels. Obviously, both curves are not the same, not
even for linear systems. The fact that the curves are in many cases close to
one another4 often leads to the misinterpretation that the nonlinear modes,
i.e., the backbone according to (a), generally also forms the backbone of
the forced response, i.e., (b). It is emphasized, that Definition 2.5 is used
throughout this thesis as this definition provides the advantage of having
a profound theoretical basis and does not depend on the considered load
case or damping hypothesis.
The last term which is introduced, is particularly important in the practical
realization of numerical and experimental nonlinear modal analysis in the
frequency domain.

4An example showing that this is not necessarily the case is included in Section 3.3.
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Definition 2.6. A monophase nonlinear modal motion is a periodic mo-
tion xnm(t) = xnm(t + T̃0), of which the Fourier transform is monophase,
i.e., can be represented by a pure sine or cosine series.

The limitation to monophase nonlinear modes reduces the computational
effort in numerical modal analysis and is also of interest for the nonlinear
mode isolation in experiments. Furthermore, the concept of monophase
nonlinear modes is closely related to the Rosenberg’s definition of syn-
chronous nonlinear modes, which are inherently monophase, giving the
term some historical significance5.

5It is noted that the opposite does not hold, because internally resonant nonlinear
modes can be monophase, but are not necessarily synchronous.





Chapter 3

Numerical Calculation of Nonlinear
Modes

The process of system identification typically involves numerical and theo-
retical analysis (c.f. Chaper 1.2). Depending on the identification strategy,
the efficiency of numerical calculations is of major concern. Therefore,
this chapter proposes an efficient algorithm for the calculation of nonlinear
modes. To this end, in Section 3.1, the state of knowledge for the numeri-
cal calculation of nonlinear modes is briefly recapitulated and requirements
for the numerical algorithm are clarified. The calculation method is then
introduced in Section 3.2. An industrial scale application example is used
in Section 3.3 to demonstrate the numerical method. Subsequently, the
extension of the method to nonconservative and nonsmooth systems is dis-
cussed in Sections 3.4 and 3.5. The developments made in this chapter are
summarized in Section 3.6.

3.1 State of Knowledge

This section starts with a brief overview of existing numerical approaches
for nonlinear modal analysis. The requirements for a numerical approach
suitable for nonlinear system identification are outlined in the remainder
of this section.

3.1.1 Numerical Methods for Nonlinear Modal Analysis
There are various approaches for the calculation of nonlinear modes, in-
cluding analytical and numerical methods. The analytical methods, such as
the method of multiple scales or averaging, are for instance described in the
books of Vakakis et al. (1996) and Nayfeh (2000). These analytical tech-
niques are typically restricted to systems of limited complexity, whereas
recent numerical methods are capable of treating real life structures. The

23
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numerical methods can be divided into methods for the calculation of (a)
nonconservative modes based on the invariant manifold concept (c.f. Defi-
nition 2.2) and (b) the calculation of conservative modes, i.e., modes which
are described by a periodic motion, (c.f. Definition 2.1).

The approaches based on (a) typically lead to the problem of solving a
nonlinear partial differential equation (PDE), which describes the geome-
try of the invariant manifold. This PDE is generally difficult to solve in
closed form such that approximate solution techniques are used. Besides
the Taylor series expansion, which was used by Shaw and Pierre (1991),
the numerical methods include several classical techniques for the solu-
tion of PDEs. For instance, Galerkin methods were applied by Pesheck
et al. (2002) and Pierre et al. (2006) and a finite element formulation
was proposed by Renson and Deli (2012). For the invariant manifold ap-
proaches often difficulties arise due to the parametrization of the manifold.
The uniqueness of the parametrization is lost when folds in the invariant
manifold occur, e.g., due to internal resonances (Blanc et al., 2013). Fur-
thermore, the computational effort for the solution of the PDE is often
considerable. These conceptual drawbacks might also be the reason why
the invariant manifold concept has mostly been applied to rather academ-
ical examples so far. Moreover, the direct measurement of the invariant
manifolds seems to be infeasible at present, such that invariant manifold
based approaches are of limited use in the context of system identification.

In contrast to (a), the numerical methods for (b) lead to the problem
of finding periodic solutions of an ODE. For the calculation of periodic
solutions of ODEs there exist numerous methods. Of particular impor-
tance in this context are shooting methods and Harmonic Balance based
approaches. Even though the shooting method is comparatively old, it
has for the first time been applied to the computation of nonlinear modes
quite recently by Peeters et al. (2009). It is noted that, in an earlier work
by Slater (1996), a related method was used for the calculation nonlinear
modes. Subsequently, the shooting algorithm has been widely used and
proved its applicability even to complex numerical structures, such as an
aircraft (Kerschen et al., 2013) or a satellite structure (Renson et al., 2012).
Furthermore, the shooting method has been applied to a benchmark sys-
tem for comparison with experimentally obtained nonlinear modes (Peeters
et al., 2010) and it has been proposed to use subspace identification meth-
ods together with a shooting algorithm to extract nonlinear modes with
broadband testing (Noël et al., 2016).
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An approximate technique for the calculation of periodic solutions of
nonlinear systems is the HBM, which is in literature sometimes attributed
to Krylov and Bogoliubov (1936) 1. However, it is noted that similar tech-
niques have already been used before, e.g., in the work of Duffing (1918) in
the appendix a Ritz-method with a fundamental harmonic ansatz function
(and an ansatz function including the third harmonic) was proposed which
is closely related to HBM. For the purpose of the calculation of nonlinear
modes HBM approaches were used, for instance, by Szemplinska-Stupnicka
(1983) for the approximation of nonlinear modes of continuous systems. In
Arquier et al. (2006) the HBM was used in the framework of the asymptotic
numerical method for the computation of nonlinear modes of simple 2DOF
systems. More recently, Detroux (2016) has used the HBM for the calcu-
lation of nonlinear modes of a satellite structure. The works of Laxalde
and Thouverez (2009) and Krack et al. (2013) addressed the computa-
tion of pseudo-periodic complex nonlinear modes. Moreover, Krack (2015)
used the extended periodic motion concept for nonconservative systems
(c.f. Definition 2.3) for the calculation of ENMs of larger scale FE models
subjected to friction and contact nonlinearities.

3.1.2 Requirements and Approach for Numerical
Nonlinear Modal Analysis

The field of numerical calculation of periodic solutions of systems with
local nonlinearities is comparatively advanced. There are several exam-
ples, where numerical algorithms have successfully been applied to large
scale industrial examples such as aircraft engines (Krack et al., 2017) or
automotive disc brakes (Cochelin and Vergez, 2009). However, most pub-
lications focus on the calculation of FRFs, whereas the efficient calculation
of nonlinear modes is less common. In particular, the capabilities of ad-
vanced computational algorithms in the context of nonlinear modal based
system identification have not been exploited yet. Previous work in this
field mostly relies on the shooting algorithm proposed by Peeters et al.
(2009), which provides a high accuracy but is computationally compara-
tively expensive. Furthermore, the relation of numerical calculations to

1Therefore, the method is sometimes referred to as Krylov-Bogoliubov method or,
particularly in system identification literature, as describing function method. It
is emphasized, however, that the HBM is only a special case of these methods for
periodic motions.
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experimental data is rarely discussed and not exploited for the identifica-
tion of predictive models.
The goal of this chapter is to propose a numerical algorithm which is

more appropriate for the purpose of nonlinear system identification and
which can be used for the derivation of predictive models. To this end, the
following requirements have to be met:

1. high computational efficiency and robustness

2. direct comparability to experimental results

3. potential for the treatment of complex structures

4. extendability to nonsmooth and nonconservative nonlinearities

To fulfill these requirements, a HBM based approach is used instead of a
shooting method. A conceptual advantage of the HBM is that the compu-
tational efficiency can be increased by the filtering of internal resonances.
Whereas in shooting methods the complexity of the frequency-energy plot
is solely determined by the system’s properties, the HBM allows for a re-
duction of computational complexity by choosing the number of frequencies
included in the ansatz functions. The filtering characteristic is particularly
appealing in conjunction with experimentally obtained nonlinear modes as
the quantitative measurement of internally resonant structures is currently
infeasible and the role of damping for the practical significance of inter-
nal resonances is unclear (Hill et al., 2016). If the numerical simulations
are compared to experimental results, it is possible to give an a priori esti-
mate which frequencies are significant and chose a suitable ansatz function.
Moreover, the results of the HBM are obtained in the frequency domain,
which allows for a direct comparison with experimental results, which are
typically obtained after WT or Fast Fourier Transform (FFT) of the mea-
sured signals. A particular advantage that can be exploited in cases when
the frequency domain representation of nonlinear forces can be calculated
analytically, is that measured Fourier coefficients can directly be inserted in
a HBM based formulation of the equation of motion to identify coefficients
of the nonlinear forces as shown in Chapter 5.2.
To retain generality the HBM approach is embedded in a general sub-

structure framework, such that it can be used for the calculation of non-
linear modes of any spatially discretized structure with local nonlinearities.
The emphasis is put on structures with smooth polynomial stiffness non-
linearities as these are the primary focus of the experimental analysis in
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Figure 3.1: Discretized substructures coupled with nonlinear elements.

Chapter 6. However, it is desired that methods for the analysis of non-
linearly damped and nonsmooth structures can be included. Finally, it is
noted that recent developments in HBM based stability and bifurcation
analysis provide the possibility of including these topics in the simulations
(Detroux, 2016), although this is considered beyond the scope of this thesis.

3.2 Harmonic Balance Method

In this section, the HBM is derived in a general substructure framework
based on the work of Reuss et al. (2012) and Voormeeren et al. (2011). The
approach is adapted for the computation of nonlinear modes according to
Definition 2.1. For the sake of clarity, the substructure formulation is de-
rived in the physical domain, however, it is noted that it can be derived
analogously in the frequency domain using a frequency based substructur-
ing formulation or modal domain where it can be combined with model
reduction techniques yielding a Component Mode Synthesis (CMS) formu-
lation (De Klerk et al., 2008). The latter approach is briefly addressed in
Section 3.2.5.
For illustration, an example of a mechanical system, which consists of

two substructures A and B, as it is shown in Fig. 3.1, is considered. The
substructures are spatially discretized, e.g., using the FE method, and
each of the substructures can be modeled by a set of linear ODEs. The
DOFs associated to the nodes at which the structures are coupled to one
another are attributed to the set of interface DOFs I. For the case of
nonlinear modes as defined in Definition 2.1, the system is considered to
be conservative such that the linear substructures as well as the coupling
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forces are conservative. The equation of motion of a system of this form
can be written as

Mẍ(t) + Kx(t) + fnl(x(t)) = 0, (3.1)

where M and K contain the mass and stiffness matrices of all substructures
in a block-diagonal form. In the example in Fig. 3.1 the mass and stiffness
matrices are

M = diag {MA,MB} and K = diag {KA,KB} , (3.2)

where MA and MB denote the mass matrices and KA and KB the stiffness
matrices of the individual substructures. The vector fnl(x(t)) contains the
coupling forces λ acting on the interface DOFs. The coupling forces λ can
be written as (potentially nonlinear) functions of the (relative) displace-
ment u(t) in the interface as

λ = gnl(u(t)) (3.3)

which are related to x(t) by the signed Boolean matrix B as

u(t) = Bx(t). (3.4)

The relationship between the local coupling forces and the generalized force
vector follows from the principle of virtual work:

δW = δxTfnl
!= δuTλ = δxTBTλ ∀δx

⇒ fnl = BTλ
(3.5)

which can be expressed in terms of the function gnl(u(t)) in Eq. (3.3)
yielding

fnl(x(t)) = BTgnl(u(t)) = BTgnl(Bx(t)). (3.6)

It is noted that the signed Boolean matrix B can be calculated based on
the force equilibrium in the interface

LTfnl(t) = 0, (3.7)

where L is a Boolean matrix localizing the interface DOFs within the
set of global DOFs using the relation BT = null(LT)(Reuss et al., 2012;
Voormeeren et al., 2011).
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In the following, the linear substructures are coupled to one another with
nonlinear elements such that the force gnl(u(t)) in Eq. (3.6) is a nonlinear
function of u(t).

Definition 3.1. The DOFs which are linked to nonlinear coupling ele-
ments are included in the set I and called nonlinear DOFs. The number
of nonlinear DOFs is Nnl. All generalized coordinates associated with the
nonlinear DOFs are included in the vector xnl(t) ∈ RNnl . The remaining
DOFs are called linear DOFs and their generalized coordinates are included
in the vector xln(t) ∈ R(N−Nnl).

It is noted that the vector of relative generalized coordinates u(t) in
the interface only depends on the nonlinear DOFs included in xnl(t), i.e.,
gnl(u(t)) = gnl(xnl(t)). Therefore, Eq. (3.1) can be rewritten as

Mẍ(t) + Kx(t) + BTgnl(xnl(t)) = 0. (3.8)

To include nonlinear forces in numerical simulations the HBM including
higher harmonics is utilized to approximate those forces (Reuss et al.,
2012). The HBM can also be interpreted as a Galerkin method with Fourier
ansatz functions. The generalized displacements of the system x(t) are as-
sumed to be periodic functions of time with the period length2 T = (2π)/ω
and can be represented by a Fourier series which is truncated to a finite
number of harmonics Nh

x(t) ≈ x0 +
Nh∑
n=1

xc,n cos(nωt) + xs,n sin(nωt). (3.9)

The assumption of periodicity does not pose any restriction in the context
of nonlinear mode calculation as conservative nonlinear modes are peri-
odic motions by definition (c.f. Definition 2.1). The Fourier series can be
associated to the set of orthonormal Fourier basis functions

F =
{

1√
T
c0

}
∪

{√
2
T
cn(t),

√
2
T
sn(t)|n ∈ N

}
, (3.10)

2The ansatz can be generalized to include subharmonic motions. Then the period
length has to be chosen based on the lowest subharmonic frequency (c.f. Peter et al.
(2014))



30 3 Numerical Calculation of Nonlinear Modes

which includes the orthogonal ansatz functions

c0 = 1,
cn(t) = cos (nωt),
sn(t) = sin (nωt)

 for n ∈ N and t ∈ [0, T ]. (3.11)

In the function space F , the inner product of two functions f(t) and h(t)
is defined as

〈f(t), h(t)〉 =
∫ T

0
f(t)h(t)dt. (3.12)

The ansatz functions in Eq. (3.11) can be written in a compact vector
notation:

Γ(t) = [c0, c1(t), s1(t), ..., cNh(t), sNh(t)]T = [Γ1, ...,Γ2Nh+1(t)]T. (3.13)

Using this vector of ansatz functions, the Fourier series in Eq. (3.9) can be
written in a matrix-vector notation

x(t) = V(t)Tx, (3.14)

where V(t)T ∈ RN×N(2Nh+1) is defined as

V(t)T = [c0IN , c1(t)IN , s1(t)IN , ..., cNh(t)IN , sNh(t)IN ]T

=
(
Γ(t)T ⊗ IN

)T
,

(3.15)

with the N×N identity matrix IN and the Kronecker product ⊗. Herein, x
contains the Fourier coefficients of the generalized displacement,
i.e., x = [xT

0 ,x
T
c,1,x

T
s,1, ...,x

T
c,Nh ,x

T
s,Nh ]T ∈ RN(2Nh+1). For the Galerkin

method, the virtual displacements are expanded using the same ansatz
functions Γ(t) yielding

δx(t) = V(t)Tδx. (3.16)

The virtual action integral of the system in Eq. (3.1) can be written as

0 = δA =
∫ T

0
δWdt =

∫ T

0
δx(t)T (Mẍ(t) + Kx(t) + fnl(x(t))) dt ∀δx(t),

(3.17)



3.2 Harmonic Balance Method 31

which has to vanish for all virtual displacements. The ansatz functions in
Eq. (3.14) and their time derivatives

ẋ(t) =
(
Γ(t)T∇⊗ IN

)
x = V(t)T(∇⊗ IN )x

ẍ(t) =
(
Γ(t)T∇2 ⊗ IN

)
x = V(t)T(∇2 ⊗ IN )x

(3.18)

with (Laxalde et al., 2008)

∇ = diag
{

0,
[

0 ω
−ω 0

]
, ...,

[
0 Nhω

−Nhω 0

]}
and ∇2 = ∇∇ (3.19)

are inserted in Eq. (3.17) together with the virtual displacement field ex-
panded on the same ansatz functions (c.f. Eq. (3.16)) yielding

0 = δA =

δxT
∫ T

0

(
V(t)MV(t)T(∇2 ⊗ IN )x+ V(t)KV(t)Tx+ V(t)fnl(x(t))

)
dt.

(3.20)

The orthogonality properties of the ansatz functions yield

〈Γi(t),Γj(t)〉 =
∫ T

0
Γi(t)Γj(t)dt = δijGij . (3.21)

where δij denotes the Kronecker delta and Gij a constant scaling factor
related to the norm of the ansatz functions in Γ(t). For the orthonormal
Fourier basis functions in F , the ansatz functions are normalized, i.e., then
GFij = 1. Therefore, a normalization is performed upon integration, to
obtain the Fourier coefficients by introducing a matrix G = diag {1/Gii}.
The orthogonality relations allow for a direct evaluation of the linear terms
of Eq. (3.20) yielding

0 = δA = δxT
(

H(ω)x+ G
∫ T

0
V(t)fnl(x(t))dt

)
∀δx (3.22)

with the blockdiagonal dynamic stiffness matrix

H(ω) = diag
{
K, (−ω2M + K), ..., (−Nh2ω2M + K)

}
, (3.23)
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which can be written in a compact form as

H(ω) = ∇2 ⊗M + I2Nh+1 ⊗K. (3.24)

This type of Galerkin projection can be viewed as a means of transforming
the equation of motion into the frequency domain as in this case a Fourier
series is used as projection basis. However, it should be noted that also
modified projection bases can be used, for instance to compute complex
nonlinear modes (c.f. Section 3.5) or quasi-periodic motions (Guskov and
Thouverez, 2012; Krack et al., 2016). The transformation of the nonlinear
terms of Eq. (3.22), i.e.,

fnl(x, ω) = G
∫ T

0
V(t)fnl(x(t))dt (3.25)

into the frequency domain is nontrivial, as for most nonlinear functions
fnl(x(t)) no simple orthogonality relations are retained. There are differ-
ent methods for the evaluation of these Fourier integrals and its realiza-
tion is regarded a key factor for a computational efficient HBM algorithm
(Petrov and Ewins, 2002). Therefore, the implementation within this work
is discussed in some detail in Section 3.2.4.
The general problem which has to be solved to obtain periodic solutions

can be formulated as

H(ω)x+ fnl(x, ω) = 0, (3.26)

which is an implicit nonlinear algebraic equation system of dimension
N(2Nh + 1). It should be noted that the number of unknowns in the
system in Eq. (3.26) exceeds the number of equations by one, as the fre-
quency is unknown as well as all Fourier coefficients. Furthermore, there
exists an infinite number of solutions dependent on the magnitude of x.
Therefore, in the next section a normalization procedure is discussed to
obtain a specific solution.

3.2.1 Phase Normalization and Continuation on Energy

The implicit nonlinear algebraic equation in Eq. (3.26) has to be solved
iteratively. Therefore, a residual r(x, ω) is defined as

r(x, ω) = H(ω)x+ fnl(x, ω), (3.27)



3.2 Harmonic Balance Method 33

which has to be iterated towards zero to obtain an approximation of a pe-
riodic solution. As explained in Chapter 2, a nonlinear mode consists
of infinitely many periodic nonlinear modal motions, e.g., solutions of
Eq. (3.27). Therefore, a normalization procedure with respect to some
parameter has to be applied to obtain a specific solution. The parame-
ter is then varied by a path-following algorithm to calculate a branch of
solutions. For the normalization, different strategies can be found in liter-
ature. Based on the fact that the frequency of oscillation may change de-
pending on the total energy, strategy (a), which is for instance followed by
Peeters et al. (2009), is to use the frequency (or period time) as parameter.
This method can be applied in cases when the nonlinear modal frequency
changes, whereas problems are encountered when the nonlinear modal fre-
quency remains constant with energy, e.g., in the linear regime. Strategy
(b) is to directly use the initial displacement or velocity as a parameter,
which can be adapted to frequency domain approaches by simply setting
one Fourier coefficient to a specific value (Laxalde and Thouverez, 2009).
Method (b) inherently requires the choice of a master coordinate xm, for
which the Fourier coefficient is used as parameter. This approach can cause
problems in cases where a strong change in mode shape occurs, e.g., caused
by an internal resonance, such that the master coordinate may actually go
to zero. Furthermore, in cases where strong and sudden changes of the sys-
tem behavior are expected, e.g., due to nonsmooth behavior, the method
may affect the convergence of the solution process. Alternatively, strategy
(c) is to directly parametrize the solution branch in the frequency-energy
plot with respect to the energy. This strategy is, for instance, followed by
Arquier et al. (2006), who parametrized the solutions with respect to the
total energy in the system. For frequency domain approaches Krack et al.
(2013) propose to use the average kinetic energy over one period

Ekin = 1
T

∫ T

0

1
2 ẋ(t)TMẋ(t)dt, (3.28)

because this quantity is independent of the nonlinear force and can be di-
rectly evaluated in the frequency domain with Parseval’s theorem yielding

Ekin = −1
4x

T(∇2 ⊗M)x. (3.29)
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The advantage of the energy based parametrization is that the energy is
dependent on the frequency and the complete nonlinear mode shape, such
that problems related to the strategies (a) and (b) are circumvented and a
robust computational procedure is achieved. With this additional energy
equation the number of unknowns is equal to the number of equations in
Eq. (3.27).
Another issue, that is well-known for autonomous systems, is that the

periodic solutions form closed curves in phase space and the absolute phase
is arbitrary. Therefore, the initial condition is not unique, such that the
solution of Eq. (3.27) is also not unique, which may cause numerical prob-
lems. Hence, a phase normalization is performed. One strategy for phase
normalization, which is for instance used by Peeters et al. (2009) in the
shooting method, is to set the initial condition of the velocity of a specific
DOF to zero, i.e., ẋm(t = 0) = 0. By doing this, the number of unknowns
is reduced by one and the system becomes overdetermined. The resulting
system can then be solved in a least squares sense. A different approach
is to introduce an artificial damping term, as proposed by Arquier et al.
(2006), which goes to zero in the case of a periodic motion. This method
increases the number of unknowns by one, such that a unique solution can
be obtained for the system with phase condition. It is interesting to note,
that the approaches by Laxalde and Thouverez (2009) and Krack (2015)
for the calculation of nonconservative nonlinear modes essentially lead to
the same formulation, i.e., an additional damping parameter is introduced
which is zero in the case of a conservative system.
In this work a different method for the phase normalization is adopted,

which does neither require the solution of an overdetermined system nor
the calculation of artificial parameters. It is shown by Petrov (2012) for the
case of limit cycle oscillations that the phase condition in time domain can
be transferred into the frequency domain by setting one Fourier coefficient
of the Fourier series in Eq. (3.14) to an admissible arbitrary value, which is
below the maximum amplitude of vibration. In the case of nonlinear mode
calculation the condition

xm
s,1 = 0, (3.30)

is a natural choice for fixing the phase. For the HBM, the phase condition
can directly be included in the ansatz functions with which the Galerkin
projection is carried out, reducing the dimension of the function space F
by one. In other words, a periodic solution is calculated which inherently
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fulfills the phase condition stated in Eq. (3.30). This approach can be
extended to simplify the computation of monophase nonlinear modes as
explained in Section 3.2.5.

3.2.2 Condensation to Nonlinear Degrees of Freedom

A computational advantage which can be exploited if nonlinear modes are
calculated with a HBM approach is that the resulting algebraic system
in Eq. (3.26) allows for an exact condensation on the nonlinear DOFs in
cases in which there is a (relative) motion in the interface. Thereby, the
dimension of the problem can be reduced from N(2Nh+1) to Nnl(2Nh+1),
which can considerably reduce the computational burden particularly for
large linear models with few nonlinear DOFs, i.e., for Nnl << N . As
proposed by Nacivet et al. (2003) the problem stated in Eq. (3.26) can be
partitioned by separating the linear and nonlinear DOFs:[

Hlnln(ω) Hlnnl(ω)
Hnlln(ω) Hnlnl(ω)

][
xln
xnl

]
+
[

0
gnl(xnl, ω)

]
= 0. (3.31)

The nonlinear forces acting on the linear part of the structure are zero,
such that the first line of Eq. (3.31) can be explicitly solved for xln and
inserted in the second line yielding(

Hnlnl(ω)−Hnlln(ω)H−1
lnln(ω)Hlnnl(ω)

)
xnl + gnl(xnl, ω) = 0, (3.32)

which can be written in a compact form as

Hred(ω)xnl + g(xnl, ω) = 0. (3.33)

Hence, the size of the problem which has to be solved iteratively is deter-
mined solely by the number of nonlinear DOFs and the linear DOFs xln
can be calculated a posteriori by evaluating the first line of Eq. (3.31):

xln = H−1
lnln(ω)Hlnnl(ω)xnl = Axnl. (3.34)

For the evaluation of the energy in Eq. (3.29) the matrix M̌(ω) = ∇2⊗M is
partitioned analogously to the dynamic stiffness matrix. Using Eq. (3.34)
the energy can be expressed as a function of the nonlinear displacements
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as

Ekin = −1
4x

T
nl
(
M̌nlnl + ATM̌lnnl + M̌nllnA + ATM̌lnlnA

)
xnl

= −1
4x

T
nlM̌red(ω)xnl.

(3.35)

Although the exact condensation considerably reduces the computational
effort, when the system is modeled with a large number of linear DOFs,
it should be noted that the calculation of the reduced dynamic stiffness
matrix Hred(ω) involves the calculation of the inverse H−1

lnln(ω). Further-
more, these matrices depend on ω which makes a recalculation of Hred(ω)
in every iteration necessary. As this may generally diminish the computa-
tional advantage, a reformulation of the system in mixed-modal-physical
coordinates based on a Craig-Bampton reduction basis is proposed in Sec-
tion 3.2.5.

3.2.3 Predictor-Corrector Method

The residual of the reduced system of equations can be formulated together
with the condition for the parametrization with respect to the mean kinetic
energy as

re(xnl, ω) =
[

Hred(ω)xnl + g(xnl, ω)
Ekin + 1

4x
T
nlM̌red(ω)xnl

]
. (3.36)

For the iterative solution of a system of nonlinear algebraic equations there
exist numerous methods (Dahmen and Reusken, 2008). In the case of non-
linear mode calculation, multiple solutions may occur for the same energy,
e.g., caused by internal resonances. Therefore, the solution method has
to be combined with a path-following algorithm to be able to calculate a
complete branch of the frequency-energy plot. To this end, several path-
following algorithms are available (Seydel, 2009). For the purpose of non-
linear mode calculation the performance of several algorithms has been
explored by Jerschl et al. (2014a,b). In this thesis, a predictor-corrector
method which is based on the work of Allgower and Georg (1994) is im-
plemented, which is briefly outlined in the following. For notational con-
venience an extended vector of unknowns y = [xnl, ω, Ekin]T is introduced,
where Ekin is the path following parameter. For the prediction, a tangent
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predictor step is used based on the previous solution, i.e.,

ypred
m+1 = ym + hvm, (3.37)

where vm denotes the normalized tangent vector at the m-th point along
the solution curve and h a step size factor. The corrector step is performed
using Newton-like iterations

yi+1
m+1 = yim+1 −

[
J

vi T
m+1

]−1 [
rie
0

]
,

vi+1
m+1 = vim+1 −

[
J

vi T
m+1

]−1 [
Jvim+1

0

]
,

(3.38)

where i denotes the iteration number and J the Jacobian matrix of the
extended system in Eq. (3.36), i.e.,

J =
[
∂re(xnl, ω)

∂xnl
,
∂re(xnl, ω)

∂ω
,
∂re(xnl, ω)
∂Ekin

]
. (3.39)

With this Newton-like corrector step the residual re is iterated towards
zero with the condition(

yi+1
m+1 − y

i
m+1

)
⊥ vim+1, (3.40)

i.e., the iterations are performed in a hyperplane perpendicular to the
tangent vector vi T

m+1. Simultaneously, the tangent vector is updated in
each iteration by iterating Jvim+1 to zero with the condition(

vi+1
m+1 − v

i
m+1

)
⊥ vim+1. (3.41)

This type of Newton-like continuation algorithm, which is is also imple-
mented, e.g., in the Matcont software package (Dhooge et al., 2003), pro-
vides robust convergence properties for nonlinear mode calculation. Fur-
thermore, it has been shown by Detroux et al. (2015) that this method can
be easily extended for the use in bifurcation analysis.

A critical factor regarding the computational performance of a predictor-
corrector algorithm is the choice of the step length h for the prediction (c.f.
Eq. (3.37)). If the step size is chosen to be a constant factor, at most a
suboptimal computational performance can be achieved. Therefore, the
step size factor is typically adjusted based on the convergence properties
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Figure 3.2: Schematic sketch of step size algorithm.

of the corrector step, such that an optimal number of corrections is achieved
(Seydel, 2009). In this work this strategy is augmented by a multi-level
trial and error procedure. A trial and error based step size control is found
to be beneficial in cases where strong and sudden changes in the solution
curve appear (Niet, 2002). This is, for instance, expected for nonsmooth
problems (c.f. Section 3.4). The proposed step size algorithm is shown in
Fig. 3.2. The predictor step is performed with a given step size h. Then
the corrector step iterates the residual towards zero. In a first trial, a
small number of it1 iterations is performed. If no convergence is achieved
within i < it1 iterations, then the predictor step is repeated with a reduced
step size. The step size is adjusted based on a pre-set number of optimal
iterations iopt and a step size multiplier δh > 1. In the second trial stage
a larger number of corrector iterations it2 is tolerated, before prediction is
repeated and the step size is reduced to the minimal value hmin. In the
third and last trial the maximal number of correction iterations imax is
performed. In the case of convergence in one of the trial stages, i.e., if the
norm of the residual is smaller than an accepted value racc, a new step size
is calculated for the prediction of the next point on the curve ypred

m+2.

3.2.4 Analytical Formulations for Nonlinear Forces and
Jacobian Matrices

For the solution of the residual equation the nonlinear forces have to be
evaluated in the frequency domain and the Jacobian matrix of the sys-
tem has to be calculated. The calculation of the Jacobian matrix of the
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linear part of the system is rather straightforward3. In the following the
attention is drawn towards the evaluation of the nonlinear forces and their
derivatives.
For the calculation of the nonlinear forces in the frequency domain the

integral in Eq. (3.25) has to be evaluated. Generally, the functional depen-
dence of the Fourier coefficients of the force on the Fourier coefficients of the
displacements is unknown and, in contrast to the linear forces, no simple
orthogonality relations can be found which would facilitate the evaluation.
As shown above, in addition to the nonlinear forces, also their derivatives
with respect to the displacement and the frequency are required for the
solution process. The efficient realization of this task often turns out to
be a bottleneck of the computational algorithm such that numerous publi-
cations are dedicated to this subject. The most common approach for the
solution of the integral in Eq. (3.25) is the Alternating-Frequency-Time
(AFT) method, which has been proposed by Cameron and Griffin (1989).
The basic idea of AFT algorithms is to exploit the efficiency of the FFT to
transform the Fourier coefficients of the displacement into the time domain,
calculate the nonlinear forces in the time domain and transform the non-
linear forces back into the frequency domain. The main advantage of this
method is that it is applicable to any kind of nonlinearity and the imple-
mentation effort is limited. Furthermore, the method provides a good com-
putational performance, if it is combined with a semi-analytic evaluation
of the Jacobian matrix as proposed by Cardona et al. (1994). A different
approach for the evaluation of the nonlinear forces is the combination of a
quadratic recast, i.e., a reformulation of the problem yielding polynomial
nonlinearities with at most quadratic terms, and the asymptotic numerical
method (ANM), which allows for the calculation of the nonlinear forces
directly in the frequency domain (Cochelin and Vergez, 2009). Besides
the computational efficiency of this method, it has the drawback that it
requires the quadratic recast of the system, which is particularly difficult
to achieve for systems with nonsmooth nonlinearities.
In this work a different approach is used, with which the dependency of

the Fourier coefficients of the nonlinear forces and their derivatives in the
frequency domain are calculated analytically in closed form. This method
provides the advantage of a high computational efficiency, but does not re-
quire the quadratic recast of the system, such that it can be easily combined

3For completeness all derivatives of the linear parts of the condensed system are
included in Appendix B.
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with well-known approaches for the treatment of nonsmooth nonlinearities,
which typically rely on the AFT method or the Mixed Shooting HBM (c.f.
Section 3.4). The method proposed here can be regarded as a generaliza-
tion of the work by Petrov and Ewins (2002), who derived an analytical
formulation for the treatment of nonlinear contact forces. The focus in
this thesis is put on polynomial nonlinearities, however, the general idea
is transferable to other types of nonlinearity. It is noted that a related
approach has been used by Krack et al. (2013) for systems with distinct
states and polynomial nonlinearties, under application of the convolution
theorem.

In the following, for notational convenience, the local nonlinear force of
a single nonlinear DOF is considered, however, the treatment of multiple
nonlinear DOFs is straightforward. The local nonlinear force of a specific
nonlinear DOF can be written according to Eq. (3.25) as

gnl(u, ω) = G
∫ T

0
Γ(t)gnl(u(t))dt =

∫ T

0
Γ+(t)gnl(Γ(t)Tu)dt (3.42)

with

Γ+(t) = GΓ(t) (3.43)

and u being the Fourier coefficients of the local displacements. The funda-
mental idea is to separate the time dependent terms in the integral from
the Fourier coefficients, such that the integral can be solved analytically
and the integration is independent of the Fourier coefficients in u. If this
separation is possible, then Eq. (3.42) can be replaced by a simple matrix-
vector multiplication

gnl(u, ω) = κW(ω)ǔ(u) (3.44)

where κ is some coefficient representing the nonlinear stiffness and the
matrix W(ω) can be calculated analytically by integration of

W(ω) =
∫ T

0
Γ+(t)Γ̌(Γ(t))Tdt. (3.45)

Herein the (̌·) indicates that the vector ǔ(u) is a vector containing the
Fourier coefficients u and the vector Γ̌(Γ(t)) is a vector containing the
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ansatz functions included in Γ(t). The practical calculation of these vectors
is illustrated at the examples of a monomial stiffness nonlinearity.

Example 3.1. Consider a nonlinear function of the monomial form

gnl(u(t)) = κ(u(t))p, (3.46)

where κ denotes the coefficient of the monomial and p its degree. The
Fourier coefficients of the monomial force can be calculated with Eq. (3.42)
as

gnl(u, ω) =
∫ T

0
Γ+(t)g(Γ(t)Tu)dt =

∫ T

0
Γ+(t)κ(Γ(t)Tu)pdt. (3.47)

Which includes a polynomial of the form

(Γ(t)Tu)p = (Γ1(t)u1 + ...+ ΓK(t)uK)p, (3.48)

where K = 2Nh + 1 denotes the number of elements included in Γ(t)
and u respectively. The polynomial can be expanded and written as a
multinomial sum in a multi-index notation as

(Γ(t)Tu)p =
∑

k1+...+kK=p

(
p

k1, ..., kNη

)
(Γ1(t)u1)k1 ...(ΓK(t)uK)kK (3.49)

which contains

η =
(
K + p− 1

p

)
=
(

2Nh + p
p

)
= (2Nh + p)!

(2Nh)!p! (3.50)

summands. Each of these summands is a product of monomials included
in Γ(t) and u up to power p and a constant represented by the binomial
coefficient. The expanded polynomial can then be written in terms of two
vectors Γ̌(Γ(t)) and ǔ(u) of the size η × 1 such that the nonlinear force
can be rearranged as

gnl(u, ω) = κ

∫ T

0
Γ+(t)Γ̌(Γ(t))ǔ(u)dt, (3.51)

which is the form of Eq. (3.44) and allows for an analytical integration of
the time dependent parts.
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Example 3.1 illustrates how the nonlinear forces can be calculated ana-
lytically in the frequency domain. The advantage of the proposed method
is that the obtained expressions for the nonlinear forces are exact and do
not involve any numerical errors. Furthermore, the calculation of the Ja-
cobian matrix of the nonlinear force can also be performed analytically
yielding

∂gnl(xnl, ω)
∂xnl

= κW(ω)∂ǔ(xnl)
∂xnl

(3.52)

and
∂gnl(xnl, ω)

∂ω
= κ

∂W(ω)
∂ω

ǔ(xnl). (3.53)

The calculation of the matrix W(ω) involves the analytical integration of
a potentially large matrix of combinations of trigonometric functions. For
instance, for the polynomial stiffness nonlinearity the dimensions of the
matrix is η × 2Nh + 1, where η increases rapidly for an increasing number
of harmonics and degree of the polynomial. However, the integration only
has to be performed once for each type of nonlinear function and number
of harmonics, yielding a closed form solution for the nonlinear force and
their derivatives which can then be used for the calculation of arbitrary
systems including the respective nonlinearity.

It is noted that the proposed approach is generally not limited to contact
(c.f. Petrov and Ewins (2002)) or polynomial stiffness nonlinearities, but
can be extended to any nonlinear function which allows for a separation
of time and amplitude dependent terms of the integral in Eq. (3.25). For
piecewise defined functions, the integral generally has to be split between
different state transitions instead of an integration over the whole period
(Krack et al., 2013; Petrov and Ewins, 2002). The state transitions can
be efficiently calculated with the method proposed by Boyd (2006). In
the numerical code used in this thesis three different nonlinearities are im-
plemented: polynomial stiffness, polynomial damping and piecewise linear
functions4. The formulations for these three types of nonlinearities are
summarized in Tab. 3.1.

4Details the derivation of the analytical formulation for the piecewise linear forces
can be found in Peter et al. (2014).
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gnl(u(t)) κ(u(t))p κ(u̇(t))p
{
k0(u(t)− z0) con.
0 sep.

gnl(u, ω) κWǔ(u) κW(ω)ǔ(u)
{
k0(W(ω)u−w(ω)z0) con.
0 sep.

η
(2Nh + p)!
(2Nh)!p!

(2Nh + p)!
(2Nh)!p!

2Nh + 1

∂gnl(u, ω)
∂u

κW
∂ǔ(u)
∂u

κW
∂ǔ(u)
∂u

{
k0W con.
0 sep.

∂gnl(u, ω)
∂ω

0 κpωp−1Wǔ(u)
{
k0
(
∂W(ω)
∂ω

u− ∂w(ω)
∂ω

z0
)

c.
0 s.

Table 3.1: Summary of analytical formulations of nonlinear forces and their
derivatives in the frequency domain.

3.2.5 Computational Simplifications
The HBM algorithm described above is generally suitable for the calcula-
tion of nonlinear modes of systems with many DOFs. However, the com-
putational burden can be further reduced for certain classes of systems
and nonlinear modes. Furthermore, the number of linear DOFs can be
reduced and the problem can be written in mixed-modal-physical coordi-
nates, which reduces the computational cost for the condensation.

Monophase and Symmetric Nonlinear Modes

From a historical point of view, monophase and symmetric nonlinear modes
are of particular interest. This can be attributed to the first definition of
nonlinear modes by Rosenberg (1960), which are by concept monophase
motions (c.f. Definition 2.6). Moreover, the first method for the measure-
ment of nonlinear modes, which has been proposed by Peeters et al. (2011)
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is also limited to monophase motions. Therefore, it is noteworthy that the
computational burden for this class of nonlinear modes can considerably
be reduced in the proposed HBM framework by modifying the functional
basis of the ansatz functions given in Eq. (3.10). For monophase motions
a pure cosine (or sine) ansatz can be made yielding a modified function
basis

Fmono =
{

1√
T
c0

}
∪

{√
2
T
cn(t)|n ∈ N

}
, (3.54)

which reduces the number of the unknowns in Eq. (3.33) from Nnl(2Nh+1)
to Nnl(Nh + 1). For symmetric motions, the function basis can be further
reduced by the constant functions such that the number of the unknowns
in Eq. (3.33) reduces to NnlNh, i.e., the problem size is reduced to less
than half of the original problem size.

Component Mode Synthesis and Mixed-Modal-Physical
Formulation

The size of the problem in Eq. (3.33), which has to be solved to obtain
a nonlinear modal motion, is governed by the number of nonlinear DOFs
Nnl. However, the calculation of the reduced dynamic stiffness matrix (c.f.
Eq. (3.32)) involves the calculation of an inverse matrix of which the size
is determined by the number of linear DOFs Nln = N − Nnl. For sys-
tems modeled with a large number of linear DOFs this may considerably
slow down the calculation. It is common practice to reduce the number
of DOFs of linear systems by the CMS method. There are different ap-
proaches for CMS, which are described, e.g., in the book of Craig and
Kurdila (2006) and the review paper by Craig (2000). A particularly pop-
ular method for CMS is the method introduced by Craig and Bampton
(1968), yielding a mixed-modal-physical representation of the system. For
the Craig-Bampton (CB) reduction, the mass and stiffness matrices are
partitioned in the form5[

Mlnln Mlnnl
Mlnnl Mnlnl

][
ẍln
ẍnl

]
+
[
Klnln Klnnl
Klnnl Knlnl

][
xln
xnl

]
=
[

0
gnl

]
. (3.55)

5It is assumed, for simplicity, that all interface DOFs are included in the set I of
nonlinear DOFs and the free DOFs are the linear DOFs of the system.
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Then the fixed interface modes of the linear DOFs can be calculated solving
the linear eigenvalue problem(

−ω2
0,ln,iMlnln + Klnln

)
φln,i = 0, (3.56)

where ω0,ln,i denotes the i-th eigenfrequency of the linear subsystem and
φln,i the corresponding eigenvector. In addition to these fixed interface
modes, the CB reduction basis features the constraint modes

Ψc = −K−1
lnlnKlnnl (3.57)

obtained by applying a unit displacement to the interface DOFs. The CB
transformation can then be written as[

xln
xnl

]
=
[
Φln Ψc
0 INnl

][
qln
xnl

]
= Θ

[
qln
xnl

]
. (3.58)

Herein, qln denotes the displacement of the linear DOFs in modal coordi-
nates of the fixed interface modes. Typically, this CB transformation is
used in combination with a truncation of the fixed interface modes such
that the number of generalized coordinates is reduced. This can also be
done in the context of nonlinear mode calculations, however, it is explained
in the following that the mixed-modal-physical representation of the sys-
tem improves the computational performance even in cases where no modal
truncation is applied. Using the CB basis Θ the mass and stiffness matrix
can be calculated as

MCB = ΘTMΘ (3.59)

and

KCB = ΘTKΘ. (3.60)

The CB transformation matrix contains the fixed interface normal modes,
i.e., the normal modes of the linear partition of the system. Thus, the
transformation diagonalizes the linear partition of the mass and stiffness
matrix. If mass normalized eigenvectors are used, then the linear partition
of the mass matrix becomes

MCB,lnln = INln (3.61)
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and the stiffness matrix becomes

KCB,lnln = diag
{
ω2

0,ln,1, ..., ω
2
0,ln,Nln

}
. (3.62)

Therefore, the calculation of the inverse of the linear partition of the dy-
namic stiffness matrix in Eq. (3.32) becomes the trivial inversion of a diag-
onal matrix. Moreover, since the inverse can be calculated in closed form
the calculation of the derivatives of the dynamic stiffness matrix (c.f. Ap-
pendix B) is also trivial. It is emphasized that this approach is different to
the method proposed by Krack et al. (2013), who applied a spectral decom-
position to the complete system to simplify the matrix inversion but solves
the system in the physical domain. This approach has the drawbacks that a
transformation back into the physical domain is necessary, which involves
additional matrix multiplications and the inversion becomes impossible
when the nonlinear modal frequency is equal to the linear modal frequency,
which makes the spectral matrix singular. Both issues are avoided if the
mixed-modal-physical formulation is used, such that it is worthwhile to
solve the problem directly in mixed-modal-physical coordinates. Further-
more, it is highlighted that in many practical cases, in which large scale
structures are considered, the original FE models are reduced anyway, such
that a CB reduction basis may be at hand without additional computa-
tional effort. Finally, it is pointed out that the efficient condensation in
mixed-modal-physical coordinates is not restricted to undamped systems
but can also be generalized to systems with Caughey-type damping, for
which the dynamic stiffness matrix becomes block diagonal. This general-
ization is necessary for frequency response calculations, the calculation of
complex nonlinear modes or the calculation of nonlinear modes according
to the extended periodic motion concept and is included for completeness
in Appendix C.

3.3 Application Example: Truck with Nonlinear
Elements

To demonstrate the applicability of the numerical algorithm, the applica-
tion example of a truck with nonlinear elements is considered. The numer-
ical results have been obtained in a feasibility study in cooperation with an
industrial partner and are only briefly discussed for the purpose of demon-
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Figure 3.3: Sketch of the truck and the simplified model of the cabin.

stration6. In commercial vehicles numerous potential sources of nonlinear
behavior can be found, e.g., bushing, bearing and damper elements in chas-
sis parts or in interfaces between different parts of the vehicle assembly. In
this demonstration example, the nonlinear elements in the connection be-
tween the driver’s cabin and the remaining vehicle are studied with regard
to their influence on the passenger comfort. Therefore, a truck is divided
into two substructures, one consisting of the cabin including its frame and
one consisting of the remaining parts of the vehicle. In the following, the
model is simplified by removing the remaining vehicle and coupling the
frame of the cabin to ground with nonlinear elements as shown in Fig. 3.3.

The numerical model of the cabin assembly consists of a FE model of the
frame which is connecting the cabin to the remaining vehicle (see Fig. 3.4),
and a rigid body model of the cabin itself. The structure is modeled in
Permas to obtain the mass matrix and the linear stiffness matrix. For
the passenger comfort analysis, a node is placed in the model at the po-
sition where the driver’s seat is located as indicated in Fig. 3.3. The FE
model, that features in total 154858 DOFs, is exported from Permas and
imported in the Matlab-based numerical code for the nonlinear analysis.
For the nonlinear analysis, in total 14 nonlinear elements are considered,
which are marked in Fig. 3.4 with black circles. These nonlinear elements
include elements connecting the frame to ground (the remaining vehicle)
and nonlinear connections between different parts of the frame assembly.

6More details can be found in Huchler (2018).
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Figure 3.4: Model of the frame connecting the cabin to the remaining vehicle.

Due to symmetry, the elements can be modeled with six different types of
nonlinear elements each having six DOFs. The nonlinear force law for each
DOF has been identified by curve fitting measured data of the respective
element and DOF. For the curve fitting, polynomials up to quintic order are
considered and all nonlinear forces are of stiffening type. More details on
the used polynomial for the individual DOFs are included in Appendix D.
For the HBM calculation, the 154858 DOFs are partitioned into 150

interface DOFs, which include DOFs connected to nonlinear elements and
the DOFs at the driver’s seat, and 154708 linear DOFs. Then, the CB
reduction is carried out and the linear DOFs are reduced to 200 fixed
interface modes, which includes modes up to approximately 2 kHz. A
number of 200 modes is regarded as sufficient, because the main concern
with regard to passenger comfort are low frequency vibrations. Thus, the
total number of DOFs of the considered model are N = 350 with Nnl = 150
nonlinear DOFs.
Low frequency modes which mainly describe a rigid body motion of the

cabin are of great importance for the passenger comfort. Therefore, these
modes and the impact of the nonlinear elements on the nonlinear modal
frequency and mode shape are analyzed here in more detail. The first three
linear modes of the structure describe a pitch, roll and heave motion of the
cabin. Modes four and five are local bending modes in the frame, which are
not relevant for the passenger comfort. In contrast, modes six and seven
are relevant yaw motions around two different centers of rotation and mode
eight describes a rocking motion of the driver’s cabin. A particularity of
the test structure is the high modal density of around 15 modes in the
frequency regime below 15 Hz. Therefore, in the nonlinear modal analysis,
a large variety of nonlinear modal interactions and internal resonances can
be observed.
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Figure 3.5: Frequency-energy plot of nonlinear modes one to three and six to
eight (a) and drive point FRF for two different excitation levels for
an excitation at the driver seat including backbone curves (b).

To reduce the complexity, the fundamental harmonic approximation of
the frequency-energy plot of the nonlinear modes one to three and six
to eight is shown Fig. 3.5(a). The frequency-energy plot shows that the
frequencies of the first three modes are very close. Therefore, even a small
shift in frequency due to nonlinear effects leads to modal coupling in a
1:1 internal resonance. To be more precise, it can be seen that the first
mode, the pitch motion, couples with the second mode, the roll motion
at Ekin ≈ 10−5. For higher energies Ekin ≈ 10−3 an additional coupling
of the second with the third mode, representing a heave motion, can be
observed. The yaw motions, nonlinear modes six and seven, are very similar
in frequency and shape such that even small influence of the nonlinearity
leads to a 1:1 internal resonance at Ekin ≈ 10−6. The coupled mode then
shows a strong stiffening behavior leading to an additional coupling to
mode eight at Ekin ≈ 10−5, such that for higher energies all three nonlinear
modes merge to one nonlinear modal motion which is a combination of the
two yaw motions and the rock motion. An additional modal coupling can
be observed at Ekin ≈ 10−1, where the third nonlinear mode couples with
the combined mode six, seven and eight.
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The frequency response for the forced and damped system for two differ-
ent excitation levels is shown in Fig. 3.5(b) along with the backbone curves
of modes one to three and six to eight. The FRF is calculated for sinusoidal
excitation at the driver’s seat in x-direction and the response at the same
DOF is plotted. Rayleigh-damping is used for the FRF calculation7. It can
be seen that the various internal resonances have a severe influence on the
forced response. In particular, additional periodic solutions at the first res-
onance occur for the high excitation level (see magnification in Fig. 3.5(b)),
which is caused by the 1:1 internal resonance of the first and second non-
linear mode. Moreover, the coupling effects between modes six to eight
and the additional coupling with mode three leads to a nontrivial relation
between the backbone curves of these modes and the forced response. This
effect clearly shows that the backbone curve as defined in Definition 2.5
departs from the curve connecting maxima of the FRFs, which is often
colloquially referred to as backbone curve. Another interesting effect, that
can be observed in this frequency range, is that the maximum amplitudes
are generally limited due to the effects of modal coupling. This can be at-
tributed to the fact that the vibration energy is distributed among several
modes.

The short digression to an industrial application example demonstrates
the capability of the numerical algorithm to treat systems of industrial scale
featuring very complex nonlinear modal dynamics. It is noted that the
experimental identifications of structures of such complexity using NEMA
is still remote. However, the study shows that the numerical analysis does
not seem to be the limiting factor in this context. As a closing remark
of the numerical study it is pointed out that numerical modal analysis
can provide an interesting novel tool for the investigation of commercial
vehicles. Especially, as it has been observed in this project that the effect
of nonlinear modal interactions is pronounced in such vehicles, due to the
high modal density. The positive effects of this modal coupling, such as the
limited amplitudes in a wide frequency range, have probably been used for
decades, but their design is rather based on experience than on rigorous
analysis.

7A more detailed analysis of damping effects, including the effect of nonlinear damper
elements, is omitted here for the sake of brevity.
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3.4 Extension to Nonsmooth Nonlinearities

Nonsmooth nonlinearities due to contact and friction are of high practical
relevance in many engineering structures. Therefore, the problem of ex-
tending the numerical method for nonlinear mode calculation of such sys-
tems is briefly outlined here. To be more precise, the extension to systems
with unilateral frictionless constraints is discussed. A more comprehensive
description of the numerical method, which is based on an extension of the
algorithm for FRF calculation proposed by Schreyer and Leine (2016b) and
Schreyer and Leine (2016a) is published in Peter et al. (2018b).
The modeling of contact interactions is the topic of numerous publi-

cations (Ibrahim, 2009). Three commonly used modeling approaches are
shown in Fig. 3.68. The contact can either be modeled by set-valued force
laws or regularized by a finite contact stiffness. If a finite contact stiffness is
used, then the problem of finding periodic solutions, i.e., also the problem of
calculating nonlinear modes, can be solved with conventional algorithms
such as the shooting method or the HBM derived above. In contrast,
set-valued force laws lead to differential inclusions or measure differential
inclusions which require special solution methods such as time-stepping al-
gorithms (Leine and Nijmeijer, 2004). Such time-stepping methods can be
included in shooting algorithms to find periodic solutions. It is shown by
Schreyer and Leine (2016a) that it is possible to combine shooting meth-
ods with the HBM yielding the so-called Mixed Shooting HBM (MSHBM)
to include nonsmooth contact dynamics in large scale multi-body or FE
systems.
For systems with impacts, a common method for the modeling of the con-

tact process is Newton’s impact law. However, for FE models the impact
law may become obsolete, as the impact process is sufficiently represented
by internal waves propagating in the FE structure. Even worse, an im-
pact coefficient e 6= 0 can lead to spurious high frequency vibration and
numerical problems. Moreover, a coefficient e 6= 1 leads to energy dissipa-
tion, which is not admissible in the context of conservative nonlinear mode
calculation.
The extension of the MSHBM algorithm by a mass redistribution pro-

posed by Schreyer and Leine (2016b) for the purpose of FRF calculation of
FE structures provides a remedy for both problems. The central idea is to

8The contact models are shown for a single frictionless contact and time dependence
is omitted in the figure for the sake of clarity.
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Figure 3.6: Overview of three different contact models, which can be included in
nonlinear mode calculations.

make the contact nodes massless9 yielding a modified version of Eq. (3.31):

[
Mlnln 0

0 0

][
ẍln(t)
ẍnl(t)

]
+
[
Klnln Klnnl
Knlln Knlnl

][
xln(t)
xnl(t)

]
+
[

0
λ(t)

]
= 0. (3.63)

It can be easily seen that the nonlinear partition of Eq. (3.63) reduces to
a quasi-static problem. In addition, the impact equation

M(ẋ+ − ẋ−) + BTΛ = 0 (3.64)

becomes obsolete. Therefore, no time integration is required to calculate
the nonlinear displacements in the time domain and the contact problem
can be solved, e.g., using a linear complementary problem. Subsequently,
compatibility between the Fourier transform of the nonlinear displacements
in time domain and the nonlinear displacements in the frequency domain,
i.e.,

xnl
!= FFT {xnl(t)} (3.65)

is enforced to obtain the solution in the frequency domain.
Although the MSHBM originally has been proposed for FRF calcula-

tion, the method is particularly suitable for the calculation of nonlinear
modes. Besides the numerical advantages, such as the general efficiency,
the avoidance of spurious high frequency vibrations and the availability

9In the example included in this thesis the mass of the contact node is simply ne-
glected. More sophisticated ways of mass redistribution are discussed, e.g., in
Khenous et al. (2008).
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of a semi-analytical Jacobian matrix, which are also reported in Schreyer
and Leine (2016b), the method provides specific numerical advantages for
the purpose of nonlinear mode calculation. First of all, the method is
energy consistent such that it can be easily incorporated in numerical for-
mulations for the calculation of conservative nonlinear modes according
to Definition 2.1. Second, the filtering property, which is well-known for
the conventional HBM is retained, such that internal resonances of minor
influence can be neglected by choice of the ansatz functions. This is par-
ticularly interesting for systems with severe impact nonlinearities which
typically encounter numerous internal resonances, making the nonlinear
mode calculation cumbersome (Lee et al., 2009).
Finally, it is noted that the MSHBM with redistributed mass matrix

does, unlike the Newton impact law or the contact stiffness method, not
require any contact parameters. The contact behavior is fully included
in the FE discretization allowing for a white-box modeling based on first
principles.

3.5 Extension to Nonconservative Nonlinearities

There are two approaches with which the computation of nonlinear modes
with the HBM can be easily extended to nonconservative systems. Al-
though the numerical study of nonlinear modes of nonconservative systems
is beyond the scope of this thesis, these approaches are briefly outlined here
for the sake of completeness.
The first approach of Laxalde and Thouverez (2009) aims at approxi-

mating the nonperiodic response of free and damped systems. Therefore,
the set F of basis functions Eq. (3.10) is modified by an exponential decay
term. This modification can be regarded as a means of a decomposition
of the motion into a slow time scale related to the exponential term repre-
senting the decay process and a fast time scale related to the trigonometric
function representing the oscillatory behavior of the system. The method
can be interpreted as a means of efficiently approximating the invariant
manifold of the system (c.f. Definition 2.2). The approach has been ap-
plied by Laxalde et al. (2008) and Krack et al. (2013) to bladed disks of
aircraft engines with frictional contact. For the purpose of system identifi-
cation it is conceivable to combine the numerical method with a resonance
decay measurement technique.



54 3 Numerical Calculation of Nonlinear Modes

The second approach by Krack (2015) is based on the extended periodic
motion concept for nonconservative systems (c.f. Definition 2.3). Since the
ENMs are periodic by definition, the extension of the numerical algorithm
for this purpose is straightforward. In the context of system identification
this numerical approach can be combined with steady-state measurements
as is shown in Scheel et al. (2018b).

3.6 Summary

The numerical calculation of nonlinear modes for the purpose of modal
based nonlinear system identification is discussed. In particular, the fol-
lowing aspects of numerical modal analysis are covered:

• An analytical HBM algorithm which is suitable for this purpose with
regard to efficiency, robustness and generality is proposed.

• The potential of the proposed numerical algorithm for nonlinear
modal analysis of industrial scale structures is demonstrated at the
example of a high fidelity model of a truck cabin.

• The extension of the numerical method to nonsmooth systems with
the MSHBM is explained and the treatment of nonlinearly damped
systems is briefly discussed.



Chapter 4

Experimental Extraction of Nonlinear
Modes

In this chapter, the experimental extraction of nonlinear modal characteris-
tics, i.e., NEMA, is discussed. The chapter starts in Section 4.1 with a brief
introduction to current methods for NEMA and a summary of their short-
comings. Special emphasis is put on the phase resonance approach, which
forms the foundation of the developments in this thesis. Subsequently,
in Section 4.2, a new framework for the robust NEMA is proposed. The
method is illustrated at a realistic numerical example in Section 4.3. The
generalization of the method to systems with nonsmooth and damping
nonlinearities is discussed in Sections 4.4 and 4.5, respectively. The contri-
butions of the thesis in the field of NEMA are summarized in Section 4.6.

4.1 Introduction to Nonlinear Experimental Modal
Analysis

The experimental extraction of nonlinear modal parameters is a compar-
atively new area of research (c.f. Section 1.3). While the direct extension
of linear EMA methods to nonlinear systems is strictly limited to systems
with weak nonlinearities, the concept of nonlinear modes provides a rigor-
ous theoretical framework for the treatment of arbitrary nonlinear systems.
The sound theoretical basis and clear physical meaning, as opposed to em-
pirical mode decomposition or proper orthogonal modes, motivates the use
of the concept of nonlinear modes in this thesis.
The first approach for the measurement of nonlinear modes, proposed by

Peeters et al. (2011), attempts to isolate a single nonlinear mode at a time.
The method is conceptually related to phase resonance testing of linear
systems and is therefore referred to as nonlinear phase resonance testing.
A different approach for the extraction of nonlinear modes is pursued by

55
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Noël et al. (2016), who derives a nonlinear state-space model with NSID
methods and subsequently calculates the nonlinear modes of this state-
space model using a shooting method. The advantage of this method
is that theoretically several modes can be extracted at a time with an
excitation that is easy to implement experimentally. However, the method
requires additional numerical effort and the accuracy may be limited by
the derived state-space model. A detailed comparative study of a NSID
approach and a nonlinear phase resonance approach by Scheel et al. (2018a)
concludes that both methods have their specific advantages and drawbacks
depending on the system under investigation and the purpose of the derived
model. In this thesis, a phase resonance approach is pursued, which is
the only approach to directly measure nonlinear modes. Moreover, the
method provides a high confidence model for the prediction of steady-state
vibrations, which is deemed highly relevant in practice. Therefore, the
general methodology for nonlinear phase resonance testing is introduced in
the following.

4.1.1 Nonlinear Phase Resonance Testing

Phase resonance testing, for linear as well as nonlinear systems, aims at
exciting a damped structure such that a modal motion of the underlying
conservative structure is imitated. In the linear case, where the phase
resonance method is mostly used for the extraction of close or strongly
coupled modes or in cases where the modal parameters need to be esti-
mated with the highest possible confidence, the appropriate force vector
for the isolation of the normal mode motion can often be estimated a priori
based on FRF matrices to minimize the tuning effort during experimen-
tation (Wright et al., 1999). In the nonlinear case, however, the energy
dependence of the nonlinear modes and the lack of the superposition prin-
ciple complicates an a priori estimation. Therefore, the force vector for the
isolation of a nonlinear modal motion has to be found through successive
appropriation during the experiment. The properties of the force which is
theoretically required for this purpose have been derived by Peeters et al.
(2011) and are briefly reviewed in the following.
Consider the equation of motion of a damped and excited mechanical

system with a conservative nonlinearity

Mẍ(t) + Dẋ(t) + Kx(t) + fnl(x(t)) = f ex(t), (4.1)
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where M = MT ∈ RN×N denotes the mass matrix, K = KT ∈ RN×N
the linear stiffness matrix, x(t) ∈ RN represents the vector of general-
ized coordinates and f ex(t) the vector of excitation forces. The vector
fnl(x(t)) ∈ RN represents the nonlinear restoring forces and the matrix
D ∈ RN×N typically viscous damping effects with some spatial distribu-
tion. If it is desired to enforce a nonlinear modal motion according to
Definition 2.1, the motion of the system described by Eq. (4.1) must also
satisfy the equation of motion of the underlying conservative system, i.e.,

Mẍ(t) + Kx(t) + fnl(x(t)) = 0. (4.2)

Comparison of Eq. (4.1) and Eq. (4.2) yields the condition

Dẋ(t) = f ex(t) ∀t, (4.3)

which has to be satisfied to isolate a nonlinear modal motion. The nonlinear
modal motion is by definition periodic (c.f. Definition 2.1) and can thus be
represented by a Fourier series

x(t) =
∞∑

n=−∞

xneinωt, (4.4)

where xn denotes the vector of complex Fourier coefficients of the n-th
harmonic. The excitation forces can be represented by a Fourier series
with the same fundamental frequency as

f ex(t) =
∞∑

n=−∞

f
ex,n

einωt, (4.5)

with the vector of complex Fourier coefficients f
ex,n

. Then, the condition
in Eq. (4.3) can be rewritten in the frequency domain as

inωDxn = f
ex,n
∀n. (4.6)

In the case of a monophase motion, this means that the excitation has to
be shifted by π/2 in phase with respect to the response for all generalized
coordinates and harmonics (c.f. Peeters et al. (2011)).
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Practical Realization

The phase criterion derived above is difficult to realize in practice, because
the condition has to be fulfilled for every point on the structure and all fre-
quencies included in the response. However, several experimental studies
have shown that in the case of light damping and the absence of internal
resonances a single point single harmonic force is sufficient to approxi-
mately isolate the nonlinear modal motion (Londono et al., 2015; Peeters
et al., 2010; Zapico-Valle et al., 2013). The current practice is to manually
adjust the phase of the single harmonic force by tuning the excitation fre-
quency, as illustrated in Fig. 4.1(b), at a constant forcing amplitude. To
extract a branch of nonlinear modes, this procedure has to be repeated
for several excitation levels. To minimize the tuning effort, typically the
excitation is only appropriated for a single high excitation level. Then,
the excitation is switched off and the free-decay is analyzed using TFA.
The underlying assumption is, that the nonlinear modal motion which is
enforced by the appropriated excitation corresponds to an initial condition
on or near an invariant manifold of the damped system. In the case of light
damping it is further assumed that the motion on the invariant manifold
of the damped system closely resembles the nonlinear modal motion of the
undamped system. Due to the invariance property the motion is confined
to the invariant manifold during the decay process, such that the motion on
the invariant manifold can be analyzed to obtain nonlinear modal motions
for different energy levels. The procedure is summarized in Fig. 4.1(a) and
illustrated in the frequency-amplitude space in Fig. 4.1(b).

Modal Purity Index

To assess the quality of the mode appropriation, Peeters et al. (2011) pro-
pose a mode indicator function which will be referred to as Modal Purity
Index (MPI)1 in the following. In the case of a monophase motion all har-
monics of the excitation force can be shifted in phase such that they can
be represented by a purely sinusoidal signal with the respective frequency.
If the response is shifted in phase by π/2 with respect to the excitation,
this means that the response is purely cosine shaped. In complex notation,

1The notion MPI is used to distinguish this measure from the mode indicator function
proposed in Section 4.2.
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Figure 4.1: Current procedure for nonlinear phase resonance testing (a) and il-
lustration of the method in frequency-amplitude space (b).

the modal purity index can then be defined for every harmonic as

∆n =
Re
{
x̄T
n

}
Re {xn}

x̄T
nxn

, (4.7)

where x̄n denotes the complex conjugate of the complex Fourier coeffi-
cient xn. Accordingly, x̄T

n denotes the Hermitian xH
n . This purely response

based indicator for the force appropriation quality yields a value of unity
in the case of perfect appropriation of the respective harmonic. To assess
the global mode isolation, the arithmetic mean of all considered harmonics
Nh is used yielding

∆ = 1
Nh

Nh∑
n=1

∆n. (4.8)

as MPI.

4.1.2 Shortcomings of the Current Practice

Nonlinear phase resonance testing is generally a versatile tool for the ex-
traction of nonlinear modal parameters. Theoretically, the nonlinear modal
parameters of complex systems with close and coupled modes or internal
resonances can be extracted. However, it is expected that the extraction
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of nonlinear modes of such systems requires considerable experimental ef-
fort, particularly, to realize an appropriate forcing. Since the development
of nonlinear phase resonance testing is still in its infancy, even for the
systems of limited complexity to which it has been applied so far, several
practical problems arise. Many of these problems are related to the current
experimental procedure summarized in Fig. 4.1(a):

1. Manual tuning of the excitation frequency:
The manual tuning of the excitation is time consuming. For weakly
damped systems, a small frequency difference around resonance causes
a strong change in amplitude and phase, such that the frequency in-
crement during the tuning process has to be very small. Moreover,
there are systems, such as the Duffing-type example in Fig. 4.1(b),
where bifurcation points occur in the vicinity of the backbone curve.
Even small disturbances during experimentation may cause a pre-
mature transition to another stable attractor such that the tuning
procedure has to be restarted.

2. Switching off the excitation:
The instantaneous removal of the excitation to initiate the free-decay
process is generally only possible if non-contact excitation techniques
are used, e.g., electromagnetic excitation. For commonly used shaker
excitation, the switching off is likely to disturb the initial condition,
which is supposed to be on the invariant manifold. Additionally, the
shape of the invariant manifold is affected when the passive shaker
remains connected to the structure during decay.

3. TFA of the free-decay:
The hypothesis that the invariant manifold of the damped system
during decay resembles the nonlinear mode of the conservative sys-
tem does only hold in the case of weak damping. It is not clear how
the nonlinear modal parameters are biased through transient effects.
Furthermore, accurate TFA requires sophisticated signal processing.
Particularly, for systems with a fast decay, the resolution of the ob-
tained backbone curve is limited by the TFA.

Additional practical difficulties are related to the estimation of the mode
isolation quality. The phase condition and the MPI is, by concept, limited
to the case of monophase motions. Both conditions can only be evaluated
for the stationary state at which the force is appropriated. The mode
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isolation quality during free-decay is not clear. For cases when the MPI
can be used, it strongly depends on the number of frequencies considered,
such that the MPI cannot be regarded as a conclusive quality indicator
(Ehrhardt and Allen, 2016).

All current studies of nonlinear phase resonance testing are limited to
systems with smooth nonlinearities and it is not yet clear whether the
method can be extended to systems with nonsmooth nonlinearities such as
unilateral constraints inducing impacts. It is expected that the strongly
nonlinear behavior caused by nonsmooth nonlinearities considerably com-
plicates the manual tuning of the excitation. Furthermore, strong and
sudden changes in vibration behavior occur, which are difficult to resolve
using TFA of the free-decay.

Besides the practical problems related to the current approach there
are a number of conceptual questions related to nonlinear phase resonance
testing that have not been addressed to a satisfying extent so far. Even
though some amplitude dependent parameters, such as deflection shapes
or modal frequencies can be extracted, the definition of nonlinear modal
parameters is ambiguous. Particularly, the consistency of the derived pa-
rameters to linear theory has not been addressed yet and their significance
is not clear. To be more precise, it has not yet been demonstrated if and
how experimentally extracted parameters are meaningful for the derivation
of predictive models.

Further issues are related to the damping behavior of the structure.
Firstly, current methods are limited to structures featuring weak propor-
tional damping and it is not clear how these methods can be generalized
to structures with stronger, potentially nonlinear damping. Secondly, even
for weakly damped structures, the current approach lacks a method for the
quantification of the damping.

The above mentioned limitations of current nonlinear phase resonance
approaches are addressed in the following. However, it is acknowledged at
this point that there are further limitations, such as the measurement of
internal resonant structures or the use of muli-point excitation techniques,
which are considered beyond the scope of this thesis. A more detailed
discussion of these limitations is included in Section 7.2.
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4.2 A New Framework for Robust Nonlinear
Experimental Modal Analysis

In this section, a framework for a robust NEMA is proposed, address-
ing the shortcomings of previous approaches. The section starts with a
generalization of the phase condition to non-monophase motions and the
derivation of a power based theoretical framework for NEMA. A power
based mode indicator function (PBMIF) is presented which can be used to
assess the mode isolation quality. Subsequently, the practical realization
of the appropriate excitation and the reliable tuning of the excitation force
are addressed. Therefore, the concept of Phase-Locked-Loops (PLLs) is
introduced and its application in NEMA is explained. Then, the attention
is drawn to the extraction of nonlinear modal parameters. Special empha-
sis is put on the consistency of the nonlinear modal parameters with linear
theory, which plays a significant role for the application of the derived
nonlinear modal model (c.f. Chapter 5). Furthermore, the extraction of a
nonlinear modal damping measure is discussed.

4.2.1 Generalization of the Phase Condition

The theoretical foundation for nonlinear phase resonance testing is so far
limited to monophase nonlinear modes. However, the concept can be easily
extended to non-monophase situations by a change of coordinates. There-
fore, the system described by Eq. (4.2) is written in linear modal coordi-
nates x(t) = Φq(t) yielding

IN q̈(t) + Ω0q(t) + fnlm(q(t)) = 0. (4.9)

with

IN = ΦTMΦ,

Ω0 = ΦTKΦ = diag
{
ω2

0,i
}

for i = 1, ...N,

fnlm(q(t)) = ΦTfnl(Φq(t)).

(4.10)

Analogously to the derivation by Peeters et al. (2011) described in Sec-
tion 4.1, the displacements in modal coordinates can be developed in a
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Fourier series as

q(t) =
∞∑

n=−∞

q
n
einωt, (4.11)

yielding a representation of the equation of motion in the frequency domain

(
−n2ω2IN + Ω0

)
q
n

+ f
nlm,n

= 0 ∀n, (4.12)

where f
nlm,n

is the Fourier coefficient of the n-th harmonic of the nonlinear
force in modal coordinates. Since the equations are uncoupled in the linear
terms, it can be easily seen that the phase of the inertia forces in the i-th
linear modal coordinate and the n-th harmonic,

fM
i,n

= −n2ω2q
i,n
, (4.13)

and the linear restoring forces in the i-th linear modal coordinate and the
n-th harmonic,

fK
i,n

= ω2
0,iqi,n, (4.14)

is determined by the phase of the coefficient q
i,n

. In the complex plane, this
can be illustrated using a pointer diagram as in Fig. 4.2(a). The phase of
the Fourier coefficient of the i-th component of the nonlinear restoring force
in modal coordinates fnlm

i,n
can be determined from the dynamic equilibrium

condition, which must be fulfilled for a periodic motion, yielding that the
pointer of the nonlinear restoring force must be collinear to the linear
restoring forces and the inertia forces, respectively.

In the following, the damped and excited system (c.f. Eq. (4.1)) is consid-
ered for comparison. If the damping matrix is of Caughey-type (Caughey,
1960), i.e.,

ΦTDΦ = diag {di} for i = 1, ...N, (4.15)

then no additional coupling is induced by the damping. Thus, the damping
forces in the i-th linear modal coordinate

fD
i,n

= indiq
i,n

(4.16)
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Figure 4.2: Pointer diagram in linear modal coordinates for a nonlinear mode (a)
and for a forced and damped system in nonlinear modal motion (b).

are shifted in phase by π/2 with respect to the forces of the conserva-
tive system in nonlinear modal motion, due to the multiplication with the
imaginary unit i. Therefore, the excitation of a nonlinear modal motion
requires an excitation force fexm

i,n
in the i-th modal coordinate and the

n-th harmonic which is also shifted in phase by π/2 with respect to the
forces in the conservative system and has the same magnitude but oppo-
site sign as the damping forces. The dynamic equilibrium for the forced
and damped system in nonlinear modal motion is visualized in the pointer
diagram in Fig. 4.2(b). It can be seen that, for the isolation of general
nonlinear modal motions of systems with damping properties that can be
modeled by Caughey-type damping, the excitation has to fulfill the same
phase criterion as in the monophase case, however, in modal coordinates.
Analogously to the monophase case, where the phase criterion has to be
met for all physical coordinates and all harmonics, in the general case the
condition has to be fulfilled for all linear modal coordinates and all har-
monics.

Despite the similarities of the monophase case investigated by Peeters
et al. (2011) and the generalized case presented here, two notable differ-
ences are pointed out:
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• In the general case, the phase of the individual harmonics and the
individual (modal) coordinates may be different, whereas this is ex-
cluded by the concept of monophase motion.

• In the monophase case, the phase of the excitation force can directly
be evaluated in the physical coordinates, which is not possible in the
general case.

Although particularly the second point complicates the use of the general
phase criterion for the tuning of the excitation force during experimenta-
tion, the concept allows for a posteriori estimation of the mode isolation
quality also in the non-monophase case, e.g., by evaluation of the MPI
in modal domain. However, a more practical approach based on power
quantities borrowed from electrical engineering is pursued in the following.

4.2.2 Power Quantities in Nonlinear Phase Resonance
Testing

A central quantity in the suggested framework for NEMA is the mechan-
ical power of the excitation forces acting on the system. The body of the
derivations made here has been published in Peter and Leine (2017). The
analysis of power quantities, which is proposed in the first part of this sec-
tion, is inspired by the power definitions in electrical engineering. To be
more precise, power quantities in nonlinear electrical systems, as originally
defined by Budeanu (1927), form the basis of the derivations. Further-
more, the analysis can be viewed as an extension of the so-called reactive
power method which is used in linear phase resonance testing (Géradin and
Rixen, 2015). In this context, the second part of the section discusses the
mechanical interpretation and the meaning of power quantities in nonlinear
modal testing.

Introduction to Power Theory

Consider the instantaneous mechanical power of an excitation force

p(t) = f ex(t)Tẋ(t), (4.17)

where f ex(t) is a generalized force in RN . The excitation force acts on
the structure at Nj physical points with the generalized force directions
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wj ∈ RN with j = 1...Nj yielding

f ex(t) =
Nj∑
j=1

wjλj(t), (4.18)

where λj(t) denotes the local scalar forces contributing to the generalized
force f ex(t). The excitation power in Eq. (4.17) can be rewritten in terms
of the local forces as

p(t) =
Nj∑
j=1

λj(t)wT
j ẋ(t) =

Nj∑
j=1

λj(t)χj(t) =
Nj∑
j=1

pj(t), (4.19)

with the local velocities χj(t) = wT
j ẋ(t) and the instantaneous power pj(t)

at the j-th excitation location. Under the assumption that the excitation
forces and the velocity are periodic with some fundamental frequency ω,
both quantities can be represented by Fourier series yielding

pj(t) =
∞∑

n=−∞

λj,ne
inωt

∞∑
n=−∞

χ
j,n
einωt, (4.20)

where n denotes the harmonic index. For the Fourier coefficients, it holds
that λj,n = λ̄j,−n and χ

j,n
= χ̄

j,−n
, as the quantities λj(t) and χj(t) are

real. The product of Fourier series in Eq. (4.20) can be split into a time
constant part and an oscillating part. In analogy to electrical engineering
the time constant part

Pj =
∞∑

n=−∞

λj,nχ̄j,n =
∞∑

n=−∞

|λj,n||χ̄j,n|e
i(γj,n−ϑj,n) (4.21)

is referred to as active power. Herein, the angles γj,n and ϑj,n denote the
phase angle of the n-th harmonic of the velocity and the force, respectively.
The operator |.| indicates the magnitude of the complex coefficients. As
the magnitude of the complex coefficients is equal to the magnitude of their
complex conjugate coefficients and the mean value of the velocity is zero,
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i.e., |χ
j,0
| = 0, Eq. (4.21) can be rearranged yielding

Pj =
∞∑
n=1

|λj,n||χj,n|(e
i(γj,n−ϑj,n) + ei(−γj,n+ϑj,n))

=
∞∑
n=1

|λj,n||χj,n|(e
−iϕj,n + eiϕj,n),

(4.22)

where ϕj,n = γj,n − ϑj,n. The sum can be rewritten using Euler’s formula
yielding

Pj =
∞∑
n=1

2|λj,n||χj,n| cos (ϕj,n) =
∞∑
n=1

Fj,nVj,n cos (ϕj,n), (4.23)

with the effective values of the n-th harmonic of the force Fj,n =
√

2|λj,n|
and the velocity Vj,n =

√
2|χ

j,n
| at the j-th excitation location.

The active power Pj can be interpreted as the mean value of the mechan-
ical power brought into the system by the excitation over one period. In
accordance to Budeanu (1927), the reactive power of the excitation forces
is defined as

Qj =
∞∑
n=1

Fj,nVj,n sin (ϕj,n). (4.24)

In contrast to the active power, this power quantity lacks a clear physical
meaning and is based on a rigorous extention of linear theory2. Further-
more, the apparent power can be defined as

Sj = FRMSVRMS =

√√√√ ∞∑
n=1

F 2
j,n

√√√√ ∞∑
n=1

V 2
j,n, (4.25)

i.e., the product of the total root mean square values of the force and the
velocity respectively. The power triangular relation well known from linear

2For a detailed discussion the reader is referred to Peter and Leine (2017).
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systems becomes an inequality3, i.e.,

S2
j ≥ P 2

j +Q2
j , (4.26)

which means that the apparent power cannot be calculated solely based on
the active and reactive power components. However, a power triangular
relation for nonlinear systems can be obtained by the introduction of a dis-
tortion power component Dj =

√
S2
j − P 2

j −Q2
j , which includes all parts

of the apparent power in Eq. (4.25) which are not covered by the active
and reactive power yielding

Sj =
√
P 2
j +Q2

j +D2
j . (4.27)

Power Quantities in Nonlinear Modal Testing

The significance of the above derived power quantities in NEMA is, simi-
larly to the generalization of the phase criterion in Section 4.2.1, illustrated
by pointer diagrams in Fig. 4.3. The pointer diagrams are used to show
the properties of the powers induced by the dynamic forces in the system.
Similarly to the generalization of the phase criterion, the pointer diagrams
are shown in modal coordinates, which simplifies the phase relation be-
tween dynamic forces and velocities. However, it should be noted that the
mechanical power is a scalar quantity which can be evaluated either in
physical or modal domain, i.e.,

p(t) = f ex(t)Tẋ(t) = f exm(t)Tq̇(t), (4.28)

such that the derivation in physical coordinates yields an equivalent result,
although the phase relations are not obvious for the individual DOFs.
The dynamic forces at a representative modal DOF i are depicted as

pointers along with the pointer of the modal velocity vi,n = inq
i,n

for a
representative harmonic n. Moreover, the complex conjugate pointers of
the force and velocity for the same harmonic are shown as these are rele-
vant for the derivation of the power quantities. The phase angle between
the modal excitation force fexm

i,n
and the velocity of the n-th harmonic is

denoted by ϕm
i,n.

The excitation forces are considered in diagram (a), the inertia forces
fM
i,n

in diagram (b), the conservative restoring forces fC
i,n

, including linear

3A proof of this inequality is provided in Appendix E.
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Figure 4.3: Pointer diagram for excitation power (a), power of inertia forces (b),
power of conservative restoring forces (c) and damping forces (d).

and nonlinear components, in diagram (c) and the damping forces fD
i,n

in diagram (d). The power of each of the forces can be calculated as
the inner product of the force and the velocity. Hence, the multiplication
yields two pairs of complex conjugate power components, one of which has
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a constant phase angle and one of which rotates with 2nω. In the case
of a dynamic equilibrium all pointers compensate one another resulting
in a steady-state motion. In the case of a nonlinear modal motion the
damping and excitation forces are zero and the inertia and conservative
restoring forces compensate one another. It can be seen that this holds
for the rotating pointers as well as for the pointers with constant phase
angle. The pointers with constant phase angle are associated with the
power quantities derived above. The n-th component of the active power
of a force is defined as the real part of the constant pointer, whereas the
reactive power represents the imaginary part. It can be seen in diagrams
(b) and (c) that the inertia and conservative restoring forces only have a
reactive power component. The damping forces in diagram (d), however,
solely contribute to the active power. The only force which can have an
active and reactive power component, dependent on the phase angle ϕm

i,n is
the excitation force. If it is now desired that the excitation force balances
out the damping force without affecting the dynamic equilibrium of the
conservative restoring and inertia forces, then the phase angle ϕm

i,n has to be
chosen such that the excitation force only contributes to the active power,
i.e., ϕm

i,n = π. In this case also the oscillating pointers are in balance. Note
that this criterion is in line with the generalized phase condition derived
in Section 4.2.1.

The requirement that the excitation force must only contribute to the
active power holds for all harmonics and all modal coordinates to which an
excitation is applied. If the condition holds and the pointers are in balance
for all modal coordinates and harmonics, then no power is transferred to
different harmonics or modal coordinates. The damping forces for modal
coordinates or harmonics where no excitation is applied theoretically have
to be zero. If this is not the case, additional power has to be introduced at
the excited coordinates to ensure overall power balance for the structure
which affects the local power balance at the excited modal coordinates.
As a consequence, the distortion or reactive power of the excitation would
not be zero. Therefore, the quality of the nonlinear mode isolation can be
evaluated by investigation of the excitation power properties. Finally, it is
noted that, although this has been evaluated here in the modal domain,
the same requirements are met in the physical domain because the power
is a scalar quantity. Of course, the evaluation in the physical coordinates
is more suitable in experimental reality.
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Power Based Mode Indicator Function

The power considerations derived above can be used to define a PBMIF
for the practical evaluation of the mode isolation quality. Therefore, a
representative excitation point j is considered. As derived above the force
must only contribute to the active power such that the reactive power
vanishes, i.e.,

Qj =
∞∑
n=1

Fj,nVj,n sin (ϕj,n) = 0. (4.29)

Additionally, the magnitudes of the excitation force must be equal to the
damping force such that the distortion power vanishes, i.e.,

Dj = 0. (4.30)

The nonlinear power triangular relation then yields

Sj = |Pj |. (4.31)

Note that the active power (see Eq. (4.23)) has a sign depending on the
angles ϕj,n, whereas the apparent power is positive by definition (see
Eq. (4.27)). In the vicinity of a mode, the sign of the active power as
defined above is negative:

ϕj,n ≈ π ∀n ⇒ cos(ϕj,n) < 0. (4.32)

Therefore, the relation

Λj := −Pj
Sj
∈ [−1, 1] (4.33)

can be used to estimate the quality of the excitation for nonlinear mode
isolation. This PBMIF gives a value of unity in the case of a perfectly
appropriated force. The negative sign in Eq. (4.33) is chosen for the sake
of consistency with the MPI.

It is interesting to note that the phase of the excitation force with re-
spect to the displacement which is required for the PBMIF to take on a
value of unity is π/2 for a single excitation point in physical coordinates.
This is in line with the phase criterion for the monophase case. In non-
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monophase cases the power consideration suggests the same phase criterion
as an approximate condition for single point excitation.
Moreover, it is noted that in the case of multi-point excitation of non-

monophase motions there may exist cases where the total reactive power
vanishes, but the reactive power at individual excitation locations may be
non-zero. Additionally, in the case of multi-point excitation the definitions
of apparent power and distortion power is non-trivial due to coupling effects
between excitation points as discussed in detail in the electrical engineering
community (Czarnecki, 2000). To circumvent these issues, one possibility
is to require the PBMIF to be fulfilled for all individual excitation points
such that a global indicator could be defined as

Λ := 1
Nj

Nj∑
j=1

Λj ∈ [−1, 1] . (4.34)

If this PBMIF takes on a value of unity, then the total power brought into
the system is fully characterized by its active power component.

Remarks on Power Theory

The power based framework for NEMA presents an extension of power
considerations in linear phase resonance testing to nonlinear systems. The
mechanical power of the excitation can be used in linear systems to derive
the phase lag quadrature criterion and to directly measure linear modal
parameters such as modal mass and damping based on the stationarity
of the reactive power (Géradin and Rixen, 2015). A direct extension of
the stationary reactive power method to nonlinear systems, however, is
complicated due to the influence of the distortion power (c.f. Eq. (4.27)).
Against this backdrop, the reactive power is of limited physical meaning

in nonlinear systems. Indeed, the reactive power definition originally pro-
posed by Budeanu (1927), which forms the foundation of the derivations
made here, is controversial in the electrical engineering community (Czar-
necki, 1987). Even though it still seems to be the most widely used con-
cept, there are numerous alternatives, which are reviewed, e.g., by Svens-
son (1999). However, the choice of Budeanu’s definition in the context of
NEMA is reasonable due to two reasons. Firstly, it is a direct extension of
linear power theory in electrical engineering which is familiar to most prac-
ticing engineers and it is fully consistent to the power based approaches
which have already been applied to linear mechanical systems. Secondly,
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the derived power quantities can be easily calculated and indicate defi-
ciencies in the appropriated forcing. For instance, a high reactive power
indicates a poor fulfillment of the phase criterion, which can even be lo-
calized to a certain harmonic, whereas a high distortion power indicates
a strong influence of harmonic distortions in the force or the response,
respectively.
Finally, it is noted that the active and apparent power can also be defined

in the time domain. In time domain, the PBMIF directly follows from the
Cauchy-Schwarz inequality, as discussed in detail in Peter and Leine (2017).
However, the derivation is made here in the frequency domain because this
also allows for the definition of the reactive and distortion power, which
is infeasible in time domain. Moreover, the derivation is consistent to the
previous approach by Peeters et al. (2011), that was also derived in the
frequency domain.

4.2.3 Practical Realization of Appropriated Excitation
with Phase-Locked-Loop

The phase of the excitation with respect to the response is the central
quantity in nonlinear phase resonance testing. The conventional approach
for monophase systems as well as the power analysis have shown that the
phase lag of the force with respect to the displacement has to be π/2 for all
harmonics and DOFs to isolate a nonlinear mode. For practical reasons,
it is impossible to introduce a forcing at all DOFs with infinitely many
frequencies and the suitable phases. However, previous studies have shown
that even a single point single harmonic force allows for an approximate
nonlinear mode isolation to a satisfying accuracy. In these studies, the
phase lag of the excitation has been adjusted indirectly by controlling the
frequency of the excitation, which is time consuming and susceptible to
errors.
As, indeed, the phase is the quantity which is desired to have a specific

value rather than the frequency, it seems to be a natural choice to replace
the manual frequency tuning process by a concept of automatic phase con-
trol. In electrical engineering, controlling the phase of a signal with respect
to a reference signal is a common task, e.g., in radio technology. In particu-
lar, the PLL in various implementations is a well-known concept. Actually,
the first realization of the PLL is attributed to de Bellescize (1932), who
proposed an analogue circuit which already contains all three essential
components of modern PLLs: A phase detector, a loop filter and a voltage
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Figure 4.4: PLL based approach for phase resonance testing.

controlled oscillator (c.f. Fig. 4.6). Thus, this control concept is borrowed
from the electrical engineering community to facilitate the phase control in
NEMA. Due to the efficiency of the automatic phase control, the current
procedure of NEMA (c.f. Fig. 4.1) is replaced by the procedure summarized
in Fig. 4.4: The tuning is automated with a PLL controller, the free-decay
is replaced by a series of steady-state measurements and the excitation is
incrementally increased from low to high level. The PLL based phase res-
onance testing procedure is visualized in the frequency-amplitude domain
in Fig. 4.5(a) and phase-amplitude domain in Fig. 4.5(b).

Phase-Locked-Loop

The PLL is a nonlinear oscillator that generates a harmonic output signal
with a frequency which is tuned based on its phase difference with respect
to a reference signal. The PLL is commonly divided into three blocks:
the phase detector, the loop filter and the voltage controlled oscillator
(VCO). The structure of the PLL attached to a mechanical structure, which
is excited with an electrodynamic shaker, is shown in Fig. 4.6. There
are various implementations of PLLs and their individual blocks, which
are extensively discussed in review articles, e.g., by Abramovitch (2002)
and Hsieh and Hung (1996), and a number of books, e.g., Best (2007)
or Gardner (2005). For the application in NEMA, a simple second order
analogue PLL is sufficient, which is described in the following.
The first block of the PLL is the phase detector, which extracts the phase

of the output signal with respect to the reference signal. In NEMA, the
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Figure 4.5: Illustration of the method in frequency-amplitude space (a) and
phase-amplitude space (b).

output signal is the force fex(t) applied to the structure, which is indirectly
controlled by the input voltage u0(t) to the shaker. As a reference signal
either the acceleration, velocity or displacement at a reference point on
the structure can be chosen. In this example, the reference signal is the
displacement xref(t). The phase detection is realized by a multiplication
of the input signals. Since the output of the multiplier depends on the
amplitude of the input signal, a common modification is to replace the
input signals by the sign function yielding

w(t) = sign {fex(t)} sign {xref(t)} . (4.35)

The modification, which can be interpreted as amplitude normalization of
the input, makes the output of the phase detector amplitude independent
and improves the speed and stability properties of the loop as shown by
Fan et al. (2007). The multiplication yields an output signal which is
oscillating around a mean value being a function of the phase difference
θe(t) of the input signals. To suppress the oscillating component the signal
is fed through a low pass filter, which is the first block of the second
component of the PLL, the so-called loop filter. The low pass filter can be
described by the differential equation

1
ωL
ė(t) + e(t) = w(t), (4.36)
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Figure 4.6: Block diagram of the PLL attached to a test structure excited with a
shaker.

with the cutoff frequency ωL. If all oscillating components of w(t) are
successfully suppressed, then the output of the low pass filter equals e(t) =
f(θe(t)). This error signal e(t) is then used as an input of a Proportional-
Integral(PI)-controller described by the state space model

ż(t) = e(t),

y(t) = KP

(
e(t) + 1

TI
z(t)
)
,

(4.37)

with the tuning parameters KP and TI for the proportional and integral
part, respectively. The output of the PI-controller is used as the input
of the third component of the PLL, the VCO. The VCO generates the
instantaneous phase of a harmonic signal by an integrator

θv(t) =
∫ t

0
ωc + y(τ)dτ, (4.38)

using the fact that the phase is the integral of the frequency. Herein, ωc
is the center frequency of the PLL at which the loop oscillates in an open
loop configuration. The instantaneous phase is then inserted in a harmonic
function

u0(t) = û cos(θv(t)) (4.39)
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and multiplied with a constant amplitude û. This output signal of the
PLL is, in the application of NEMA, used as voltage input signal for the
electrodynamic shaker. If the mean value of the phase detector output is
zero, the force and the reference signal are shifted in phase by π/2. Then,
the PLL oscillates at a constant frequency and is said to be in a locked
state.
There are several parameters in the PLL, which need to be tuned. For

closed loop configurations, the stability bounds of the controller can be
investigated using linearization techniques or Lyapunov methods (Abra-
movitch, 1990, 2002). However, when coupled to an unknown nonlinear
vibrating structure, as in NEMA, the parameters for a stable operation
may depend on the structure such that the stability bounds cannot be es-
timated in a straightforward way. Under the assumption of a single DOF
Duffing-type, system the stability of the PLL is studied in detail by Fan
et al. (2007). The analysis is generalized by Denis et al. (2018) for the
case of general geometrically nonlinear structures. Both studies show that
the stability bounds of the system including structure and PLL depend
on the properties of the structure. As the test structure is assumed to be
unknown if the PLL is used for system identification purposes, the tuning
has to be done in a heuristic way. However, several studies have shown
that the tuning of the PLL parameters is uncritical and a stable operation
is achieved for a wide parameter range, such that a heuristic procedure is
acceptable (Denis et al., 2018; Peter and Leine, 2017; Peter et al., 2016).

Remarks on Phase Control

In the conventional NEMA approach as well as in most other structural
dynamics testing procedures, such as FRF tests, frequency-controlled mea-
surements are used, i.e., the frequency of a harmonic excitation is preset
by an external device. The PLL controller of the NEMA approach pro-
posed here uses a phase-controlled excitation instead, i.e., the phase of the
excitation is controlled with respect to the response and the frequency is a
result of the system’s response. The structure combined with the controller
can be regarded as an autoresonant system. This type of excitation pro-
vides several advantages, particularly for testing in or near resonance. The
phase-amplitude relation in Fig. 4.5(b) is single-valued and bell-shaped,
whereas the frequency-amplitude relation shown in Fig. 4.5(a) is multi-
valued and has a sharp bend near resonance. An autoresonant approach,
therefore, has two favorable properties: (i) small perturbations in phase
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have a minor influence on the response even for lightly damped systems
and (ii) the phase-amplitude relation is unique, at least locally around
resonance. Property (i) simplifies maintaining a resonant vibration and
increases the accuracy of measurements in resonance. Property (ii) pro-
vides the advantage that, given the phase is controlled successfully, the
system can be driven at any point in the phase-amplitude plane even at
points which are unstable in the uncontrolled system. This stabilizing ef-
fect facilitates the measurement near bifurcation points and can even be
used to measure the unstable branch of Duffing-type systems as shown
experimentally by Mojrzisch et al. (2013).
Analytical studies of Sokolov and Babitsky (2001) show at academic

examples that these advantages of phase-controlled excitation are largely
independent of most system parameters, such as damping coefficients, the
forcing level and even nonlinear restoring forces. Furthermore, it is noted
that the concept of autoresonant forcing has been exploited for different ap-
plications such as ultrasonically assisted machining (Babitsky and Sokolov,
2007) or atomic force microscopy (García and Pérez, 2002).
In conclusion, the application of an autoresonant forcing concept seems

to be particularly suitable for the purpose of NEMA, where weakly damped
systems with a priori unknown system parameters are the subject of inter-
est.

4.2.4 Extraction of the Nonlinear Modal Parameters

Once a nonlinear mode is isolated using the phase resonance approach
described above, a nonlinear modal model can be extracted. The aim
of this step is extracting nonlinear modal parameters which are easy to
interpret and consistent with linear theory. A nonlinear modal motion in
the r-th nonlinear mode can be described by a Fourier series of the form4

xnm,r(t) = Re

{
∞∑
n=0

ψ̃
r,n

einω̃0,rt

}
. (4.40)

Herein, ω̃0,r denotes the nonlinear modal frequency and ψ̃
r,n

the n-th
harmonic of the nonlinear modal deflection shape of the r-th nonlinear

4This form of the Fourier series is chosen for convenience. The relation to Fourier
series notations used for the derivation of power quantities and the numerical al-
gorithm is included in Appendix A.
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mode. Both quantities are nonlinear modal quantities, which is indicated
by the (̃·) symbol, and may depend on the energy (or amplitude) with which
the system oscillates. The nonlinear modal frequency ω̃0,r can directly be
extracted from the measurement, either as an output of the PLL during
force appropriation or by Fourier transformation of the measured time
series. The deflection shape ψ̃

r,n
can also be extracted using the Fourier

transform, however, to ensure consistency with linear theory where the
mode shapes are typically mass normalized, a normalization strategy is
proposed.

Normalization of Nonlinear Mode Shapes

For linear systems, the most common strategy is to normalize the mode
shapes with respect to the mass matrix, i.e.,

ΦTMΦ = INi , with Φ =
[
φ1...φNi

]
and φi = 1√

mi
ψi, (4.41)

where Ni ≤ N denotes the number of experimentally extracted linear
modes, φi is the mass normalized mode shape of the i-th linear mode
and mi the modal mass. With this normalization a linear modal motion
of the i-th mode can be written as

xlm,i(t) = Re
{
qiφie

iω0,it
}
, (4.42)

with the modal amplitude qi = √
mi. Analogously, the Fourier series

describing the nonlinear modal motion in Eq. (4.40) can be recast in the
form

xnm,r(t) = Re

{
∞∑
n=0

q̃rφ̃
r,n

einω̃0,rt

}
, (4.43)

with the nonlinear modal amplitude q̃r and a normalized nonlinear mode
shape φ̃

r,n
.

To ensure consistency of Eq. (4.43) to the linear modal motion described
in Eq. (4.42) the first harmonic of the nonlinear modal deflection shape is
chosen to be normalized with respect to the mass matrix, i.e.,

φ̃
H
r,1

Mφ̃
r,1

= 1, with φ̃
r,n

= 1
q̃r
ψ̃
r,n
. (4.44)
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The mass matrix is unknown in experiments, such that an experimentally
derived estimate of the mass matrix has to be calculated. To this end,
the mode shapes from a linear EMA can be used, as they are commonly
mass normalized based on the driving point FRF measurement (Ewins,
2000). Using the normalized linear eigenvectors, the mass matrix can be
estimated as

Mexp = (ΦT)+INiΦ
+, (4.45)

where the (·)+ operator denotes the (generalized)5 inverse of the eigenvec-
tor matrix. Inserting Eq. (4.45) in Eq. (4.44) yields the condition

φ̃
H
r,1

Mexpφ̃
r,1

= φ̃
H
r,1

(ΦT)+Φ+φ̃
r,1

= 1, (4.46)

or in terms of the nonlinear modal amplitude

1
q̃2
r
ψ̃

H
r,1

(ΦT)+Φ+ψ̃
r,1

= 1. (4.47)

The normalized mode shapes can subsequently be used to derive a non-
linear modal damping measure which is also consistent with linear theory.

Nonlinear Modal Damping Measures

Although the methodology for NEMA which is proposed here aims at
extracting the modal properties of the undamped nonlinear system, the
damping can be quantified during the modal test. A quantification of the
damping is useful to verify the hypothesis of weak, linear and proportional
damping. Furthermore, the use of the derived nonlinear modal model,
e.g., for the prediction of the response to different excitation scenarios (c.f.
Chapter 5.1), requires an estimate of the damping.
A simple means of damping quantification can be obtained based on

the linear modal damping ratios δi which are estimated by a linear modal
analysis. However, the nonlinear modal frequency ω̃0,r and the nonlinear
mode shape ψ̃

r,n
may be different to the linear modal parameters of the

same mode. To be more precise, the nonlinear mode shape is generally
a combination of contributions of several linear modal coordinates. If the

5The generalized Moore-Penrose inverse is used, because the eigenvector matrix may
be non-square as the number of measured points can exceed the number of extracted
modes, i.e., N ≥ Ni.
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linear modes have significantly different damping values, then this coupling
of several linear modes may change the damping properties of the system.
An experimental representation of the linear modal damping matrix can
be calculated as

ΦTDexpΦ = Dmod = diag {2δiω0,i} . (4.48)

Using this damping representation, the nonlinear mode shapes can be pro-
jected onto the experimentally extracted damping matrix, analogously to
Eq. (4.46), yielding a projected linear modal damping coefficient

δ̃pl
r = 1

2ω̃0,r
φ̃

H
r,1

(ΦT)+DmodΦ+φ̃
r,1
, (4.49)

which takes into account the coupling of different modes and the change
in modal frequency. This projected linear damping measure is essentially
based on the damping quantification of the linear EMA and the hypothesis
of proportional damping. It is well-known that damping quantification is
the most elaborate part of EMA and the hypothesis of amplitude inde-
pendent modal damping is in many cases only a rough approximation of
reality.

In view of the problems of damping quantification in EMA, an alternative
damping measure, which is entirely based on the NEMA measurements is
proposed. The steady-state measurements which are used in the proposed
NEMA procedure allow for the quantification of the effective damping for
every point of the measured backbone curve. To this end, the active power
of the excitation forces P which is defined in Eq. (4.21) can be used. The
active power is in balance with the mean dissipated power over one period

Pdiss = 1
T

∫ T

0
ẋ(t)TDẋ(t)dt, (4.50)

which can be evaluated in the frequency domain using Parseval’s theorem
yielding

Pdiss =
∞∑
n=1

1
2(nω̃)2xH

nDxn, (4.51)
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or in terms of nonlinear modal quantities (see Eq. (4.43)) as

P rdiss =
∞∑
n=1

1
2(nω̃0,r)2q̃2

r φ̃
H
r,n

Dφ̃
r,n
. (4.52)

In analogy to linear theory, a damping measure δ̃nl
r,n for the r-th nonlinear

mode and the n-th harmonic can be defined as

φ̃
H
r,n

Dφ̃
r,n

= 2ω̃0,r δ̃
nl
r,n, (4.53)

which will henceforth be referred to as nonlinear modal damping coeffi-
cient. Under the assumption of viscous damping, i.e., a linear dependency
of attenuation and frequency, the damping coefficient is the same for all
harmonics δ̃nl

r,1 = δ̃nl
r,n = δ̃nl

r (Laxalde and Thouverez, 2009). Thus, the
modal damping measure can be evaluated based on the fundamental har-
monic component of the dissipated power, yielding

P rdiss,1 = δ̃nl
r ω̃

3
0,r q̃

2
r . (4.54)

Note that this definition is consistent with linear theory, i.e., for δ̃nl
r = δr.

Under the assumption that the active power of the excitation is in bal-
ance with the power of the damping forces, the nonlinear modal damping
coefficient can be calculated as

δ̃nl
r = P1

q̃2
r ω̃3

0,r
, (4.55)

where P1 is the first harmonic of the active power of the excitation. This
nonlinear modal damping coefficient is generally an amplitude dependent
measure, which can be used to capture the amplitude dependence of the
damping behavior.

4.3 Numerical Example

This section comprises an illustrative numerical example which demon-
strates the functionality of the method and elucidates some of the ad-
vantages compared to previous methods for NEMA. A numerical example
provides the advantage that the nonlinear modes, as periodic solution of
the autonomous conservative system, can be easily calculated as a reference
solution using the numerical algorithm described in Chapter 3. Additional
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numerical examples, which discuss tuning aspects of the PLL controller
and the effect of internal resonances can be found in Peter et al. (2016)
and Peter and Leine (2017).
The numerical example system resembles the experimental benchmark

used in Chapter 6 and is inspired by the so-called ECL-beam proposed
by Thouverez (2003) as a benchmark for system identification methods.
The structure is depicted in Fig. 4.7(a) and consists of a beam with the
thickness 12 mm and length 700 mm, which is clamped at the left end and
supported by a cubic spring, a linear translational and linear rotational
spring at the right end. The beam is discretized with seven Timoshenko
beam elements and the parameters are given in Tab. 4.1.
To verify the results obtained with the proposed NEMA procedure a

numerical nonlinear modal analysis with nine harmonics is carried out. The
frequency-energy plot of the first fundamental nonlinear mode of the beam
is depicted in Fig. 4.7(b) and the linear bending eigenfrequencies are listed
in Tab. 4.1. The frequency-energy plot reveals two modal interactions in
the high energy regime, a 3:1 interaction with the second bending mode and
a 7:1 interaction with the third bending mode. Both modal interactions,
however, are beyond the regime of realistic deformations in experiments
such that they are not further investigated here.
For the numerical experiment with the PLL based NEMA procedure, a

model of the structure and the PLL controller are implemented in Mat-
lab/Simulink. To account for the effect of shaker structure interactions
the shaker is modeled and included in the simulations6. In the numerical
experiment, light proportional damping D = α1K+α2M with the param-
eters included in Tab. 4.1 is added to the structure, leading to the modal
damping ratios listed in Tab. 4.1.
For the extraction of the backbone curve, the force appropriation strat-

egy described in Section 4.2.3 is pursued, i.e., the excitation force is gen-
erated by a sinusoidal input voltage into to shaker, of which the phase
is controlled by the PLL7. The actual excitation force is, therefore, the
reaction force between shaker and structure which results from the input
voltage to the shaker. The resulting excitation force is then used as an
input for the PLL. The displacement at the excitation point is used as
reference signal of the response. The input voltage is incrementally in-
creased from low to high every ten seconds and overall 36 forcing levels

6For details regarding the shaker model the reader is referred to Appendix F.
7The parameters of the PLL are listed in Appendix G, Tab. G.1.
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Figure 4.7: Schematic sketch of the numerical experiment (a) and frequency-
energy plot of the first bending mode of the beam (b).

Parameter Value Unit
E 200 GPA
ρ 7830 kg/m3

kc 4000 N/m
kr 100 Nm/rad
β 109 N/m3

α1 5 · 10−6 s
α2 0.5 s−1

Frequency [Hz] Damping [%]
30.23 0.18
126.21 0.23
340.16 0.55
657.46 1.04
1075.72 1.69
1562.01 2.46
1984.53 3.11

Table 4.1: Parameters of the beam model (left) and linear eigenfrequencies and
modal damping ratios of the bending modes of the beam (right).

are measured. The displacements and velocity at all DOFs and the output
frequency of the PLL are recorded. For the following analysis, the response
and force signals are transferred into the frequency domain using a FFT.
Therefore, the output frequency of the PLL is used to isolate the last 20
periods of each forcing level. Thus, leakage in the FFT can be avoided as
an integer multiple of the period length can be used for the analysis.
In the first example, the structure is excited with the shaker at the second

point and the tracked backbone curve for the drive point is visualized in
Fig. 4.8(a). In this plot, the first harmonic of the displacement obtained
with the PLL (black o) is shown along with the simulated nonlinear mode
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Figure 4.8: Illustration of the PLL based backbone (black o), the reference back-
bone (blue) and the FRF (black: stable, red: unstable) of the example
system (a) and nonlinear modal frequency over amplitude for two ex-
citation points and reference solution (b).

of the conservative system (blue curve) and the frequency response for
three different levels of sinusoidal excitation (stable solutions: black curve,
unstable solutions: red curve8). It can be seen that the PLL is capable
of keeping track of the backbone curve and that the results obtained with
the PLL method are very similar to the backbone curve of the autonomous
system. Moreover, it can be observed that the measured points are very
close to the fold bifurcation point of the FRF such that the measurement
with manual tuning would be very difficult in practice.
The nonlinear modal parameters of the PLL results are extracted as de-

scribed in Section 4.2.4. Additionally, the modal parameters are extracted
for a PLL excitation at point six of the beam and for the reference results,
i.e., the nonlinear modes of the autonomous system. The obtained non-
linear modal frequency is plotted against the extracted modal amplitude
in Fig. 4.8(b). It can be seen that, independently of the excitation point,
the PLL results almost perfectly overlay the reference curve.
Next, the attention is drawn to the PBMIF and a more detailed analysis

of the extracted mode shapes. Firstly, the PBMIF Λ for an excitation at
the second point is compared against the MPI for a single harmonic ∆1 and

8The FRF is calculated with an algorithm analogous to the algorithm for nonlinear
mode calculation presented in Chapter 3 and the stability calculation based on
Hill’s determinant is implemented similarly to the methods described by Von Groll
and Ewins (2001) and Detroux et al. (2015).



86 4 Experimental Extraction of Nonlinear Modes

Figure 4.9: Comparison PBMIF, fundamental harmonic MPI and higher har-
monic MPI (a) and PBMIF for different forcing scenarios (b).

for multiple harmonics ∆ in Fig. 4.9(a). It can be seen that the PBMIF
successively decreases for increasing excitation level indicating some im-
perfections in the excitation. In contrast, the MPI for multiple harmonics
jumps from one point to another, which can be attributed to the influence
of higher harmonics, the phase of which is uncontrolled. As the MPI takes
the arithmetic mean of all harmonics, the phase of frequency components
with small or even negligible amplitudes are weighted the same as the phase
of the fundamental harmonic. If only the fundamental harmonic, of which
the phase is controlled, is taken into account, then the MPI suggests that
the nonlinear mode is perfectly isolated. These results confirm the obser-
vation made in literature, that the MPI is not a conclusive measure for
the estimation of the mode isolation quality, whereas the PBMIF shows a
clear trend. In Fig. 4.9(b) the PBMIF for the excitation at point two Λp2
is compared to the PBMIF for an excitation at point six Λp6. Addition-
ally, the PBMIF Λp6s for an excitation at point six with a sinusoidal force
with controlled phase is shown for comparison9. It can be seen that, if the
shaker model is included in the simulation, then the PBMIF suggests that
the excitation at point two yields superior results compared to point six.
It is interesting to note, that the PBMIF is close to unity for the excitation
at point six, if the shaker model is not included, i.e., a sinusoidal force is
enforced. This is attributed to the fact that the decrease of the PBMIF

9The sinusoidal excitation force is then generated by replacing the shaker model with
a sinusoidal signal generator of which the frequency is generated by the PLL.
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Figure 4.10: Comparison of linear modal participation factors of the first mode
(real part (a), imaginary part (b)) and the second mode (real part
(c), imaginary part (d)) for different forcing scenarios.

is mainly caused by strong distortions in the excitation force, due to the
nonlinear feedback from the structure to the shaker.
The consequences of these distortions are illustrated by a more detailed

analysis of the obtained nonlinear mode shapes. To this end, the extracted
nonlinear modal motion is projected onto the linear modes to obtain the
vector of modal participation factors

ν =
Nh∑
n

Φ+φ̃
r,n
. (4.56)

The nonlinear modal motion is dominated by contributions ν1 and ν2 of
the first and second linear modes and these are therefore considered in the
following. The real and imaginary parts of the first modal participation
factor ν1 for the excitation at point two (p2) and six (p6) (with and without
shaker model) and the reference solution are shown in Fig. 4.10(a) and (b),
respectively. Regarding the reference solution, it can be seen that the real
part of ν1 is close to unity, whereas the imaginary part is zero. This means
that the nonlinear modal motion is indeed very similar to the linear mode
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Figure 4.11: Comparison of linear, projected linear and nonlinear modal damp-
ing ratio (a) and comparison of the PLL based backbone with the
backbone obtained by a free-decay analysis (b).

shape of the first mode. For sinusoidal excitation at point six (p6s), the
curves almost perfectly overlay the reference solution, whereas there is some
deviation for the nonsinusoidal excitation, i.e., the simulations including
the shaker dynamics. For the excitation at point two, the deviation in
the real part is very small, but there is some deviation in the imaginary
part, i.e., a deviation from a monophase motion. For the excitation at
point six with shaker model, the deviation is larger compared to point
two. The contribution of the second linear modal coordinate, which is
shown in Fig. 4.10(c) and (d), is almost two orders of magnitude smaller
compared to the first linear modal coordinate. However, the same trend
can be observed, i.e., the distortion of the mode shape for the sinusoidal
excitation is smaller compared to the nonsinusoidal excitation at point two
and the nonsinusoidal excitation at point six yields the highest distortions.
It is interesting to note that this observation perfectly correlates with the
values of the PBMIF (c.f. Fig. 4.9(b)).

The damping measures that can be extracted with the proposed NEMA
framework are shown in Fig. 4.11(a). It can be seen that the linear, pro-
jected linear and nonlinear damping measure yield different results for
higher amplitudes. However, it is difficult to validate these damping mea-
sures, as the reference solution is obtained by solution of the undamped
system. The study of the damping measures, therefore, has to be done in
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the verification step of the methodology proposed in Fig. 1.1. The verifi-
cation of the extracted models is addressed in Chapters 5 and 6.
Finally, the results obtained with the novel NEMA approach are com-

pared against the results obtained with the previous method. To this end,
the input voltage to the shaker is set to zero at the end of the PLL based
NEMA and the free-decay is recorded. During free-decay the shaker re-
mains connected to the structure as it is the case in real experiments. The
free-decay is analyzed using a self-coded Morlet WT algorithm10. Exem-
plary, the backbone curve for the beam tip obtained with the PLL method
for an excitation at point two, the free-decay and the reference solution
are shown in Fig. 4.11(b). It can be seen that the free-decay significantly
deviates from the reference solution and the PLL results. The differences
can be explained by the influence of the shaker. Firstly, the switching off
of the excitation induces an impulsive force, which changes the shape of
the backbone curve at the beginning of the decay process. Secondly, the
passive shaker changes the mechanical properties of the structure such that
the measured linear eigenfrequencies are affected. Therefore, the backbone
curve is shifted in frequency. These differences also have been observed in
laboratory measurements as described in Peter and Leine (2017). It can
be seen that the PLL method significantly increases the accuracy of the
backbone curve compared to the free-decay, at least in cases where shaker
excitation is used. This aspect of the free-decay method has been rarely
discussed in literature before.

4.4 Extension to Nonsmooth Systems

The previous studies using nonlinear phase resonance approaches exclu-
sively treat systems with smooth nonlinearities. However, nonsmooth non-
linearities such as unilateral constraints inducing impacts are of high prac-
tical relevance in industrial application. The strong nonlinear effects in-
duced by nonsmooth nonlinearities greatly complicate the manual tuning
of the excitation. Moreover, strong and sudden changes may occur during
a freely decaying vibration such that a high resolution is required for the
TFA and transient effects may bias the obtained results.
The phase controlled approach which is proposed here, however, is ro-

bust also in the case of severe nonlinear effects, such as high harmonic
10The implemented algorithm is mainly based on the publications by Jordan et al.

(1997) and Staszewski (1997).
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distortions. The steady-state analysis allows for an arbitrary resolution
of the backbone curve, such that strong energy dependence can be ana-
lyzed in great detail. Thus, in a first approximation, essentially the same
experimental procedure can be used for nonsmooth systems as proposed
for smooth systems. This first approach is based on the assumptions that
(i) a single harmonic and single point force is still sufficient for nonlinear
mode isolation and (ii) that the nonsmooth interactions do not lead to
strongly nonlinear damping effects. These assumptions can provide rea-
sonable results in some cases (c.f. Section 6.2), but the limitations need
to be thoroughly investigated. However, the new approach provides the
potential for an extension to more complicated forcing scenarios and to
nonlinearly damped systems as addressed in the next section.
In conclusion, the new NEMA procedure provides an interesting tech-

nique for the analysis of the dynamic behavior of nonsmooth systems. This
is particularly interesting due to the fact that the experimental analysis of
nonsmooth systems is, in many ways, still a difficult endeavor.

4.5 Extension to Nonconservative Nonlinearities

A generalization of the proposed NEMA approach is possible in the frame-
work of the extended periodic motion concept for nonconservative systems
(c.f. Definition 2.3). The method, which is referred to as extended phase
resonance testing, is briefly outlined here and the details are published in
Scheel et al. (2018b).
The ENMs as defined in Definition 2.3 are periodic solutions of the dif-

ferential equation

Mẍ(t) + Dẋ(t) + Kx(t) + fnl(x(t), ẋ(t))− ξMẋ(t) = 0. (4.57)

which approximates the behavior of the damped autonomous system. There-
fore, the parameter ξ in the artificial self-excitation term ξMẋ(t) is chosen
such, that the motion becomes periodic. In numerical simulations, for
which the extended periodic motion concept has originally been proposed
by Krack (2015), this leads to an additional unknown ξ which can be cal-
culated such that the periodicity condition is fulfilled (c.f. Section 3.5). In
experiments, the mass proportional self-excitation term cannot be simply
imposed. However, the behavior of the self-excitation can be imitated by
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an appropriate excitation force, i.e.,

ξMẋ(t) = f ex(t), (4.58)

which can, analogously to the case of conservative nonlinear modes (c.f.
Section 4.1.1), be written in frequency domain

inωξMxn = f
ex,n
∀n. (4.59)

The self-excitation term has similar properties to the viscous damping in
Eq. (4.6) which ought to be balanced in conventional phase resonance test-
ing. In particular, both quantities are velocity proportional leading to sim-
ilar characteristics of an appropriated excitation force. Due to the velocity
dependence, the self-excitation is, in analogy to viscous damping forces,
fully described by its active power component. Hence, the excitation force
has the same characteristics as in the conservative case yielding the power
condition

Sj = |Pj | . (4.60)

Therefore, for the j-th excitation point the phase of the excitation has to
be shifted in phase by π/2 with respect to the displacement which can be
achieved with a PLL controller, just as in the conservative case. Further-
more, the PBMIF is also valid for ENMs and the modal parameters can
be extracted analogously to the conservative case. The ENMs are periodic
solutions of Eq. (4.57), i.e., the nonlinear modal motion of the r-th ENM
can be written as Fourier series

xem,r(t) = Re

{
∞∑
n=0

q̃rφ̃
r,n

einω̃em,rt

}
, (4.61)

with the ENM frequency ω̃em,r. Furthermore, the damping behavior can be
characterized by means of the equivalent modal damping measure, which
is related to the self-excitation parameter ξ by (Krack, 2015)

ξ = 2δ̃nl
r ω̃0,r = 2P1

q̃2
r ω̃2

0,r
(4.62)

This damping measure can be evaluated based on the measured active
power of the excitation force, as in the case of conservative nonlinear modes
(c.f. Eq. (4.55)).
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Besides the apparent analogies of extended and conventional phase res-
onance testing, an important conceptual difference shall be pointed out.
Whereas conventional phase resonance testing aims at imitating the behav-
ior of the autonomous conservative system by balancing out the damping
terms by external forcing, extended phase resonance testing aims at cre-
ating a forced system imitating the behavior of the self-excited surrogate
system in Eq. (4.57). It is therefore accepted in extended phase resonance
testing that the external force causes distortions compared to the original
autonomous systems, as long as the distortions have a specific form.

4.6 Summary

A novel framework for nonlinear phase resonance testing has been proposed
in this chapter, which covers the key issues of previous approaches. In
particular the following contributions are made:

• A novel theoretical framework for nonlinear modal testing based on
power quantities borrowed from electrical engineering and a general-
ization of the phase condition to non-monophase nonlinear modes is
derived.

• The assessment of mode isolation quality is addressed and a new
mode indicator function, the PBMIF, is proposed.

• An automatic phase control strategy for the efficient and robust prac-
tical realization of the appropriated excitation is suggested.

• The extraction of nonlinear modal parameters, which are consistent
to linear theory, is explained.

The proposed method is illustrated using a realistic numerical example of
a beam structure with cubic nonlinearity and the quality of the obtained
results is discussed. Finally, it is indicated how the proposed method can
be applied to systems with nonsmooth nonlinearities and how systems with
nonlinear damping can be treated in the framework of the extended peri-
odic motion concept. An experimental demonstration for nonsmooth and
nonlinearly damped structures is included in Chapter 6.



Chapter 5

Identification of Predictive Models Based
on Nonlinear Modes

In this chapter, three different methods for the derivation of predictive
models based on NEMA are presented. The approaches pursue fundamen-
tally different philosophies. The first approach, described in Section 5.1,
aims at directly using the identified nonlinear modal parameters for build-
ing a predictive model. Hence, the modal parameters from the NEMA
form the foundation of a (dark) gray-box identification strategy in nonlinear
modal domain. The other approaches follow the typical system identifica-
tion process described in Chapter 1. The second approach, described in
Section 5.2, combines an experimentally derived linear modal model with
the analytically derived frequency domain representation of the nonlinear
forces in physical coordinates using the HBM. Therefore, the approach
is referred to as analytical-experimental identification approach. For this
method, the type and location of the nonlinear forces have to be known
and the focus is put on the quantification of the nonlinearity. The third
approach, described in Section 5.3, aims at deriving an FE model of a
structure in physical coordinates. Again, special emphasis is put on the
nonlinearity quantification step, which is performed by model updating.
Therefore, in this approach NEMA is embedded in a white-box model up-
dating strategy. The different approaches are briefly discussed in terms of
their applicability and their limitations in Section 5.4. The contributions
made in this chapter are summarized in Section 5.5.

5.1 Gray-Box Approach in Nonlinear Modal
Coordinates

The extraction of nonlinear modal parameters has been addressed in Chap-
ter 4. The extracted nonlinear modal parameters, i.e., nonlinear modal fre-
quencies, shapes and damping values, constitute a nonlinear modal model.

93
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This modal model can directly be used for vibration prediction of nonlinear
structures. This approach, which is common practice for linear systems, is
challenging for nonlinear systems due to the lack of a general superposition
principle. The question of how models containing nonlinear modal data of
single nonlinear modes or some superposition of multiple modes can be
used for vibration prediction apart from the nonlinear modal vibration,
is vividly discussed in nonlinear model order reduction context (see, e.g.,
Krack (2014)). The single nonlinear mode method, which has been pro-
posed by Szemplinska-Stupnicka (1979) for the prediction of steady-state
vibrations of a forced and damped system in the vicinity of an isolated
resonance, forms the foundation of several numerical studies, e.g., by Lax-
alde and Thouverez (2009). In its original form, the method assumes that
the motion of a forced and damped nonlinear system around an isolated
nonlinear mode is dominated by a single nonlinear mode, i.e., it can be
modeled by a single nonlinear modal oscillator. Modified versions of this
approach assume that the steady-state response of nonlinear systems can
be calculated as a linear superposition of the contributions of several non-
linear modes (Gibert, 2003; Setio et al., 1992) or a single nonlinear and
several linear modes (Chong and Imregun, 2001; Krack et al., 2013). All
of these studies have in common that they are based on numerical models
of nonlinear modal oscillators, which are either used as a reduced order
model to efficiently calculate the FRF or used to fit measured FRF data
to identify the nonlinear modal parameters. In this thesis, however, the
inverse procedure is proposed as a means of deriving a predictive model
for the calculation of the steady-state forced response in the vicinity of
a single nonlinear mode on the basis of modal parameters obtained with
phase resonance testing.

Single Nonlinear Mode Method

The approach, of which the details have been published in Peter et al.
(2018a), is purely based on experimental data and does not require any a
priori model. However, some assumptions about the model structure have
to be made and the range of validity is restricted, such that the approach
is termed gray-box approach here. These limitations and assumptions are:

1. The method aims at calculating steady-state vibrations around res-
onance to, in first approximation, single harmonic forcing.
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2. The nonlinear modes of the system are well-isolated and do not un-
dergo pronounced nonlinear modal coupling in the energy range of
interest, e.g., caused by internal resonances.

3. The vibration energy of the forced and damped system is mainly
confined to a single nonlinear mode r.

Obviously, these assumptions are not met by arbitrary nonlinear systems
and they have to be verified carefully for each individual case. Under the
aforementioned assumptions the steady-state response around resonance
is approximated by a nonlinear modal oscillator with the experimentally
derived parameters (c.f. Eq. (4.43)), i.e.,

xnl(t) ≈ xnm,r(t) = Re

{
Nh∑
n=0

q̃
r
φ̃
r,n

einΩt

}
, (5.1)

where Ω ≈ ω̃0,r is the frequency of an external excitation and Nh is the
number of harmonics to which the nonlinear modal motion is truncated
for practical reasons. Using this approximation the response of the r-
th nonlinear mode can be calculated for every harmonic individually by
projection of the nonlinear mode shape onto the equation of motion of a
forced and damped system (c.f. Eq. (4.1)). For the fundamental harmonic
component this yields

[−Ω2 + 2iΩω̃0,r δ̃r + ω̃2
0,r]q̃r = φ̃

H
r,1
f ex,1, (5.2)

which is a complex implicit equation for q̃
r
, because the nonlinear modal

parameters ω̃0,r, δ̃r and φ̃
r,1

depend on the nonlinear modal amplitude
q̃
r
. Therefore, the equation has to be solved iteratively, e.g., using the

predictor-corrector method described in Section 3.2.3. Furthermore, it
should be noted that the modal parameters from the NEMA are only avail-
able at discrete measured points, such that an interpolation scheme is used
to evaluate Eq. (5.2) during the iteration process. The formulation for
higher harmonics n 6= 1 can be written as

φ̃
H
r,n

[−n2Ω2M + 2inΩD + K]φ̃
r,n
q̃
r

= φ̃
H
r,n
f ex,n. (5.3)

If the systems vibrates exactly in a nonlinear mode, this equation would
be fulfilled under the absence of damping and excitation forces. For purely
fundamental harmonic forcing the excitation force of the higher harmonics
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is zero, i.e., f ex,n = 0 for n 6= 1, but there are still damping forces affect-
ing the higher harmonic vibrations. In the case of weak damping, however,
Eq. (5.3) is approximately fulfilled in the vicinity of a nonlinear mode. Fur-
thermore, in real experiments additional distortions in the excitation force
are anticipated (c.f. Sections 4.3 and 6.1), such that f ex,n 6= 0. Neverthe-
less, it is expected that the response near resonance is dominated by the
systems eigendynamics, which is also the reason why a comparatively good
mode isolation can be achieved with single point single harmonic forcing.

Influence of Remaining Modes and Residual Flexibility

The FRF calculation method can be regarded as an extension of the FRF
synthesis, which is commonly done in the process of linear EMA for the
verification of the derived modal model. To be more precise, the method
is closely related to single degree of freedom EMA methods, where one
mode is fitted at a time to extract nonlinear modal parameters (c.f. Ewins
(2000)). Similarly to linear systems, the FRF of the nonlinear system
is affected by neighboring modes, particularly, if the excitation frequency
departs from the resonance frequency. To correct this effect (i) the contri-
bution of the remaining modes can be included in the model and (ii) the
residual flexibility of modes which are outside the considered frequency
band can be taken into account.
Method (i) corresponds to the approaches by Chong and Imregun (2001)

and Krack et al. (2013) and can be justified based on the fact that the con-
tribution of the remaining linear modes is negligible in close vicinity of the
resonance, where the system behaves nonlinearly, but gains importance fur-
ther away from resonance, where the amplitudes are small and the system
essentially behaves as its linearization. Therefore, the modal contributions
of the remaining linear modes is calculated as in linear EMA as

xln =
Ni∑
i6=r

φiφ
T
i

−Ω2 + 2iΩω0,iδi + ω2
0,i
f ex (5.4)

and simply added to the response calculated according to Eq. (5.2). With
this method the calculated FRF apart from the resonance is essentially the
same as in the linear case.
Method (ii) aims at modeling the influence of modes which have not

been considered in the modal analysis procedure by two simple correction
terms: One term modeling low frequency modes and another term mod-
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eling high frequency modes. For convenience, these terms are written as
pseudo modes for the low frequency contribution

xlf = φlfφ
T
lf

−Ω2 + ω2
lf
f ex (5.5)

and the high frequency contribution

xhf = φhfφ
T
hf

−Ω2 + ω2
hf
f ex, (5.6)

where ωlf and ωhf denote the lower and upper limit of the considered fre-
quency band, respectively. Both factors can be identified by fitting mea-
sured FRFs at the low end and the high end of the frequency range of
interest with the calculated FRF. The total response is then calculated as
the superposition of the nonlinear contribution, which determines the re-
sponse around resonance, and the linear contribution as well as the low and
high frequency residual influence, determining the response further away
from resonance, yielding

x ≈ xnl + xln + xlf + xhf . (5.7)

Process for Gray-Box Identification

An overview of the identification process with the gray-box approach is
given in Fig. 5.1. The mandatory steps for deriving a predictive model
for FRF calculation are shown in black, whereas the gray parts of the
process are optional steps to increase the range of validity of the model.
Starting from the NEMA and a linear EMA measurement, the parameters
of the nonlinear modal model, i.e., nonlinear modal frequencies, normal-
ized nonlinear mode shapes and damping coefficients, can be identified.
For the damping quantification, the nonlinear or the projected linear ap-
proach can be used or, alternatively, the linear modal damping identified
with the EMA can be included in the nonlinear model. The linear and
nonlinear modal parameters can directly be used as a predictive model
and are validated based on the training data for which they are extracted.
This numerical model is specifically valid for steady-state FRF prediction,
as indicated in Fig. 5.1. Using the nonlinear modal model, the nonlinear
contribution to the FRF can be calculated according to Eq. (5.2), i.e., a
model prediction is obtained. This nonlinear contribution is, according to
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Figure 5.1: Gray-Box identification process (black: mandatory steps, gray: op-
tional steps).

the single nonlinear mode assumption, sufficient to approximate the FRF
in the close vicinity of an isolated nonlinear mode. To extend the range of
validity of the model, additional linear modes can be taken into account
using Eq. (5.4), based on the assumption that a linear superposition can be
used in the low amplitude range further away from resonance. The linear
contribution is based on the EMA, such that no additional measurement
effort is required.
For a further improvement of the FRF in the frequency range far away

from resonance, it is possible to identify the residual flexibilities modeled
as shown Eq. (5.5) and Eq. (5.6). To this end, a set of measured FRF
data is considered and the difference to the predicted FRF at the low
and high end of the considered frequency range is minimized by suitable
parameters for the residual flexibility. In this context, it is assumed that the
system behaves essentially linear at the beginning and end of the considered
frequency interval. Therefore, it is also possible to use an FRF extracted in
the process of the linear EMA for this purpose. In experiments the residual
flexibility has a higher relevance than in numerical studies using similar
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concepts for FRF calculation. Firstly, the number of extracted modes is
typically limited in EMA, whereas the extraction of additional linear modes
does not present any difficulty in numerical studies. Secondly, the residual
flexibility can be used to account for imperfect boundary conditions or local
flexibility at the excitation point, which have an influence on the measured
FRFs but are difficult to include in a modal model (Ewins, 2000).

Numerical Example

To briefly illustrate the influence of the linear modes and the chosen damp-
ing hypothesis, the numerical example detailed in Section 4.3 is revisited.
In Section 4.3, it has not been possible to validate the extracted damping
parameters with a reference solution, because the damping has not been
included in the numerical calculation of the autonomous system. There-
fore, the influence of the damping model on the FRF calculated with the
gray-box approach is considered here. To this end, the nonlinear modal
parameters, which have been extracted for an excitation at point two in-
cluding the shaker model, are used (c.f. Section 4.3). In Fig. 5.2(a) the
reference FRF for the drive point, calculated with the HBM with nine
harmonics, for a sinusoidal excitation at node two with fex,1 = 0.3 N is
plotted in blue. The synthesized FRF around the first nonlinear mode with
the nonlinear (green), the projected linear (red) and the linear damping
model (black, dashed) are shown for comparison1. It can be seen that for
the considered excitation level, the curves obtained with the linear and
the nonlinear damping measure almost overlay each other. However, both
damping measures seem to overestimate the damping leading to a slight
deviation in the maximum amplitude compared to the reference solution.
In contrast, the projected linear damping estimate yields almost the same
result as the reference solution.
Next, the influence of the linear contribution of the remaining modes

is demonstrated in Fig. 5.2(b). To this end, the reference FRF is plotted
in a frequency range from 10 to 60 Hz (blue) and compared to the FRF
calculated with the single nonlinear mode assumption (black, dashed) and
the single nonlinear mode assumption with the additional linear contri-
bution (red, dashed). The results clearly show that the influence of the
remaining linear modes is negligible in the close vicinity of the resonance,
where all three curves almost perfectly overlay, whereas the influence in-
creases further away from resonance. In particular, the antiresonance at a

1The amplitude dependent damping coefficients can be found Fig. 4.11(a).
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Figure 5.2: Comparison of reference FRF with FRFs calculated with linear, pro-
jected linear and nonlinear damping measure (a) and calculated FRF
(log scale) with and without the influence of the remaining linear
modes (b).

frequency of around 42 Hz cannot be captured with a single mode model.
Furthermore, it is noted that in the frequency range away from resonance
the amplitudes are generally small and the system can be represented accu-
rately by a linearized model. This can be easily verified during the gray-box
FRF calculation, as it is known which data point of the backbone curve is
used for the calculation of each point of the FRF.

5.2 Analytical-Experimental Approach in
Mixed-Modal-Physical Coordinates

The second identification method exploits the analytically derived fre-
quency domain representation of the nonlinear forces using the HBM to-
gether with a linear modal model of the linear structure. The frequency
domain representation of the autonomous conservative system is derived
with the HBM yielding Eq. (3.26) which can be written in complex notation
and split into blocks for each harmonic n yielding

Hn(nω)xn + f
nl,n

(x, ω) = 0, ∀n. (5.8)
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As explained in Chapter 4.1.1, these equations have to be fulfilled in the
case of a nonlinear modal motion in the r-th nonlinear mode, i.e.,

Hn(nω̃0,r)ψ̃
r,n

+ f
nl,n

(ψ̃
r
, ω̃0,r)

!= 0, ∀n, (5.9)

where ω̃0,r denotes the nonlinear modal frequency and ψ̃
r
the nonlinear

modal deflection shapes including all harmonic components. It is now as-
sumed that ω̃0,r and ψ̃

r
are known from the NEMA measurement, whereas

the system matrices included in Hn and the nonlinear forces f
nl,n

are un-
known. If the linear modal parameters of the structure are known from an
EMA measurement, then Eq. (5.9) can be written in linear modal coordi-
nates (c.f. Eq. (4.12)) with the nonlinear mode shape described in linear
modal coordinates (c.f. Eq. (4.56)) yielding(

−n2ω̃2
0,rINi + Ω0

)
Φ+ψ̃

r,n
+ ΦTf

nl,n
(ψ̃

r
, ω̃0,r) = 0, ∀n, (5.10)

where the nonlinear force law is kept in physical coordinates. Now, the
only remaining unknown part in the equation is the nonlinear force law
f

nl
in the frequency domain. However, it is shown in Chapter 3 that for

a class of nonlinear functions an analytical frequency domain representa-
tion of the nonlinear forces can be derived using the HBM (c.f. Tab. 3.1).
The analytical form of the nonlinear force can then be evaluated for the
measured ω̃0,r and ψ̃

r
and Eq. (5.10) is solved for the parameter of the

nonlinear force κ.

The analytical-experimental method is a rather simple procedure to
quantify the nonlinearity. The method requires a linear modal model de-
rived by a linear EMA and nonlinear modal parameters derived by the
NEMA. Generally, any other frequency domain measurement, e.g., FRF
measurements, could be used as training data. However, the advantage of
the NEMA data is that it does not require an estimate of the damping
properties of the linearized system, which is beneficial because the damp-
ing quantification is the most susceptible to errors in the process of EMA.
Furthermore, it is noted that the analytical-experimental method requires
some a priori knowledge of the functional form of the nonlinear forces and
their locations as well as the analytical frequency domain representations
of the nonlinear force laws.
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5.3 White-Box Model Updating in Physical
Coordinates

The third identification strategy is based on a minimization of the dif-
ference between the numerically calculated nonlinear modes obtained with
the algorithm described in Chapter 3 and the experimental results obtained
with the method described in Chapter 4. Therefore, the numerical model
is updated until it provides a satisfying representation of experimental re-
ality. The use of model updating strategies for nonlinear system identifica-
tion has recently received increasing attention (Noël and Kerschen, 2016),
which may be attributed to the ongoing development of efficient numerical
methods. Generally, different experimental features and the corresponding
numerical methods can be used for this purpose, such as nonlinear FRFs
(Meyer and Link, 2003), proper orthogonal modes (Lenaerts et al., 2001)
or empirical modes (Kurt et al., 2015). A model updating strategy based
on experimentally extracted nonlinear modal data is proposed in Peter
et al. (2015), which forms the foundation of the approach described below.
The use of nonlinear modes as a basis for model updating provides the ad-
vantage that they contain information about the linearized and nonlinear
model in a very condensed and physically meaningful form. Moreover, the
resonances of nonlinear systems, which are usually the most relevant oper-
ating points from a design perspective, are typically located in the vicinity
of nonlinear modes. It is expected that a model identified based on non-
linear modal data provides a high accuracy for these important operating
conditions.

For the numerical calculations which are required for the updating, the
HBM algorithm proposed in Chapter 3 is used. In this context, the HBM
particularly provides the advantage that the filtering property can be ex-
ploited to speed up numerical calculation of nonlinear modes. Since the
measurements are made prior to the updating, it is known to which extent
higher harmonics are relevant and whether internal resonances have been
found in the energy range of interest. Therefore, the HBM ansatz can be
tailored according to the specific problem before the updating to save com-
putational cost. An additional advantage of the HBM method is that the
results are calculated in the frequency domain and can, thus, directly be
compared to the experimental results which are at hand in the frequency
domain.
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Figure 5.3: White-Box model updating process (black: mandatory steps, gray:
optional steps).

A typical feature of model updating strategies is that some a priori model
must be available as an initial guess for the updating process. This model
can be either obtained by white-box modeling based on first principles,
some preceded identification steps or a combination of both. It is acknowl-
edged, that the choice of an appropriate initial model is anything but trivial
for complex nonlinear systems and may require considerable expertise and
experimental effort.

Process for White-Box Model Updating

The proposed model updating procedure is visualized in Fig. 5.3. Similarly
to the other approaches, the model updating method relies on a backbone
curve measurement and a linear EMA. The identification process is based
on an a priori white-box model of the structure. This white-box model
comprises a linear structure, which is modeled by finite elements, and some
estimate of the character of the relevant nonlinear elements. Optionally,
the linear FE model can be tuned with the results obtained from the linear
EMA, i.e., a pre-optimization of the linear model with well-known linear
model updating methods can be performed. In cases where the character
of the nonlinear elements cannot be estimated by physical considerations,
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their location and functional form can be estimated by some a priori char-
acterization step. For instance, the RFSM can be used as a simple and
effective method for characterizing the nonlinear elements.
The initial white-box model is then used for numerical simulation of a

nonlinear mode of interest r using the HBM algorithm. The accordance of
the numerical and the experimental results is evaluated using some objec-
tive function. Additionally, the linear modal parameters extracted by the
EMA and numerical simulation can be included in the objective function.
The objective function is minimized by an optimization algorithm through
updating of the numerical model until convergence is achieved and a val-
idated numerical model is at hand. The choice of the objective function
and the optimization algorithm for the updating is briefly discussed in the
following.

Objective Function

Linear model updating is, in most cases, based on the deviation of linear
modal parameters of the experimental structure and the numerical model.
For instance, the squared relative error of the linear eigenfrequencies

Ξln(αln) =
Ni∑
i=1

(
ωexp

0,i − ω
num
0,i (αln)

)2(
ωexp

0,i
)2 (5.11)

of Ni extracted modes can be minimized to identify the unknown param-
eters of the linearized model included in the parameter vector αln. Ad-
ditionally, the MAC value of the linear modes can be evaluated to verify
the accordance of the experimental and numerical mode shapes (Allemang,
2002). These methods can be used for a pre-optimization of the linearized
model.
A direct extension of these methods for the nonlinear updating is infea-

sible due to several reasons. First, the nonlinear eigenfrequencies as well as
mode shapes may be energy dependent, such that the frequency difference
and accordance of the mode shapes also depend on the energy. Second,
the extraction of nonlinear modes involves higher experimental cost such
that typically only a very limited number of experimental nonlinear modes
is known. Therefore, in the following a few possible objective functions
based on the amplitude dependent modal parameters of a measured non-
linear mode r are discussed.
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A straightforward objective function, which has been used in Peter et al.
(2015), is based on the squared difference of the numerical and experimen-
tal amplitude-frequency relation for a reference coordinate xref (or multiple
reference coordinates) of the structure, i.e.,

Ξ1(κ) =
Nm∑
m=1

(
ω̃exp

0,r,m(xref)− ω̃num
0,r,m(xref ,κ)

)2
, (5.12)

which is evaluated at Nm measured data points2. Herein, κ denotes the
vector of unknown parameters of the nonlinear functions and may also
contain additional unknown linear parameters of the model. It should be
noted, that the choice of the reference coordinate is generally not obvious
and depends on the system as well as the considered mode. Therefore,
either multiple reference coordinates can be used (c.f. Peter et al. (2015))
or the minimization can be performed in the nonlinear modal domain, i.e.,
based on the relation of the nonlinear modal amplitude q̃r of the r-th mode
and the associated nonlinear modal frequency. Then the entire nonlinear
mode shape is inherently included in the normalization procedure of the
mode shape (c.f. Eq. (4.46)). The objective function can then be chosen
as

Ξ2(κ) =
Nm∑
m=1

(
ω̃exp

0,r,m(q̃r,m)− ω̃num
0,r,m(q̃r,m,κ)

)2
, (5.13)

which is minimized to obtain the parameter vector κ. Generally, it is pos-
sible to take into account several nonlinear modes for the model updating.
However, the practical examples in this thesis are limited to data of a sin-
gle nonlinear mode. Moreover, it may be useful to simultaneously identify
some of the linear parameters included in αln and the nonlinear parameters
included in κ. To this end, the linear and nonlinear objective functions can
be combined using a weighted summation, e.g.,

Ξ(αln,κ) = Ξ2(κ) + ιΞln(αln)
1 + ι

, (5.14)

where ι denotes the weighting factor. Finally, it is noted that the suitability
of the objective function for the model updating strategy depends on the

2The numerical results can be easily interpolated to fit the amplitudes of measured
data points.
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specific problem and is influenced by several factors, e.g., the number of
unknown parameters, the accuracy of the a priori linear model and the
availability of experimental data, i.e., the number of extracted linear and
nonlinear modes.

Optimization Algorithm

The linear and nonlinear parameters of the structure are identified by min-
imization of the objective function, i.e.,

Ξ→ min. (5.15)

For complex nonlinear systems, the dependence of the objective function
on the parameter vectors is generally not known in closed form, such that
the minimization has to be performed numerically. Furthermore, the opti-
mization problem may be highly nonlinear and the gradients of the objec-
tive function are also unknown. Particularly, for cases in which multiple
parameters are unknown the objective function is likely to have local min-
ima. Even though it has been demonstrated in Peter et al. (2015) that for
a simple benchmark structure a standard Nelder-Mead-Simplex algorithm
implemented in Matlab can be sufficient for this purpose3, the HBM al-
gorithm is integrated in the optimization software HyperStudy in this
thesis. This implementation allows for a greater flexibility regarding the
optimization algorithm. For instance, problems which are likely to cause lo-
cal minima in the objective function can be solved with globally convergent
optimization methods such as genetic algorithms, whereas local methods
such as the adaptive response surface method allow for an efficient opti-
mization with a limited number of function evaluations, which is beneficial
in cases where the numerical computation of nonlinear modes is expensive.
Moreover, parallelization of function evaluations, combinations of several
optimization algorithms or a pre-optimization of a linear FE model can
be used without additional programming effort. Since the choice of the
most efficient updating algorithm is highly dependent on the system which
is to be identified, this thesis refrains from recommending a best possible
updating algorithm for all conceivable identification problems.

3It has been observed that local minima may be reached in this case depending on the
configuration of the optimization problem, i.e., start values, unknown parameters,
objective function.
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5.4 Discussion of the Identification Approaches

The aforementioned methods for system identification based on nonlinear
modes have a fundamentally different scope and therefore pursue different
strategies. The gray-box approach presented in Section 5.1 yields a model
with a limited range of validity and several a priori assumptions have to
be made. The parameters of the model are obtained in the nonlinear
modal domain and are not directly related to physical parameters of the
nonlinear forces. Apart from these limitations the approach is very easy
to implement and neither requires the modeling of a linearized model nor
the characterization and quantification of nonlinear forces. Furthermore,
the numerical effort for vibration prediction is kept at a minimum, because
the derived model is a single DOF representation of the system, i.e., the
approach directly yields a reduced order model.

In contrast to the gray-box approach the analytical-experimental method
in Section 5.2 requires some a priori knowledge of the character and location
of the nonlinear forces. The method is by concept limited to nonlinearities
which allow for an analytical calculation of the nonlinear forces in the fre-
quency domain. Moreover, the estimation of the nonlinear coefficients may
be complicated for complex structures with multiple nonlinear elements.
The advantage of the method lies in its simplicity and the fact that the
physical parameters of the nonlinear forces are obtained. Therefore, the
parameters can be included in any numerical model, which can then be
used for vibration prediction in an appropriate operating range.

Compared to the other approaches the modeling effort is much higher
for the white-box based model updating strategy proposed in Section 5.3.
Additionally, the approach is more expensive from a computational point
of view. However, the method is very general and can be customized to
nearly arbitrary structures with generic nonlinearities. Even the treatment
of sophisticated models with complicated nonlinear modal dynamics, such
as internally resonant or close nonlinear modes does not seem to be an issue
from an identification point of view. Yet, it is noted that, in this case, con-
siderable computational resources may be required and the measurement
of the nonlinear modes of such structures seems to be difficult at present.
Finally, the derived model can be used for the prediction of any vibration
state in the operating range in which the model has been identified, given
that the model structure is chosen correctly.
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The proposed identification methods provide a toolbox for the derivation
of predictive models. The suitable identification strategy has to be chosen
depending on the specific problem.

5.5 Summary

The identification of predictive models based on NEMA has been discussed.
Three novel strategies for the use of nonlinear modes in system identifica-
tion are proposed:

• A gray-box strategy, which is based on an extension of the single
nonlinear mode method, is presented. For the first time, the issue of
direct prediction of different vibration states, i.e., steady-state FRFs
of the forced and damped system, based on experimentally derived
nonlinear modes is addressed.

• An analytical-experimental strategy in mixed-modal physical coor-
dinates is presented. The method exploits analytical HBM formu-
lations of nonlinear force laws in the frequency domain for a direct
nonlinearity quantification. The use of nonlinear modes as training
data simplifies the identification as an experimental damping quan-
tification becomes obsolete.

• The first model updating strategy based on measured nonlinear modes
is proposed. The white-box model based framework is build upon the
integration of experimentally derived nonlinear modes with efficient
HBM calculations in an optimization process.

The strategies will be illustrated with the help of experimental application
examples in the following chapter.



Chapter 6

Application Examples

In this chapter, several experimental application examples of the proposed
methods are shown. In Section 6.1, a detailed study of the nonlinear modal
testing and identification methods is carried out. The extendability to
systems with nonsmooth nonlinearities is illustrated in Section 6.2. The
example used in this section also sheds light on the applicability of the
experimentally derived nonlinear modes for the purpose of numerical model
validation. In contrast, Section 6.3 focuses on a purely experimental based
approach applied to a system with nonconservative nonlinearity. Special
emphasis in this example is put on damping quantification by NEMA. The
contributions of the thesis to the field of experimental application of NEMA
are summarized in Section 6.4.

6.1 Benchmark System: Beam with Geometric
Nonlinearity

In this section, the applicability of the complete processes of NEMA based
nonlinear system identification to a laboratory experiment is demonstrated.
The section starts with a description of the used benchmark structure in-
cluding the experimental setup and shows the results of the NEMA. Sub-
sequently, the identification and validation of predictive models obtained
with the methods discussed in Chapter 5 is shown. In the last part of
the section, the verification of the models based on experimental data and
numerical simulations is studied.

6.1.1 Test Rig and Experimental Results

The benchmark structure used in this section is similar to the so-called
ECL-benchmark beam proposed by Thouverez (2003), which has been
studied in various implementations by several researchers (Kerschen et al.,
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Figure 6.1: Photo of the beam test rig with close-up of the strain gauges for
pretension measurement and the adjustable clamping mechanism of
the thin beam.

2003; Meyer and Link, 2003; Shaw et al., 2016). The implementation used
in this thesis is shown in Fig. 6.1. The setup consist of a long beam with
square cross section that is clamped at one end and connected to a thin
beam at the other end, which is also clamped. In the specimen used in
this thesis, the clamping mechanism of the small beam can be moved to
adjust the pretension of the setup, which can be measured by strain gauges
attached to the long beam. The mechanism is primarily used to avoid buck-
ling in the small beam, which may be caused by thermal expansion during
testing. The long beam is excited by an electrodynamic shaker and the re-
sponse is measured with seven accelerometers along the beam. Moreover,
the displacement and velocity are recorded with laser Doppler vibrome-
ters (LDVs) at the excitation point and the beam tip. The displacement
and force at the excitation point are used as input signals for the PLL
controller1. A schematic sketch of the setup is shown in Fig. 6.2(a)2.
In this benchmark test, the beam is excited in its first bending mode

leading to large deflections at the beam tip. This deflection causes a se-
vere deformation of the thin beam compared to its thickness leading to a
significant geometric stiffening nonlinearity. The nonlinear component of

1It is noted that the velocity or acceleration can also be used (see e.g., Peter and
Leine (2017)) but the displacement is typically less distorted by higher harmonics
increasing the accuracy of the phase control.

2Details about the instrumentation and the PLL parameters are included in Appen-
dices H and G, respectively.
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Figure 6.2: Schematic sketch of the experiment for excitation at point two with
FE discretization of the numerical model (a) and measured dimen-
sionless nonlinear force at the beam tip with cubic fit (b).

the nondimensional restoring force is shown in Fig. 6.2(b)3. Comparison
of the measured values with a cubic polynomial shows that the restoring
force of the small beam in lateral direction can indeed be modeled by a
cubic spring, as it is commonly done in literature.
For all NEMA based identification methods, which are discussed in the

following, the linear modes of the beam and the first fundamental nonlinear
mode are used. The first six linear bending modes, which are extracted
using a standard EMA with random excitation at point p24, are shown
in Tab. 6.1 along with the dimensions and nominal physical parameters of
the primary beam. For the extraction of the nonlinear modal parameters,
the beam is excited at point p2 and point p6, respectively, to investigate
the influence of the excitation point. The extraction of the nonlinear mode
is started at a low excitation level which is incrementally increased, mea-
suring in total 36 points of the backbone curve. The measured frequency-
amplitude curves for both excitation points are shown in Fig. 6.3(a). It
can be seen that the structure shows a significant stiffening nonlinearity
and the backbone curves extracted at both excitation points are very sim-
ilar. A small deviation may be attributed to a change in mass distribution
and stiffness due to the attachment of the shaker and stinger at different

3The RFSM has been used to characterize the restoring force at the beam tip. For
the purpose of visualization the linear component of the RFSM has been removed.

4For details of the EMA setup the reader is referred to Appendix H.
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Frequency [Hz] Damping [%]
30.05 0.21
124.58 0.10
331.89 1.36
663.85 0.10
1106.09 0.15
1576.56 0.43

Parameter Value Unit
Enom 185 GPA
ρ 7830 kg/m3

h 12 mm
hs 0.5 mm
l 700 mm

Table 6.1: Linear eigenfrequencies and modal damping ratios of the first six bend-
ing modes of the beam (left) and nominal parameters of the beam
(right).

points of the structure. The measured modal damping extracted with the
linear, projected linear and nonlinear modal damping hypothesis is shown
in Fig. 6.3(b) for both excitation points. It can be observed that for both
excitation points there is a significant deviation of the linear and projected
linear modal damping, which are both based on the EMA, compared to
the nonlinear modal damping measure. It is interesting to note, however,
that the deviation between the damping hypotheses is similar for both ex-
citation points in the low amplitude range. Furthermore, it can be seen
that the damping estimated with an excitation at point six is significantly
higher compared to the estimation for an excitation at point two. In the low
amplitude regime, this deviation is also approximately the same, indepen-
dently of the used damping hypothesis. For higher amplitudes, however,
the nonlinear modal damping coefficient estimated for an excitation at p6
approaches the nonlinear modal damping coefficient estimated for the ex-
citation at p2. A possible explanation for the discrepancies between the
excitation points is that the excitation forces applied at p6 are very small,
particularly for the measurements in the linear range, leading to a poor
signal to noise ratio which complicates an accurate measurement of the
excitation force for this point.
Additionally, the PBMIF for both excitation points in Fig. 6.4(a) indi-

cates that the excitation at point two yields a better mode isolation quality
than the excitation at point six, which is in line with the numerical study
of a similar test structure in Chapter 4.3. The PBMIF for both excita-
tion points suggests that there may be some imperfections with increasing
amplitude. It has been observed during experimentation, similarly to the
numerical study, that these imperfections are mainly due to harmonic dis-



6.1 Benchmark System: Beam with Geometric Nonlinearity 113

Figure 6.3: Frequency-amplitude plot (a) and damping-amplitude plot (b) for
NEMA with excitation at point p2 and p6.

tortions in the excitation force5. Regarding the mode shapes shown in
Fig. 6.4(b) it can be seen that the nonlinear modal motion is clearly dom-
inated by the first linear mode. The second linear modal participation is
increasing with increasing amplitude, however, its level is two orders of
magnitude smaller compared to the first modal participation. Both exci-
tation points yield similar results in this respect.
The experimental results show that the nonlinear modal parameters can

be extracted with the proposed experimental procedure yielding the ex-
pected nonlinear stiffening behavior. It is further observed that the ex-
periment can be performed with an excitation at different points of the
structure. The nonlinear modal frequency and mode shape are similar for
both excitation points, while the damping and mode isolation quality seems
to be more sensitive. Since the mode isolation quality for an excitation at
point two is, according to the PBMIF, better than for point six, the results
for this excitation point are used for the following identification steps.

6.1.2 Identification and Validation of Numerical Models
In the next step, the predictive models are derived according to the three
identification approaches presented in Chapter 5. For the gray-box ap-
proach, the nonlinear and linear modal parameters can directly be used

5A more detailed discussion of different power components is included in the publi-
cation Peter and Leine (2017).
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Figure 6.4: PBMIF over modal amplitude (a) and modal participation factor (b)
for NEMA with excitation at point p2 and p6.

Parameter Exp.-An. Pre.-Opt. Mod. Up. Unit
E n.a. 203 203 GPA
kc n.a. 4132.01 4202.17 N/m
kr n.a. 6.82 6.73 Nmm/rad
β 871.91 · 106 n.a. 828.75 · 106 N/m3

Table 6.2: Identified parameters of the beam model obtained with analytical-
experimental approach, linear pre-optimization and nonlinear model
updating.

for building a predictive single nonlinear mode model, such that no further
identification steps are required. The analytical-experimental method is
applied using the linear modal data and assuming a cubic restoring force
acting at the beam tip. Therefore, the only unknown parameter in the
model is the cubic spring stiffness β. The analytical HBM formulation
of the cubic spring force (c.f. Tab. 3.1) can then be used to calculate the
parameter dependent nonlinear force, which is projected onto the linear
modal space and has to be in balance with the linear modal forces (c.f.
Eq. (5.10)). The equation is then solved for each measured data point to
obtain the required nonlinear spring stiffness β.
For the model updating procedure, a physical FE model of the struc-

ture is required. Therefore, the main beam is modeled with seven Timo-
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Pre-Optimization Model Updating
Frequency [Hz] Error [%] Frequency [Hz] Error [%]

30.05 0.03 30.18 0.40
124.90 0.26 124.88 0.23
340.38 2.56 340.23 2.51
660.22 0.55 659.91 0.59
1082.21 2.16 1081.69 2.21
1573.17 0.21 1572.42 0.26

Table 6.3: First six linear bending eigenfrequencies of the beam and relative error
after pre-optimization and nonlinear model updating.

shenko beam elements and the small beam is represented by a three pa-
rameter model with a linear translational and rotational spring with the
stiffness parameters kc and kr, respectively, and a cubic spring (c.f. Chap-
ter 4.3). Since all of these parameters are unknown and the nominal value
of the Young’s modulus of the main beam may also show some inaccu-
racy, the parameter vector for the white-box model updating is chosen as
α = [β, kc, kr, E]T. The model updating is done in a two step process:
(i) a linear pre-optimization and (ii) a nonlinear optimization. For step
(i), the parameter vector αln = [kc, kr, E]T and the objective function is
chosen according to Eq. (5.11). In step (ii), the difference between the
numerical nonlinear modal amplitude-frequency curve to the experimen-
tal amplitude-frequency curve (c.f. Fig. 6.3(a), black curve) is minimized
according to Eq. (5.13) to find the parameter β. Additionally, the design
parameters kc and kr are varied within ±10% around the value obtained by
the pre-optimization, leading to a parameter vector κ = [β, kc, kr]T for the
nonlinear optimization. The variation of kc and kr is included to achieve
a best possible estimate of the nonlinear modal results for the first mode,
which may show some deviation to the natural frequency obtained by EMA
due to experimental imperfections.
The obtained parameters for the analytical-experimental method, the

pre-optimization and the nonlinear model updating are listed in Tab. 6.2.
The pre-optimization and the nonlinear model updating yield similar pa-
rameters for the linearized model. The corresponding linear eigenfrequen-
cies are listed in Tab. 6.3. The minor deviation to the experimental eigen-
frequencies for all six bending modes indicates that the simplified model of
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Figure 6.5: Cubic spring coefficient estimated with analytical-experimental
method and model updating (a) and frequency-amplitude plot cal-
culated with the identified parameters (b).

the small beam with two discrete linear stiffness parameters is sufficiently
accurate. The most significant difference between both models is that the
first eigenfrequency after the nonlinear model updating is slightly higher
compared to the linear pre-optimization. This difference is mainly caused
by the fact that the measured low amplitude frequency in the NEMA is
slightly higher than in the EMA, which may be caused by the limited
frequency resolution of the EMA or experimental imperfections.
The nonlinear model parameter β can either be estimated by the analyti-

cal-experimental method or the nonlinear model updating. The estimated
parameter with the analytical-experimental method βae is plotted over the
modal amplitude in Fig. 6.5(a). It can be seen that the obtained parame-
ter is different for each measured data point, but stabilizes at around 109

for higher modal amplitudes. For comparison, the cubic spring constant
obtained by the model updating βup is shown. Particularly for low am-
plitudes, βae is significantly different to βup, which can be attributed to
the fact that the nonlinear forces in this amplitude range are very small
which complicates the analytical-experimental estimation. In this ampli-
tude range the parameter estimation is strongly biased by measurement
errors and imperfections. Therefore, the obtained parameters for the last
ten measured points of the backbone curve are averaged yielding the pa-
rameter βae shown in Fig. 6.5(a)(red line). This averaged parameter is sim-
ilar to the parameter βup (blue line) obtained with the updating method.
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Figure 6.6: Fundamental harmonic content for FRF measurements (a) and
NEMA measurement (b).

The frequency-amplitude curves of the updated nonlinear model and the
model with βae are shown in Fig. 6.5(b). It can be seen that the model
obtained by the white-box model updating almost perfectly represents the
experimental data, whereas a small difference is observed if βae is used.
Generally, it has been found that the analytical-experimental method is
highly sensitive to imperfections in the linear modal model as well as exper-
imental imperfections in the backbone curve test. The sensitivity may be
reduced by including more training data, e.g., more nonlinear modes, into
the analytical-experimental procedure but the robustness of the method
seems to be limited. However, the simplicity of the analytical-experimental
approach can, for instance, be exploited to estimate start values for non-
linear model updating.

6.1.3 Verification of the Identified Models

The last step of the identification process (c.f. Fig. 1.1) is the verification
of the identified numerical models. To this end, two different sets of FRFs
are considered. First, the calculated FRF using the identified gray-box
model is compared to measured FRFs. Second, calculated FRFs using the
updated white-box model are compared to calculated FRFs using the gray-
box models obtained from NEMA with an excitation at the two different
excitation points to investigate the consistency of the derived models.
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For the first verification approach, a reference FRF measurement is re-
quired. Therefore, (i) a conventional sweep sine controller6 and (ii) an
augmented PLL controller7 are used. For (i) slow sweeps with a sweep
rate of 0.0125 Hz/s and two different sweep directions are used. This is
necessary, because the Duffing-type behavior of the system leads to co-
existing periodic solutions. The force level of fex,1 = 0.45N is controlled
based on the RMS value of the measured excitation force. The nonlinear
feedback of the structure to the excitation mechanism leads to a signifi-
cant distortion of the excitation force which can be quantified using the
fundamental harmonic content (Shmilovitz, 2005)

γF =

√√√√1−

(∑Nh
n=2 f

2
ex,n∑Nh

n=1 f
2
ex,n

)
(6.1)

of the excitation force. A fundamental harmonic content γF = 1 indicates
a purely sinusoidal force signal. The fundamental harmonic content for
the FRF measurement is shown in Fig. 6.6(a) for the sweep up (Sw. ↗)
and sweep down (Sw. ↘). It can be seen that the fundamental harmonic
content of the excitation force significantly deviates from one, particularly
near resonance. The measured amplitude and phase response with the
conventional sweep controller are shown in Fig. 6.7(a) and (b), respectively.
It can be observed that the characteristic jump occurs near resonance and
the sweep up and down yield different branches of the FRF. Moreover, it
can be seen that the jump for the sweep up occurs prior to the actual peak,
which can also be seen in the phase response as the phase at which the
jump occurs is below 90◦. Indeed, it is difficult to extract the complete
branch of the FRF with a conventional sine controller due to the high
sensitivity of the system near the bifurcation point. Therefore, a reference
measurement with method (ii) is recorded. To this end, the PLL controller
is augmented by a force amplitude control, which is also based on the RMS
value of the measured excitation force. The PLL controller is capable of
stabilizing the unstable branch of the FRF such that the complete FRF can
be extracted. The measured FRF is shown in Fig. 6.7(a) and (b) and the
fundamental harmonic content of the excitation force in Fig. 6.6(a). The
force amplitude control based on the RMS value is generally more robust
in the case of strong harmonic distortions compared to a control based

6The details of the experimental setup are included in Appendix H.
7The details of the PLL controller for FRF measurements are included in Appendix I.
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on the fundamental harmonic, however, the distortions have to be taken
into account in the FRF calculation to achieve comparable results to the
reference measurement. Therefore, the fundamental harmonic content γF
extracted in the NEMA (see Fig. 6.6(b)) is used as an amplitude dependent
scaling factor of the excitation force in the FRF synthesis based on the
gray-box model in Eq (5.2) yielding

[−Ω2 + 2iΩω̃0,r δ̃r + ω̃2
0,r]q̃r = γFφ̃

H
r,1
f ex,1. (6.2)

Furthermore, the damping hypothesis has to be chosen for the FRF cal-
culation. It is shown in Fig. 6.3(b) that the nonlinear damping coefficient
is significantly lower compared to the linear and projected linear damping
coefficient. However, it is expected that a phase resonance approach, as it
is used for the measurement of the nonlinear mode, generally leads a more
accurate damping measure compared to the conventional linear EMA using
phase separation techniques (Géradin and Rixen, 2015). This hypothesis
has been confirmed for the nonlinear case by the experimental study in
Peter et al. (2018a). Thus, the nonlinear damping coefficient is used for
the synthesized FRF. The comparison of the gray-box model based FRF
with the directly measured FRFs for the beam tip in Fig. 6.7(a) and (b)
shows a good agreement of the FRF measured with the PLL method and
the synthesized FRF. There are small deviations around the peak and in
the phase response which can be attributed to experimental imperfections.
The comparison also reveals the difficulties to extract an accurate and
complete FRF for a strongly nonlinear and lightly damped system with a
conventional sine controller. Generally, it can be stated that the synthe-
sized FRF yields a good representation of the frequency response around
an isolated resonance and requires minimal experimental effort compared
to the two reference measurements. The backbone curve measurement is a
simple and robust technique compared to sine sweeps or the stepped phase
FRF measurement with the PLL. The identification effort for the gray-box
method is small and the numerical effort for the subsequent FRF calcula-
tion is negligible as the obtained model is a single DOF nonlinear modal
oscillator.
The second study for verification of the derived models addresses the sig-

nificance of the derived gray-box models for different excitation scenarios
and a comparison of the updated white-box FE model with the gray-box
model. To investigate the former, the FRF for an excitation at point p4 is
synthesized with the gray-box models obtained for an excitation at point
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Figure 6.7: Calculated gray-box FRF for excitation at p2 and response at beam
tip with reference measurements (a),(b) and comparison of gray-box
model FRF with updated white-box model FRF for excitation at p4
and response at p3 with fex,1 = {0.05, 0.1}N (c),(d).

p2 and point p6. To study the latter, the updated full FE model is used to
calculate the FRF for an excitation at p4 with the HBM including nine har-
monics and compared to the gray-box models8. The obtained amplitude
and phase responses for two different excitation levels fex,1 = {0.05, 0.1}N
are shown in Fig. 6.7(c) and (d). It can be seen that the calculated FRF
for an excitation at point p4 can be estimated based on gray-box models
obtained with excitation at point p2 and p6, respectively. More impor-
tantly, both gray-box models yield very similar results indicating that the
gray-box models are not limited to FRF predictions of the same excitation
scenario as has been used as training data. The comparison of the gray-box
model and white-box model FRF also shows a good agreement. There, is
some deviation for the high excitation level which may be caused by imper-
fect mode isolation or additional nonlinear effects in the experiment which
are not included in the white-box model.

8Here, the projected linear damping coefficient for the NEMA at p2 is used, as the
damping coefficients obtained at both excitation points were significantly differ-
ent. The projected linear damping hypothesis can be approximated in the HBM
calculation by an appropriate Rayleigh damping.
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Figure 6.8: Photo of the beam test rig with close-up of the one-sided support
element.

In conclusion, the verification of the derived models shows that the gray-
box and white-box model updating strategy can be used to extract pre-
dictive models. The verification based on FRF data around resonance
shows a good agreement with reference measurements and consistency of
the derived models.

6.2 Extension to Nonsmooth Systems: Beam with
Impact

In this section, it is demonstrated that the NEMA method can also be ap-
plied to systems subjected to nonsmooth nonlinearities. In this application
example, the use of the NEMA method as a tool for model validation is
shown. To this end, nonlinear modal parameters of a benchmark structure
are measured and compared to predictions obtained by numerical simula-
tions. Numerical results using two different numerical methods are consid-
ered: (i) the MSHBM introduced in Section 3.4 and (ii) the conventional
HBM using a contact stiffness model. It is emphasized that the numeri-
cal models are derived independently of the NEMA, in case (i) based on
first principles and in case (ii) based on measured time series. Therefore,
the predictive accuracy of the derived models and the accordance of the
experimental NEMA results with analytical results can be evaluated.
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Frequency [Hz] Damping [%]
40.10 0.19
268.62 0.76
758.26 0.05
1371.82 0.17
2427.72 0.10
3508.31 0.14

Parameter Value Unit
Emsh 181.36 GPA
Ehbm 187.60 GPA
ρ 7730 kg/m3

h 20 mm
b 12 mm
l 600 mm

Table 6.4: Linear eigenfrequencies and modal damping ratios of the first six bend-
ing modes of the beam (left) and parameters of the numerical beam
models (right).

The benchmark structure to which the methods are applied is a steel
beam with rectangular cross section, clamped at one end, with a one-sided
support at the beam tip. A photo of the used test rig with a magnification
of the one-sided support is shown in Fig. 6.8. The one-sided support con-
sists of a load cell which is mounted onto a rigid steel block and equipped
with a steel cap serving as contact surface. The beam is excited using an
electrodynamic shaker and the excitation force is recorded using a load
cell. The response of the beam is measured with six accelerometers and
two LDVs9. For the NEMA, the phase of the force with respect to the
displacement at the excitation point is controlled with the PLL controller.
A schematic sketch of the test setup is shown in Fig. 6.9(a). It has been
observed during experimentation that the PLL method is robust in the
case of the strong impulsive nonlinear force. It is remarkable that the
tracking of the phase at the instant when the beam hits the support for
the first time did not seem to present any difficulty. This is clearly in
contrast to conventional sweep sine testing where the control of the force
level is very difficult and sensitive on the controller settings at this point.
Moreover, different excitation points and the influence of the parameters
of the PLL have been investigated. It has been observed that the robust-
ness and accuracy of the control increased with increasing distance from
the contact point, which is why the results for an excitation at point one
are presented here. The parameters of the PLL did not seem to have a
significant influence on the robustness or the accuracy of the method10.

9Details on the used equipment are included in Appendix H
10The parameters used for the presented results are included in Appendix G.
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Figure 6.9: Schematic sketch of the experiment and numerical model (a) and mea-
sured contact force with linear fit (b).

The numerical model of the benchmark structure consists of 21 Timo-
shenko beam elements, i.e., 22 nodes with three DOFs each. The discretiza-
tion, which is also symbolized in Fig. 6.9(a), is refined towards the beam
end. The mesh is refined as the MSHBM uses a massless contact node and
the influence of the mass redistribution is sought to be minimized. The
parameters of the linear FE model are adjusted, such that the linear modes
of the numerical model fit the linear modes of the experimental beam. To
compensate the effect of the massless contact node the Young’s modulus
is slightly modified for the MSHBM, such that the linear eigenfrequencies
for both approaches are approximately the same. The measured linear
modes of the beam and the parameters used for the FE models are shown
in Tab. 6.4. For the HBM approach, the one-sided support is modeled by
a linear spring leading to a piecewise linear elastic restoring force at the
contact node. This type of model requires a suitable stiffness parameter,
which has to be identified experimentally. For the benchmark structure,
this can be accomplished by analyzing a recorded time series during a
measurement11. Since the contact force can directly be measured and the
beam is modeled as one dimensional, i.e., the compression of the beam at
the contact location is neglected, the contact force over the displacement
at the beam tip can directly be extracted. The measured values are shown
in Fig. 6.9(b). The contact stiffness of a purely elastic model of the one-
sided support can be easily identified by fitting a linear function to the
11For the sake of simplicity the time data has been recorded during the PLL test.
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Figure 6.10: Frequency-amplitude plot for experimental and numerical (MSHBM
and HBM) results of the first nonlinear mode (a) and modal partic-
ipation factor of first and second linear modal coordinate (b).

measured values of the non-zero contact force. Using this procedure, a
contact stiffness of kc = 2.3 · 106N/m is found which is then included in
the HBM model. Both numerical calculations, i.e., the MSHBM and the
HBM are carried out with five harmonics.
The experimental results as well as the results of the numerical calcu-

lations are shown in Fig. 6.10(a) in a frequency-amplitude representation.
To this end, the results obtained for the acceleration are used to extract
the nonlinear modal amplitude and the nonlinear modal frequency. The
comparison of the frequency-amplitude curves shows that the experimental
and numerical curves agree very well. It can be observed that the HBM
method seems to be slightly closer to the experimental curve, whereas the
MSHBM seems to predict a stiffer contact behavior. However, it is empha-
sized that the contact stiffness, which is required for the HBM, can only be
measured in special cases like the present one. In most practical problems
a direct measurement of the contact force is not feasible12. Moreover, the
accuracy of the MSHBM can be increased by including an FE model of the
one-sided support element rather than simply regarding the contact as a
unilateral constraint.
The analysis of the mode shape is carried out by projecting the non-

linear mode shapes onto the linear mode shapes obtained by EMA (c.f.
12In this case the proposed model updating strategy (see Chapter 5) may be an alter-

native for the estimation of the contact parameters.
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Section 4.3, Eq. (4.56)). The results for the modal participation factor of
the first two modes13 for the measurement as well as the simulations are
shown in Fig. 6.10(b). It can be observed that the motion is dominated
by the first linear modal coordinate. To be more precise, the change in
mode shape due to the contact is comparatively small yielding a modal
participation of the first mode of approximately one for both numerical
methods as well as the experimental results. The contribution of the sec-
ond linear mode is around two orders of magnitude smaller. It can be seen
that for the experimental results the contribution of the second mode is
generally larger, even before the impact is reached. This can be attributed
to experimental imperfections. Once the impact is reached the course of
the contributions of both numerical methods is qualitatively similar to the
experimental results. However, it is noted that contribution predicted by
the numerical simulations is smaller compared to the experiment. This can
again be attributed to experimental imperfections but the limited number
of considered harmonics in the simulation may also play a role. Further, it
is interesting to note that, regarding the mode shapes, the MSHBM results
seem to be closer to the experimental results compared to the HBM.
In Fig. 6.11 the motion of the beam is analyzed in more detail in the time

domain. To this end, the displacement of the beam tip and the contact force
is plotted for two exemplary points, which are indicated in Fig. 6.10(a).
The time instant in which the beam hits the stop in the experiment is
indicated by a red circle (Cont.) and the time instant in which the beam is
separated from the stop by a green circle (Sep.). Furthermore, the position
of the stop element is indicated by a blue line. It can be observed that
the displacement of the beam tip at point P1 and P2 (Fig. 6.11(a) and
(c)) are almost perfectly predicted by the MSHBM as well as by the HBM
simulation. It is also interesting to note that the displacements appear to
be approximately sinusoidal. This also explains why a comparatively rough
approximation with five harmonics already yields a good representation of
the system’s response.
In Fig. 6.11(b) and (d) the time history of the contact forces are shown

for both points. It can be observed that the HBM approximation cannot
capture the impulsive character of the contact force leading to a significant
broadening of the peak and an underestimation of the maximum contact
force. In contrast, the contact force predicted by the MSHBM qualitatively

13All other modal contributions were found to be negligible.
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Figure 6.11: Time histories for the displacement (a) and contact force (b) for P1
and time histories for displacement (c), contact force (d), velocity
(e) and acceleration (f) for P2.

matches the measured contact force in the time domain14. The prediction
overestimates the maximum contact force by a factor of two indicating that
the contact behavior with the MSHBM is too stiff. It is also interesting
to note that for P2 the experimental contact force shows a small peak
next to the primary peak. It has been found that this peak is caused by
local high frequency vibrations in the contact element. Obviously, this
effect cannot be captured in simulations, where the contact element is not
explicitly modeled. Finally, it is noted that the contact instant in the
experiment seems to be slightly shifted compared to the simulations. This
may be caused by the discrete nature of the measured data, such that the
nearest periodic solution of the simulation has a slightly different frequency
compared to the experiment. Additionally, the contact time is very short
which is difficult to resolve experimentally even though high sampling rates
(20kHz) have been used.
In Fig. 6.11(e) and (f) the measured velocity and acceleration at the

beam tip are shown. These time histories reveal that, although the dis-
14Note, that the time domain solution for the contact force is subsequently approx-

imated by its Fourier transform for the calculation of the global dynamics of the
system, which also leads to a similar smearing effect as in the HBM case.
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Figure 6.12: Experimentally extracted amplitude dependent damping (a) and PB-
MIF (b).

placement seemed to be approximately harmonic, the velocity and espe-
cially the acceleration show significant high frequency content. Obviously,
these effects cannot be captured by the numerical solutions with five har-
monics. The influence of these high frequency vibrations on the global
behavior of the beam seems to be negligible. However, they may need
to be considered in practical applications as they may lead to noise and
fatigue.

The extracted nonlinear modal damping measure and the PBMIF are
shown in Fig. 6.12. It can be seen that the effective damping in the struc-
ture in Fig. 6.12(a) shows a clear amplitude dependence and increases with
amplitude. The damping measure is difficult to compare to numerical sim-
ulations, because damping is not included in the nonlinear mode definition
used here. Moreover, it is noted that the numerical modeling of the damp-
ing mechanisms due to impacts is still an open question. However, it seems
plausible that damping increases because of the impact, since the impact
causes a energy transfer to higher frequencies where the vibration energy
is then attenuated. Regarding the PBMIF in Fig. 6.12(b) it can be seen
that the mode isolation quality significantly decreases when the impact is
reached. This indicates that the single harmonic single point force may
not be sufficient for an exact mode isolation. Particularly, high distor-
tions in the excitation force and velocity may require the control of higher
harmonic frequencies to increase the mode isolation quality. Remarkably,
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Figure 6.13: Photo of the joint resonator test rig.

despite these discrepancies, the measurements agree very well with the
numerical calculation of the nonlinear modes.

6.3 Extension to Nonconservative Systems: Joint
Resonator

This section addresses the applicability of the proposed NEMA method
to nonlinearly damped systems in the framework of the extended periodic
motion concept for nonconservative systems (c.f. Definition 2.3). As op-
posed to the previous examples no high fidelity numerical model of the
test structure is available, such that the approach is purely experimental.
This includes the NEMA measurement as well as the processes of model
validation and verification, which are performed exclusively based on ex-
perimental data of reference measurements. Thereby, it is demonstrated
that NEMA can be used to derive predictive models with minimal a priori
knowledge of the structure under test and the nonlinear system identifica-
tion process (c.f. Fig. 1.1) can be replaced by cost-efficient dark gray-box
modeling. The body of the following example is published in Scheel et al.
(2018b).
The test structure is a benchmark system for the characterization of

bolted joints, which has originally been proposed by Bohlen (1987) and has
subsequently been used in different implementations in numerous studies
(Ehrlich, 2016; Gaul and Lenz, 1997; Segalman et al., 2009; Süß, 2016). The
specimen used in this thesis, shown in Fig. 6.13, is borrowed from Ehrlich
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Figure 6.14: Schematic sketch of the experimental setup and minimal model with
indicated mode shape of the first axial mode (blue arrows).

(2016). A salient feature of the benchmark system is that its axial dynamics
can be accurately described by a chain of three lumped masses, two of which
are connected with a bolted joint. A scheme of the experimental setup
including a schematic sketch of the shape of the first axial linear mode is
shown in Fig. 6.14. The masses m1 and m2 are connected by a leaf spring
which can be represented by a linear model. The contact interface in the
joint, connecting the masses m2 and m3, causes nonlinear stiffness and
damping behavior due to friction (Bograd et al., 2011; Gaul and Nitsche,
2001). The structure is supported with cords yielding quasi-free boundary
conditions and excited with an electrodynamic shaker at mass m1. The
excitation force is measured using a load cell and the response is measured
by three accelerometers attached to each of the masses15.
For the nonlinear modal test, the excitation force as well as the acceler-

ation response at m1 are fed into the PLL controller16 of which the output
is used to drive the shaker. The voltage is incrementally increased from
low, starting from an approximately linear mode of operation, to a high
level, where significant nonlinear behavior is expected. The extracted non-
linear modal frequency over modal amplitude is shown in Fig. 6.15(a). A
15Details on the used hardware are included in Appendix H
16The parameters of the PLL controller are included in Appendix G.
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Figure 6.15: Experimentally extracted amplitude dependent nonlinear modal fre-
quency (a) and damping measures (b).

clear amplitude dependence of the nonlinear modal frequency can be ob-
served indicating nonlinear behavior. Particularly at a modal amplitude
of around 400 m

√
kg/s2 a sharp bend in the frequency amplitude curve

can be observed which is typical for the transition from mostly sticking
to micro-slip behavior of the joint (Bograd et al., 2011; Gaul and Nitsche,
2001). This hypothesis is supported by the amplitude dependent nonlinear
modal damping coefficient δ̃nl shown in Fig. 6.15(b), which also shows a
similar bend followed by a significant increase in modal damping at the
same amplitude. The damping curve reveals that the nonlinearity due to
sliding in the joint leads to a strong increase in damping by a factor of more
than 20 compared to the linear modal damping δl. It is interesting to note
that even for lower amplitudes, where linear behavior has been expected,
a small softening characteristic and an increase in damping is indicated by
the modal results. This behavior may be attributed to additional nonlin-
earities which are not included in the lumped mass model or imperfections
in the experimental setup and excitation mechanism.

In Fig. 6.16(a) the PBMIF is plotted over modal amplitude. The PBMIF
indicates a good mode isolation quality for the whole amplitude range.
Interestingly, the mode isolation quality seems to be better in the nonlinear
regime of motion, which may be caused by an increasing signal quality for
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Figure 6.16: PBMIF (a) and MAC value of linear and nonlinear mode shape (b).

higher load levels. In Fig. 6.16(b) the Modal Assurance Criterion (MAC)

MAC =
∣∣φT

1 φ̃1

∣∣2
φT

1 φ1φ̃
H
1 φ̃1

, (6.3)

between the linear and the nonlinear mode shape is shown. It can be
observed that the correlation is very high indicating that the change in
mode shape due to the nonlinearity is negligible. A small drop can be
observed in the micro-slip regime, however, the MAC value remains close
to unity.
In the following, the attention is drawn towards the validation of the

experimental results. To be more precise, the extracted modal damping
measure is validated against the damping measure extracted with the meth-
ods used in previous work on the joint resonator. An important feature of
the joint resonator is that the only force acting on m3 is the nonlinear force
fnl(t) transmitted by the joint. Therefore, the balance of linear momentum

m3ẍ3(t) = fnl(t), (6.4)

can be used to calculate the nonlinear force, because the acceleration ẍ3(t)
is measured and the mass m3 = 4095 g (estimated by weighing) is known.
Furthermore, the relative displacement in the joint xrel(t) = x3(t) − x2(t)
can be calculated by integration of the measured accelerations ẍ2(t) and
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ẍ3(t) in the frequency domain. Then the nonlinear force over relative
displacement in the joint is known. The measured nonlinear forces are
shown in Fig. 6.17(a). It can be observed that the force in the joint for
low relative displacements is almost linear. However, for increasing relative
displacements, the nonlinear force forms a hysteresis loop of increasing size,
which is the typical behavior for a frictional joint. The dissipated work per
cycle can be calculated based on the area enclosed by these hysteresis loops,
i.e.,

W hyst
diss =

∮
fnl dxrel. (6.5)

Using the dissipated work per cycle, an equivalent modal damping ratio
of a periodic resonant vibration can be calculated as (Bograd et al., 2011;
Ungar, 1962)

δ̃hyst = W hyst
diss

4πEmax
pot

, (6.6)

where Emax
pot denotes the maximum potential energy in the structure

Emax
pot =

∫ xrel,max

0
fnl dxrel +

∫ xk,max

0
fk dxk. (6.7)

The maximum potential energy can be calculated under the assumption
that the oscillator approximately moves in unison, such that the maximum
displacements in the joint, i.e., xrel,max = xrel(t∗) and the leaf spring,
i.e., xk,max = xk(t∗) = x2(t∗) − x1(t∗), are reached at the same time t∗.
Herein, the force in the leaf spring can be obtained by the balance of linear
momentum for the first mass

fk(t) = m1ẍ1(t)− fex(t) (6.8)

with m1 = 5300 g. The obtained damping measure δ̃hyst and the nonlinear
modal damping measure δ̃nl are plotted in Fig. 6.15(b) for validation. It
can be observed that the nonlinear modal damping measure yields very
similar results compared to the hysteresis based damping measure. The
modal damping measure δ̃nl is slightly higher which can be attributed to
the fact that δ̃nl includes the global damping behavior of the structure
whereas δ̃hyst only includes local damping effects in the joint. Therefore,
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Figure 6.17: Measured hysteresis in the jointed connection (a), synthesized and
measured amplitude (b) and phase (c) of the FRF.

additional sources of damping due to the other joints in the structure,
material and aerodynamic damping are not included in δ̃hyst. Finally, it
is emphasized that δ̃hyst can be only extracted in the special case of a
lumped mass system whereas δ̃nl can be extracted in the same way for
more complex or continuous structures.
In the last part of this example, the experimental verification of the

extracted nonlinear modal model is addressed. To this end, the identified
gray-box model is used for the prediction of FRFs in the vicinity of the
considered nonlinear mode which are then compared to measured FRFs.
Two different levels of sinusoidal forcing, fex,1 = {14.65, 38.15} N are used
to calculate the FRF using Eq. (5.2). Additionally, the contributions of low
and high frequency residuals are superimposed (c.f. Eq. (5.7)) as no further
linear modes have been extracted. The results of the synthesis are shown
in Fig. 6.17(b) for the amplitude and in Fig. 6.17(c) for the phase response.
The synthesized FRF is compared against the measured FRF for sine sweep
measurements in a frequency range from 350 Hz to 390 Hz measured at a
sweep rate of 0.2 Hz/s with the same excitation levels. It can be seen that
the synthesized FRFs agree well with the directly measured FRFs. Some
deviation can be seen around the peak that may be attributed to small
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errors in the modal damping estimation or imperfections in controlling
the force level during the sine sweeps, which have been observed during
experimentation.
In conclusion, the example shows that the NEMA method can be readily

used for nonlinearly damped structures based on ENMs. The experimental
validation of the modal results and the verification of the gray-box model
prediction shows that the results agree well to results obtained with well-
known methods for similar benchmark structures. It is emphasized that
NEMA is more generally applicable compared to the previous damping
estimation method as well as faster and more robust compared to sine
sweep measurements.

6.4 Summary

The applicability of NEMA for the identification of nonlinear dynamic
structures is demonstrated in laboratory experiments. In particular, the
following contributions are made:

• The robustness of the novel NEMA method in experimental situa-
tions is demonstrated.

• The capability of NEMA for the identification of predictive models is
assessed by several validation and verification studies. Thereby, the
significance of experimentally derived nonlinear modal parameters is
addressed.

• Different potential fields of application of NEMA, such as the valida-
tion of numerical models or the purely experimental based prediction
of vibration responses are illustrated.

• The examples in this chapter demonstrate the applicability of phase
resonance testing to nonsmooth and nonlinearly damped systems for
the very first time, revealing the potential of NEMA for such systems.



Chapter 7

Concluding Remarks

This chapter summarizes the main contributions made in this thesis, draws
a conclusion and indicates directions of future research.

7.1 Summary of Contributions and Conclusion

This thesis proposes a novel framework for NEMA and discusses how non-
linear modes can be applied for nonlinear system identification. Therefore,
several conceptual and practical issues of previous modal based approaches
are addressed to drive the development towards a versatile nonlinear modal
based identification strategy for complex nonlinear structures. In particu-
lar the following contributions are made:

• For the first time, NEMA has been embedded in a rigorous non-
linear system identification framework. Thereby, the various aspects
included in a system identification process, such as numerical and
experimental analysis as well as the connection of both fields, are
organized in Chapter 1. The proposed framework gives a clear struc-
ture to the developments made in this thesis, but also simplifies the
integration of new research in the individual disciplines involved in a
system identification process.

• A numerical algorithm which particularly matches the requirements
for nonlinear modal based system identification has been proposed
in Chapter 3. The HBM based approach with the analytical calcula-
tion of the nonlinear forces in the frequency domain provides a high
computational efficiency and direct insight in the frequency domain
characteristics of nonlinear functions. It has been demonstrated that
complex high fidelity models with many DOFs and several nonlinear
elements can be treated with this algorithm.

135
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• A novel theoretical framework for the experimental extraction of non-
linear modal parameters has been proposed in Chapter 4. It has been
shown that the excitation power is a central quantity for the assess-
ment of the nonlinear mode isolation quality and a new nonlinear
mode indicator function, the PBMIF, has been proposed. Further-
more, the extraction of nonlinear modal parameters which are con-
sistent to linear theory has been addressed.

• In Chapter 4, additionally, a new method for the practical realiza-
tion of an appropriate excitation force has been proposed. The PLL
based approach outperforms the commonly used manual force appro-
priation methods in terms of robustness and accuracy. Moreover, the
method can be easily automated.

• The open problem of identification of predictive models based on ex-
perimentally derived nonlinear modal parameters has been addressed
in Chapter 5. Three different identification methods have been pro-
posed: a gray-box approach in nonlinear modal domain, an ana-
lytical-experimental approach in mixed-modal-physical domain and
a white-box model updating strategy. The three approaches provide
a toolbox from which the suitable method can be selected based on
the specific identification problem.

• The application of NEMA to the identification of nonlinear structures
has been illustrated with several laboratory experiments in Chap-
ter 6. A thorough discussion of the validation and verification of the
derived predictive models has shed light on the significance of exper-
imentally extracted nonlinear modal parameters, which is an issue
that has hitherto rarely been discussed.

• In this thesis, for the first time, the applicability of nonlinear modal
testing to systems with nonsmooth and nonlinearly damped struc-
tures has been addressed. The extendability of all aspects included in
the proposed identification methodology to such systems has briefly
been discussed. The experimental examples in Chapter 6 have shown
that the methodology can be readily applied to benchmark systems
with impacts and frictional joints.

The developments in this thesis show that NEMA is a promising con-
cept for the identification of nonlinear structures. Particularly, the novel
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framework for the experimental extraction of nonlinear modes, which is
robust and easy to implement, marks an important step towards the iden-
tification of more complex structures and its potential for industrial ap-
plications. The integration in a rigorous nonlinear system identification
framework, the combination with efficient numerical algorithms and the
derivation of predictive models based on NEMA are also crucial steps in
this respect. The thorough validation and verification of the derived models
in the application examples has illuminated the significance of experimen-
tally extracted nonlinear modal parameters. Another important step in the
development of NEMA is the treatment of nonsmooth nonlinearities and
nonlinear damping effects, due to their high practical relevance. The appli-
cation examples in this thesis have revealed the potential of the proposed
method to identify such structures.

7.2 Open Research Questions

There are still numerous open questions in the field of NEMA that need to
be studied in future research. The influence of the mode isolation quality,
which can be estimated with the PBMIF, on the extracted nonlinear modal
parameters is not fully understood. The measured frequency-amplitude
curves seem to be rather robust to imperfect mode isolation, while the
influence on the damping estimation is more substantial. However, further
numerical, theoretical and experimental work is required to confirm this
hypothesis. Moreover, the influence of the optimal shaker position and a
method for a priori estimation of the optimal excitation location requires
further investigations. The test structures used in this thesis all have had in
common that the change in the nonlinear mode shape over amplitude has
been comparatively small. Therefore, the investigation of the robustness of
NEMA to systems with stronger changes in mode shape requires additional
research.
The framework presented in this thesis has been applied to rather aca-

demic test structures. The transfer to industrial scale applications is ac-
companied by several practical and theoretical issues. For such structures,
as the one considered in the numerical example in Chapter 3.3, close modes
and internal resonances are expected. Therefore, the measurement of in-
ternally resonant structures and structures with close modes has to be
studied. It is expected that the experimental extraction of the nonlinear
modes of such structures requires multiple excitation locations and mul-
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tiple excitation frequencies. The realization of such excitation scenarios
requires an extension of the proposed PLL controller. Furthermore, alter-
native control concepts, such as a direct velocity feedback, may provide an
interesting alternative to realize the appropriated excitation. The appli-
cability of the nonlinear modal based identification concepts to structures
of higher complexity and their robustness to complex nonlinear modal dy-
namics also requires additional research. It is expected that the extension
of the gray-box strategy to structures with complex modal dynamics is very
difficult. The other two approaches are not limited in this respect, however,
the treatment of more complex models poses additional challenges from a
numerical point of view. Moreover, it is noted that the identification con-
cepts that have been proposed in this thesis are by no means exhaustive
and further concepts should be studied.
The application examples have shown that NEMA is not restricted to

structures with smooth and conservative nonlinearities. The measurement
of nonlinear modes of nonsmooth systems is a particularly interesting con-
cept for the design of nonsmooth vibration absorbers. Since nonlinear
vibration absorbers are designed based on numerical and theoretical non-
linear modal analysis, NEMA seems to be the ideal complement from an
experimental point of view. It is noted, however, that in this context the
capability of NEMA to treat structures with a strong change in nonlinear
mode shape and internal resonances is a crucial requirement. The accu-
rate characterization of nonlinear damping mechanisms is still regarded as
a major challenge in nonlinear system identification. It has been shown in
this thesis, that nonlinear phase resonance testing is a promising concept
in this respect. Yet, future research is required to confirm this statement,
particularly for structures with higher complexity.



Appendix A

Fourier series

In this thesis, different notations for the Fourier series are used for different
purposes. The relation between these different notations is for complete-
ness shown in the following. For the sake of simplicity this derivation is
made for a scalar quantity x(t), keeping in mind that for a higher dimen-
sional vector x(t) the same procedure can be applied for each entry of x(t)
separately. For the numerical simulations a trigonometric notation is used

x(t) = x0 +
∞∑
n=1

xc,n cos(nωt) + xs,n sin(nωt). (A.1)

In the context of experimental nonlinear mode extraction a complex Fourier
series is used

x(t) =
∞∑

n=−∞

xneinωt, (A.2)

allowing for a more compact derivation of the different power components.
Both notations are fully equivalent and can be transferred in one another
using Euler’s formula. The n-th harmonic component of Eq. A.1 can be
written as

xn(t) = xc,n cos(nωt) + xs,n sin(nωt)

= 1
2xc,n(einωt + e−inωt) + 1

2ixs,n(einωt − e−inωt),
(A.3)

which can be rearranged to

xn(t) = 1
2(xc,n − ixs,n)einωt + 1

2(xc,n + ixs,n)e−inωt. (A.4)
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By the introduction of the complex Fourier coefficient for the n-th harmonic

xn = 1
2(xc,n − ixs,n) (A.5)

and its conjugate complex

x−n = x̄n = 1
2(xc,n + ixs,n) (A.6)

one can write Eq. (A.1) in the compact form of Eq. (A.2).
Another way of writing Eq. (A.1) is in terms of an amplitude x̂n and phase
ϕn for every harmonic n as

x(t) = x0 +
∞∑
n=1

x̂n cos(nωt+ ϕn) (A.7)

with

x̂n =
√

(xc,n)2 + (xs,n)2 (A.8)

and

ϕn = arctan
(
xs,n

xc,n

)
. (A.9)

For the complex coefficients introduced in Eq. (A.5) and (A.6) this notation
yields

xn = 1
2 x̂ne−inϕn (A.10)

and

x−n = 1
2 x̂neinϕn . (A.11)

With this notation the complex Fourier series in Eq. (A.2) can be expressed
in terms of the amplitudes x̂n and phases ϕn as

x(t) = x0 +
∞∑
n=1

Re
{
x̂nei(nωt−ϕn)}, (A.12)
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or equivalently as

x(t) = x0 +
∞∑
n=1

2 Re
{
xneinωt}. (A.13)





Appendix B

Analytical Gradients

This appendix includes the derivatives of the residual in Eq. (3.36), which
are required for the Newton-like solution method. The derivative of the
nonlinear force is treated separately, in Chapter 3.2.4, such that only the
derivatives of the linear parts are explicitly evaluated here.

The derivative of the residual r with respect to the Fourier coefficient of
the displacements reads

∂r(xnl, ω)
∂xnl

= Hred(ω) + ∂gnl(xnl, ω)
∂xnl

. (B.1)

The derivative with respect to the frequency ω can be calculated as

∂r(xnl, ω)
∂ω

= ∂Hred(ω)
∂ω

xnl + ∂gnl(xnl, ω)
∂ω

, (B.2)

which is more complicated to evaluate as it involves the derivative of the
reduced dynamic stiffness matrix

∂Hred

∂ω
= ∂Hnlnl

∂ω
−
[
∂Hnlln

∂ω
H−1

lnlnHlnnl

+Hnlln
∂H−1

lnln
∂ω

Hlnnl + HnllnH−1
lnln

∂Hlnnl

∂ω

]
,

(B.3)

where the dependence on ω is omitted for the sake of brevity. The evalu-
ation of the derivative of the respective partitions of the dynamic stiffness
matrix H∗ is straightforward

∂H∗
∂ω

= 2
ω
∇2 ⊗M∗, (B.4)
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whereas the derivative of the inverse matrix H−1
lnln must be calculated as1

∂H−1
lnln

∂ω
= −H−1

lnln
∂Hlnln

∂ω
H−1

lnln. (B.5)

The calculation of the derivative of the energy equation with respect to the
Fourier coefficients of the displacements yields

∂Ekin

∂xnl
= −1

2x
T
nlM̌red. (B.6)

The derivative with respect to the frequency can be calculated based on
Eq. (3.35) as

∂Ekin

∂ω
= −1

4x
T
nl

(
2
ω

M̌nlnl + ∂AT

∂ω
M̌lnnl

+M̌nlln
∂A
∂ω

+ ∂AT

∂ω
M̌lnlnA + ATM̌lnln

∂A
∂ω

)
xnl,

(B.7)

where the derivative of the matrix A = H−1
lnlnHlnnl can be calculated using

the derivative of the dynamic stiffness matrix in Eq. (B.5). It should be
noted that the only inverse matrix which is used for the calculation of all
these parts of the Jacobian matrix is the inverse H−1

lnln, which is already
available from the condensation procedure described in Section 3.2.2.

1In cases where a mixed modal/physical formulation is used (see Section 3.2.5) the
evaluation of the derivative is straightforward.
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Generalized Condensation in
Mixed-Modal-Physical Coordinates

For systems with Caughey-type damping, the damping matrix can be diag-
onalized with the eigenvectors of the undamped eigenvalue problem. There-
fore, the transformation with the CB matrix also yields a diagonal matrix
for the linear partition of the damping matrix, i.e.,

DCB,lnln = diag {d1, ...dNln} . (C.1)

The linear partition of the dynamic stiffness matrix in Eq. (3.31) can be
written for each harmonic n in CB coordinates as

Hn,lnln(ω) =
[

(−ω2INln + KCB,lnln) ωDCB,lnln
−ωDCB,lnln (−ω2INln + KCB,lnln)

]
, (C.2)

where all matrices are diagonal. The dynamic stiffness matrix can be
written more compact in complex form as

Hn,lnln(ω) = −n2ω2INln + inωDCB,lnln + KCB,lnln, (C.3)

the inversion of which is trivial

H−1
n,lnln(ω) = diag

{
1

−n2ω2 + ind1 + ω2
0,ln,1

, · · · ,

1
−n2ω2 + indNln + ω2

0,ln,Nln

}
.

(C.4)

The inverse of the dynamic stiffness matrix can then be transformed back
into the trigonometric form, yielding a block matrix for each harmonic n
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as

H−1
n,lnln(ω) =

[
Re
{
H−1
n,lnln(ω)

}
Im
{
H−1
n,lnln(ω)

}
− Im

{
H−1
n,lnln(ω)

}
Re
{
H−1
n,lnln(ω)

}] . (C.5)

Herein, the real and imaginary part of the inverse dynamic stiffness matrix
can be explicitly evaluated as

Re
{
H−1
n,lnln(ω)

}
= diag

{
−n2ω2 + ω2

0,ln,1

(−n2ω2 + ω2
0,ln,1)2 + d2

1n
2ω2 , · · · ,

−n2ω2 + ω2
0,ln,Nln

(−n2ω2 + ω2
0,ln,Nln

)2 + d2
Nln

n2ω2

} (C.6)

and

Im
{
H−1
n,lnln(ω)

}
= diag

{
d1nω

(−n2ω2 + ω2
0,ln,1)2 + d2

1n
2ω2 , · · · ,

dNlnnω

(−n2ω2 + ω2
0,ln,Nln

)2 + d2
Nln

n2ω2

}
.

(C.7)

Therefore, the inverse of the linear partition of the dynamic stiffness matrix
is available in closed form, if the system is written in CB coordinates and
the damping matrix can be diagonalized.



Appendix D

Truck Model

Nonlinear Element Direction Used Monomial
lin. cub. quin.

1 Air Spring Front x X
y X
z X X
ϕxx X
ϕyy X
ϕzz X

2 Rotational Bearing x X X
y X X X
z X X
ϕxx X X X
ϕyy X
ϕzz X X X

3 Guide Bearing x X X
y X X X
z X X
ϕxx X X X
ϕyy X X
ϕzz X X

Table D.1: Used monomials for the nonlinear elements in the driver’s cabin model
in Chapter 3.3 (part 1 of 2)

This appendix includes an overview of the used nonlinear elements in the
numerical demonstration in Chapter 3.3. The coefficients of the nonlinear
elements have been identified by fitting of measured force-displacement
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curves. For the fitting polynomials up to order five have been used. The
tables Tab. D.1 and Tab. D.2 provide a summary which monomial has
been used to approximate the force laws in each direction of the nonlinear
elements. For confidentiality reasons, neither the coefficients nor the force-
displacement curves are shown in this thesis.

Nonlinear Element Direction Used Monomial
lin. cub. quin.

4 Steel Spring Front x X
y X
z X X
ϕxx X
ϕyy X
ϕzz X

5 Bolt Bearing x X X
y X X X
z X X X
ϕxx X
ϕyy X
ϕzz X

6 Wishbone Bearing x X
y X X X
z X X X
ϕxx X
ϕyy X
ϕzz X

Table D.2: Used monomials for the nonlinear elements in the driver’s cabin model
in Chapter 3.3 (part 2 of 2).



Appendix E

Proof of Power Inequality

The power triangular relation, well-known from linear theory, becomes an
inequality in the nonlinear case, i.e.,

S2
j ≥ P 2

j +Q2
j , (E.1)

which has been stated in Chapter 4, Eq. (4.26). For completeness, the
proof of this inequality relation is included in this appendix.
Using the definitions of apparent (c.f. Eq. (4.25)), active (c.f. Eq. (4.23))

and reactive power (c.f. Eq. (4.24)) the inequality in Eq. (E.1) reads

∞∑
n=1

F 2
n

∞∑
n=1

V 2
n ≥

(
∞∑
n=1

FnVn cos (ϕn)

)2

+

(
∞∑
n=1

FnVn sin (ϕn)

)2

, (E.2)

where the index j is omitted for the sake of brevity. This inequality can be
proven by mathematical induction. Let k denote the upperbound of the
summation.

Base case k = 1

F 2
1 V

2
1 ≥ (F1V1 cos (ϕ1))2 + (F1V1 sin (ϕ1))2 = F 2

1 V
2
1 . (E.3)

Inductive step Suppose that

k∑
n=1

F 2
n

k∑
n=1

V 2
n ≥

(
k∑
n=1

FnVn cos (ϕn)

)2

+

(
k∑
n=1

FnVn sin (ϕn)

)2

(E.4)

149



150 E Proof of Power Inequality

holds. It has to be shown that
k+1∑
n=1

F 2
n

k+1∑
n=1

V 2
n ≥

(
k+1∑
n=1

FnVn cos (ϕn)

)2

+

(
k+1∑
n=1

FnVn sin (ϕn)

)2

(E.5)

follows from Eq. (E.4). Therefore, Eq. (E.5) is written as

k+1∑
n=1

F 2
n
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n=1

V 2
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FnVn cos (ϕn)
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FnVn sin (ϕn)
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Equation (E.6) can be rearranged as(
k∑
n=1

F 2
n + F 2

k+1

)(
k∑
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V 2
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k+1
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(E.7)

or
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n=1

F 2
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V 2
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2
k+1 sin2 (ϕk+1) ≥ 0.

(E.8)

Equation (E.8) can be simplified with the trigonometric identity sin2(ϕk+1)+
cos2(ϕk+1) = 1. Furthermore, Eq. (E.4) provides an estimate of the brack-
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eted terms yielding
k∑
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or simply

:=a︷ ︸︸ ︷
F 2
k+1

k∑
n=1

V 2
n + V 2

k+1
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n=1

F 2
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(E.10)

i.e., a− 2Fk+1Vk+1b ≥ 0. The upper bound of term b can be estimated by
trigonometric transformations as√√√√( k∑

n=1

FnVn cos (ϕn)

)2

+

(
k∑
n=1

FnVn sin (ϕn)

)2

≥

cos (ϕk+1)
k∑
n=1

FnVn cos (ϕn) + sin (ϕk+1)
k∑
n=1

FnVn sin (ϕn),

(E.11)
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which can be inserted in Eq. (E.10) and multiplied by a+2Fk+1Vk+1b ≥ 0,
yielding
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(E.12)

The term in square brackets can, once again, be simplified using the esti-
mation in Eq. (E.4) yielding
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(E.13)

which can be rearranged as
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(E.14)

Using the binomial theorem, Eq. (E.14) can be written in a compact form
as (

F 2
k+1

k∑
n=1

V 2
n − V 2

k+1

k∑
n=1

F 2
n

)2

≥ 0, (E.15)

which is always positive.



Appendix F

Numerical Model of an Electrodynamic
Shaker

In Chapter 4, the dynamics of the excitation mechanism is included in the
numerical experiments to obtain a realistic representation of the actual
experiment. The shaker model and its parameterization is described in
this appendix.
Various shaker models of different level of detail have been introduced in

the literature depending on the phenomena under investigation (McConnel
and Varoto, 2008). Following Della Flora and Gründling (2008) the shaker
is modeled here with two mechanical DOFs and one electrical DOF. The
shaker model assumes that the power amplifier is driven in voltage mode
of operation, such that the amplifier can be modeled as a constant gain1.
The model of the shaker, which is shown in Fig. F.1, consists of the elec-
trical circuit and the model of the mechanical properties. The electrical
circuit includes a voltage source u0(t), the inductance L and the resistance
R of the shaker’s armature. Moreover, a second voltage source is included,
which represents the electromagnetic feedback voltage uem(t), which is pro-
portional to the coil velocity, i.e.,

uem(t) = ΠẋC(t), (F.1)

where Π is an electromagnetic coupling constant which depends on the flux
density and the length of the armature conductors. Using Eq. (F.1) the
differential equation describing the electrical circuit can be derived using

1This assumption is based on the consideration that only the fundamental harmonic
of the force is controlled, whereas higher harmonics are expected to play a role in
practice due to the nonlinearity of the test specimen. In voltage mode the compar-
atively strong damping of the electric circuit is expected to reduce the uncontrolled
higher harmonics.
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Figure F.1: Numerical model of a shaker.

Kirchhoff’s laws yielding

u0(t) = L
di0(t)

dt +Ri0(t) + ΠẋC(t). (F.2)

The mechanical model consists of one mass representing the shaker coil
and one mass representing the shaker table. The masses are connected
by a spring damper combination modeling the coil’s stiffness and damp-
ing properties. The shaker table is connected to the environment by the
suspension, which is also modeled by a spring-damper combination. More-
over, the shaker table is connected to the structure with a stinger. The
stinger is represented by the stinger stiffness kS

2. In experiments, typically
the excitation force is measured, i.e., the force

fex(t) = kS (xT(t)− xex(t)) (F.3)

is known. The electromagnetic force, which acts on the shaker coil is
proportional to the current in the shaker and can be calculated as

fem(t) = Πi0(t). (F.4)

Hence, the equation of motion of the mechanical properties of the shaker
can be derived as3

mCẍC + dC(ẋC − ẋT) + kC(xC − xT) = Πi0,
mTẍT + dC(ẋT − ẋC) + kC(xT − xC) + dTẋT + kTxT = −fex.

(F.5)

2The stinger stiffness in the numerical simulations is estimated based on the static
stiffness of a rod with realistic geometry and material properties (see Tab. F.1 ).

3Time dependence is omitted here for the sake of brevity.
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Parameter Value Unit
mC 19 g
mT 24.3 g
kC 84222 N/mm
kT 20.7 N/mm
kS 1.32 · 108 N/mm
dC 57.2 N/m3

dT 28.3 s
Π 15.5 N/A
R 0.8 Ω
L 140 µH

Table F.1: Parameters of the numerical shaker model.

Thus, the total shaker dynamics is modeled by Eq. (F.2) and Eq. (F.5).
This shaker model involves several electrical and mechanical parameters.
The parameters are adjusted in this thesis such that they resemble the
behavior of a Brüel & Kjær Type 4808 shaker, which has been used
in the laboratory experiments. The mechanical parameters and the elec-
tromechanical coupling constant Π have been identified based on experi-
mental data obtained for the real shaker. The shaker has two mechanical
modes: The suspension mode, where coil and table move in phase and the
coil mode, where coil and table move anti-phase. To identify the phys-
ical parameters Chen and Liaw (1999) proposes to compare the transfer
function, which covers the frequency range of both modes, of the unloaded
shaker to the transfer function of a shaker loaded with a rigid mass. Using
this method the mechanical parameters and the electromechanical coupling
constant have been identified to be the values in Tab. F.14. The electrical
parameters R and L have a minor influence on the shaker dynamics and
have been chosen based on the shaker specifications (see Tab. F.1)

4For details the reader is referred to the thesis of Morlock (2015).





Appendix G

PLL Parameters

It is shown in Chapter 4 that the PLL controller, which is used for the
NEMA has several tuning parameters. The tuning has been done in a
heuristic way. This appendix includes tables with the tuning parameters
of the PLL controllers used in the numerical study in Chapter 4 and the
experimental applications in Chapter 6.

Parameter Value Unit
ωc 29 · 2π rad/s
ωL π rad/s
TI 2/π s
KP 5 -

Table G.1: Parameters of the PLL used for the numerical study in Chapter 4.3
and the experimental application in Chapter 6.1.

Parameter Value Unit
ωc 43 · 2π rad/s
ωL π rad/s
TI 2/π s
KP 5 -

Table G.2: Parameters of the PLL used for the experimental study in Chapter 6.2.
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Parameter Value Unit
ωc 370 · 2π rad/s
ωL π rad/s
TI 2/π s
KP 10 -

Table G.3: Parameters of the PLL used for the experimental study in Chapter 6.3.



Appendix H

Experimental Equipment

The setup and instrumentation for the different experimental applications
in Chapter 6 is similar. The schematic sketch of the setup used for NEMA
and FRF tests is shown in Fig. H.1. Time dependence of the measured
signals is omitted for the sake of clarity. The used hardware for all ex-
periments is essentially the same and listed in Tab. H.1. Peculiarities of
specific experiments are indicated by footnotes. In the beam experiments,
the signals have been recorded at a sampling rate of 20 kHz and for the
joint resonator at 10 kHz. The EMA has been carried out with a Siemens
LMS Scadas Mobile system with white noise shaker excitation with a
bandwidth of 10 to 2000 Hz.

Figure H.1: Schematic sketch of the experimental hardware used for NEMA and
PLL based measurements (a) and for sweep sine FRF measurements
(b).

1Applicable for both beam experiments.
2Applicable the beam with impact.
3Applicable for the joint resonator.
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Device Hardware Details
Shaker Brüel&Kjær Type 4808
Amplifier Brüel&Kjær Type 2712

low impedance mode
Controller dSPACE DS1103
Data
acquisition

DeweBook 2 units: DEWE-50-USB2-8
5 voltage input channels,
8 IEPE input channels

Vibrometer1

controller
Polytec 2 units:

1 OFV-3001,
1 OFV-5000

LDV1 Polytec 2 units:
1 OFV-505,
1 OFV-353

Accelerometers1 PCB Piezotronics 7(62) units: 352C22 (IEPE)
Accelerometers3 PCB Piezotronics 3 units: 356A24 (IEPE)
Load cell
excitation

Brüel&Kjær Type 8230

Load cell2
contact

Endevco 2311-100

Sweep sine
controller

Brüel&Kjær Type 1050

Table H.1: Used hardware in the experimental applications in Chapter 6.



Appendix I

PLL Controller for FRF Measurement

For the measurement of the FRF, which is used for verification of the gray-
box model prediction in Chapter 6.1, the PLL controller (c.f. Fig. 4.6) is
extended by a phase shifter element and an amplitude controller. A block
diagram of the augmented PLL is shown in Fig. I.1. The phase shifter
element adds a constant value to the output of the phase detector to modify
the phase of the excitation force with respect to the reference signal to
values different from π/2. The amplitude controller is based on the RMS
value of the excitation force, which can be easily estimated in real time.
The desired force amplitude is divided by

√
2 to obtain the RMS value and

then subtracted from the measured RMS value of the force. The difference
is then minimized by a PI controller, the output of which is used as voltage
amplitude for the input voltage to the shaker.

Figure I.1: Augmented PLL for force controlled FRF measurement.
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