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Abstract— We present a homotopic approach to generating
energetically optimal gaits for legged robots that maps passive
(i.e., unactuated) gaits of an energetically conservative model of
the robot to a model with user-defined target dynamics with dis-
sipation and actuation (i.e., the more “realistic” legged model).
Our core contribution is advancing the state-of-the-art towards
a turn-key approach where the seed values are known by design
and do not rely on domain-specific knowledge to generate or
randomly guess across a range of energetic cost functions and
desired gait properties (e.g., walking speed, hopping height,
etc.), which can limit the usefulness of the typical optimization-
based approach. We demonstrate this methodology on a parallel
elastic actuated planar monoped with five degrees of freedom.

Our work also demonstrates an explicit connection between
passive gaits and optimally actuated motions, which has long
been an area of interest in the fields of robotics and biome-
chanics.

I. INTRODUCTION

When trying to understand legged locomotion for highly
articulated systems, whether biological or robotic, we often
find that energetically conservative models (ECMs) are able
to capture the core features of the motion under consider-
ation. For example, the inverted pendulum model describes
important features of human walking [1] and the addition of
a spring is sufficient to study hopping and running gaits [2].
The influence of these simple models in robotics extend to
work in passive dynamic and limit-cycle walking, Raibert-
style hoppers, and footstep planning algorithms [3]. Whether
the motivation is rooted in biomechanics or robotics, the
study of these systems have provided valuable insight into
the mechanics of legged locomotion. The passive nature of
ECMs makes them particularly interesting in the context of
energetic economy.

Specifically, past research on ECMs has demonstrated a
relative ease of constructing a variety of gaits at different
speeds, inclines, step lengths, or more generally operating
points of interest of the model. In our recent work, we have
presented a methodical approach to generating passive gaits
for a general class of ECMs with fixed contact sequences [4].
We have also shown that the passive gaits of simple models
of legged systems form continuous sets of gaits that include
walking, running, hopping, skipping and galloping motions
for elastic bipeds [5], walking and brachiating for compass
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Fig. 1. An illustration of our methodology for a 1D hopper. A model
homotopy is introduced by appropriately scaling the damping coefficient b
and the foot mass mf with the parameter ε. ε = 1 yields the full model
shown on the left and ε = 0 results in the non-dissipative model shown on
the right. The passive hopping gaits (with input u ≡ 0) that are found in
the model on the right are then traced by numerical continuation methods
into optimal active motions of the dissipative model on the left.

gait walkers [6] and bounding and galloping for quadrupeds
[7]. These passive gaits can be efficiently computed using
numerical continuation methods [8] that are seeded with
very basic motions such as hopping in place [5] or standing
still [9].

In this paper, we present an approach that takes advantage
of the ease of finding gaits for ECMs and of the fact that
these gaits require zero effort to maintain. We interpret this
passivity as an energetic optimum and use the motions as
seed values for finding optimal motions of a more realistic
robot model. In order to accomplish this task, we introduce
a homotopic approach that maps realistic models to their
corresponding ECMs and then maps optimal gaits of the
ECM back to optimal gaits of the realistic model (Fig. 1).
We refer to this parametric scaling as a model homotopy.

The mapping between the models is achieved through the
appropriate scaling of inertial, damping, and frictional terms
so that no energy is lost during the continuous motions or
collision events typical of legged robots. To avoid singular-
ities in the dynamics, kinematic constraints are introduced
as needed. Given a model homotopy, our contribution is an
approach to generating energetically optimal motions that
starts with passive gaits for an ECM and mapping this set
of optimal gaits to optimal gaits of the target model across
various operating points and cost functions without having
to guess or intuit seed values to bootstrap the process. We
compute optimal gaits using numerical continuation methods,
which continuously deforms both the model and resulting
motions through our model homotopy.

This approach could be a valuable extension to state-of-
the-art optimization-based methods for gait generation [10]–
[12]. These optimization-based methods are capable of work-
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ing with complicated, high-degree-of-freedom robot models.
Yet, even the best state-of-the-art frameworks rely to some
degree on the user having (or developing) domain-specific
knowledge of where to search for optimal gaits with respect
to different operating points.

On a more fundamental level, our work is conceptually
similar to the notion of templates and anchors [13]. In
the context of templates and anchors, our ECM would be
considered the template model, while the anchor would be
the real robot (i.e., the input model to our framework). Two
important distinctions are that we don’t necessarily strive
for the simplest reduced-order model, and we, by design,
map optimal gaits of our template to optimal gaits of the
anchor, which in general is an open problem in the work
with templates and anchors.

II. THEORY

In the following, we provide a formal mathematical de-
scription of a model homotopy and establish the necessary
assumptions and requirements of our models, controllers, and
cost functions.

A. Scaled Dynamics of Legged Systems

In this paper, we consider rigid body systems subject to
contact without sliding as they are commonly used to model
legged robotic systems. The state of such a system is given by
the vector x = (q, q̇) ∈ TQ ⊂ R2nq , where TQ denotes the
tangent bundle of the configuration space Q ⊂ Rnq . Hence,
the dimension of the robot’s configuration q ∈ Q reflects
the number of its degrees of freedom nq. The system is
driven by an input u ∈ Rnu and the dynamics are scaled
by a parameter ε ∈ [0, 1], yielding a differential-algebraic
equation of the following form:

M(q, ε)q̈ = h(x, ε) + J i(q, ε)Tu + W i(q)λ i(ε), (1a)
gi(q) = 0, (1b)

with mass matrix M and generalized forces h. Since we
assume contacts without sliding, the active contacts are
reflected in eq. (1b) as holonomic bilateral constraints gi,
with constraint Jacobian W i(q)T := ∂gi/∂q and associated
constraint forces λ i. Hence, the set of constraints (1b) de-
pends on which contacts are active in the current contact con-
figuration (or phase). This phase is denoted by i ∈ I, where
I is the finite set of possible contact configurations. The input
Jacobian JT

i can be in general also phase dependent to model
more complex actuation mechanisms. Phase transitions (i.e.,
touch-down and lift-off) are triggered by event functions
ej

i (x, ε) = 0, with ej
i ∈ C2. The corresponding projection

from phase i to j is defined by the discrete map

∆j
i (x, ε) =

[
q(

I − M−1W jG−1
j W T

j

)
q̇

]
, (2)

where Gj(q, ε) = W j(q)TM−1(q, ε)W j(q) is known as
the Delassus’ matrix of phase j [14]. Hence, with
x+ = ∆j

i (x−, ε), it maps states right before (x−) to states

right after (x+) the event ej
i . Note, this discrete map exclu-

sively depends on the new contact configuration j, which is
assumed to be consistent with gj(q) = 0.

The scaling with ε is designed such that for ε = 0 all
dissipative forces in the generalized torques h (e.g., friction
or damping) vanish. Furthermore, masses and inertias in
the contact space are scaled, such that as ε approaches
zero, limε→0 Gj(q, ε)−1 = 0. This ensures that both the
continuous and the discrete dynamics are energetically con-
servative for u ≡ 0 (Section III.A in [4]). How such a model
design can be achieved is discussed with an example in
Section III-A.

We make the following assumptions about the resulting
hybrid dynamics so that they are differentiable and have
deterministic outcomes post impact:

Assumption (Well-Defined Phase Dynamics). For each
phase i ∈ I, we assume that

A1 active constraints (1b) are independent and conse-
quently, W i is full rank and the forces λ i can be
uniquely solved for (Theorem 5.1 [14]),

A2 the resulting vector field, defined by eq. (1), is complete
for all ε ∈ [0, 1] and at least twice differentiable in ε.

Note, since W i is full rank (A1), the require-
ment limε→0 Gj(q, ε)−1 = 0 yields a singular mass
matrix M(q, 0) [4]. However, as discussed in Sec-
tion III.A in [4], an appropriate ε-scaling of eq. (1a)
yields finite and well defined accelerations q̈ even in the
limit ε → 0 (A2).

Assumption (Fixed Phase Sequence). We assume that the
phase sequence of a hybrid flow x(t) is a priori known and
is fixed under local changes of the initial time t0, initial
state x0, parameter ε, and control inputs u.

This assumption allows us to assign the total number of
phases m ∈ N to a hybrid flow x(t), where t = [t1 . . . tm]T
collects the duration of each phase that x(t) passes through.

B. Input Parameterization

To simplify the optimal control problem, we param-
eterize the function space of the input u(·) by the
control parameters ξ ∈ Rnξ , with nξ ∈ N≥2, such that
u : R × TQ × Rnξ → Rnu .

Assumption (Input Parameterization). The parameterization
of the input function is such that

u ∈ C2, (3)
u(t, x, 0) ≡ 0, (4)

u(t, x, ξ∗) = u(t, x, ξ∗∗) ⇒ ξ∗ = ξ∗∗, (5)

for all t ∈ R, x ∈ TQ and ξ ∈ Rnξ .

Remark II.1. Eq. (5) is equivalent to the requirement of
linearly independent basis functions in u(·) as they are found
in Bézier curves, B-Splines [15] and Fourier series. With
these basis functions, eq. (4) is also satisfied.
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Remark II.2. The input is in the class of parameterized
open-loop functions if u = u(t, ξ) does not depend on the
state, and in the class of parameterized feedback controllers
if u = u(x(t), ξ) (i.e., not explicitly dependent on t).

Under a fixed phase sequence, the Assumptions A1, A2 and
the input parameterization yield a unique non-autonomous
flow x(t) = φ(t, t0, x0; ξ, ε), with initial time t0 and initial
state x0. Furthermore, the flow is at least twice differentiable
with respect to t0, x0, ξ and ε. For ε = 0 and ξ = 0, this
flow is energetically conservative. That is, if E : TQ → R
denotes the total energy in the systems, it holds:

E(φ(t, t0, x0; 0, 0)) = const., ∀t, t0 ∈ R, ∀x0 ∈ TQ.

C. Periodic Gaits
For this system, we are interested in periodic flows with

period time T > 0 and a constant matrix Ap such that
Ap · (x(T ) − x0) = 0. This notion of periodicity results
from the fact that gaits of legged systems are not necessarily
periodic in all states. In particular, the horizontal position is
aperiodic to allow for forward motion. Hence, we split the
state x into a periodic part xp := Apx and a non-periodic
part xnp := Anpx by introducing the constant orthonormal
selection matrix As =

[
Ap
Anp

]
∈ R2nq×2nq [4]. In addition

to this periodicity constraint, we introduce two C2 func-
tions a : TQ → R and O : TQ × Rm × Rnξ × R → R that
encode two additional gait specifications. With the first, we
introduce an anchor constraint a(x0) = 0. This anchor could,
for example, encode the requirement that a stride always
starts at apex transit. With the second, we introduce an
additional implicit function O(x0, t, ξ, Ō) = 0 that restricts
the motion to a given operating point Ō. With this function
we can require, for example, that the resulting gait has a
desired average speed, a certain stride time, or is on a given
energy level.

Putting all this together, a periodic motion (or gait) is
determined by the roots of the function h(x0, t, ξ, Ō, ε) = 0:

h (·) =



Ap · (φ(tm, tm−1, x0,m; ξ, ε) − x0)
Anp · x0

em
m−1 (φ (tm−1, tm−2, x0,m−1; ξ, ε) , ε)

...
e2

1 (φ (t1, t0, x0,1; ξ, ε) , ε)
a(x0)

O(x0, t, ξ, Ō)


, (6)

where the period results from T =
∑m

i=0 ti, with t0 = 0, and
the initial states of each phase are defined recursively:

x0,i = ∆i
i−1 ◦ φ (ti−1, ti−2, x0,i−1; ξ, ε) , x0,1 = x0.

Note that for a root of eq. (6) all phase times ti, with i > 0,
are implicitly defined by events ei+1

i and the anchor a.
A notable subset of the gaits defined by eq. (6) are passive

gaits that have neither actuation nor losses:

Definition (Passive Gait). A passive gait is given by a root
(x0, t, ξ, Ō, ε) ∈ h−1(0), where ε = 0 and ξ = 0.

Passive gaits are periodic solutions of autonomous en-
ergetically conservative systems, and hence the definition
above is equivalent to a root of eq. (20) in [4], where it is
shown that the passive gaits form 1D families of connected
periodic motions. These families are here parameterized by
the operating point Ō, which is a generalization of the
parameterization by energy level Ē in [4]. By doing a
numerical continuation on eq. (6), the passive gaits can be
efficiently computed for a range of operating points Ō. This
continuation approach is initialized with very basic motions
such as hopping in place or standing still. The algorithmic
details of this process can be found in [4]. In this work,
we will use the passive gaits as templates for energetically
optimal active motions.

D. Optimally Actuated Gaits

To this end, let us relax the requirement that ξ = 0 while
we continue to consider the non-dissipative model (i.e.,
ε = 0). In this case, many different gaits with different input
parameterizations ξ can be found as solutions for eq. (6),
but energy may not be conserved. Of course, the passive
gaits with ξ = 0 continue to be solutions, and since they
come with zero effort (u(·) ≡ 0) they can be interpreted as
optimal for a wide range of effort-based cost functions. In the
following, we formalize this idea and show that for suitable
cost functions the passive gaits are actually strict minimas
of such an optimization problem.

Definition (Energetic Cost Functions). Listed as fol-
lows, we consider energetic cost functions of the form
f : TQ × Rm × Rnξ × [0, 1] → R that are
C1 at least twice differentiable in all variables, i.e., f ∈ C2,
C2 of zero value when u(·) ≡ 0 and ε = 0, i.e.,

f(x0, t, 0, 0) = 0, and
C3 locally positive-definite in ∂2f

∂ξ2 (x0, t, ξ, ε)
∣∣
(ξ=0,ε=0).

Remark II.3. For passive gaits, the properties C1 - C3 are
within a wide class of energetic costfunctions for robotic sys-
tems including the integral of the square of actuator forces,
thermal electrical losses, positive mechanical actuator work
and positive electrical work [16]. Herein, smoothing may be
required to meet C1.

Remark II.4. The choice of mechanical actuator work, with
f =

∫ T

0 q̇Tu dt, does not satisfy C3 as f remains zero in the
neighborhood of a passive gait where u(·) ̸= 0 injects and
removes the same amount of energy.

To properly couple the energetic cost function f with the
constitutive gait constraints (6), we define the constrained
optimization problem (COP):

COP(Ō, ε) =
{

minimize
x

f (x, ε)

subject to h
(
x, Ō, ε

)
= 0,

where xT = [xT
0 tT ξT] ∈ R2nq+m+nξ . We can state the

first-order condition for COP(Ō, ε) as

∂f
∂x (x, ε) + λT ∂h

∂x (x, Ō, ε) = 0, (7)
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with Lagrange multipliers λ ∈ R2nq+m+1. The existence
and uniqueness of λ directly follows from x being a local
extremum point of f subject to the constraints h(·) = 0 and
∂h/∂x having full rank (Chapter 11.3 [17]).

Definition (Regular Point). We call a solution γ∗ of an
implicit function r : Rn1 → Rn2 with r(γ∗) = 0 a regular
point if (∂r/∂γ)|γ=γ∗ has maximum rank.

Furthermore, a regular point (x∗, Ō, ε) of eq. (6), with
(Ō, ε) being fixed, allows us to define the tangent space
in x∗ as M = {y : (∂h/∂x)|x=x∗y = 0}. The second-order
condition can thus be stated as

yT
(

∂2f
∂x2 (x, ε) + λT ∂2h

∂x2 (x, Ō, ε)︸ ︷︷ ︸
=:H

)
y > 0, ∀y ∈ M. (8)

Remark II.5. The first-order condition (7) is only a nec-
essary optimality condition, since COP (Ō, 0) is in general
nonconvex. Hence, the second-order condition (8) is suffi-
cient for a stationary point to be also a strict local minimizer.

From conditions (7) and (8) we see that regularity of the
COP’s equality constraints is crucial to identify a strict local
minimum (Chapter 11.5 [17]). This also becomes important
for (optimal) passive gaits, since regularity can be lost when
passive gaits bifurcate into another family of gaits or lie on
turning points with respect to the parameterization Ō [4].
Hence, passive gaits are strict minimizers (x0, t, 0) of
COP(Ō, 0) only if they are regular points of eq. (6).

Lemma II.1. A passive gait x∗ = (x∗
0, t∗, ξ∗), with ξ∗ = 0,

that is a regular point at an operating point Ō of eq. (6), is
a strict minimizer of COP (Ō, 0) and thus, fulfills the first-
and second-order optimality conditions.

Proof. Since the regular point x∗ is isolated from other
passive gaits, only a nonzero u(·) leads to different gaits in
its neighborhood (i.e., roots of the constraint (6)). Nonzero
actuation can only be achieved for an arbitrary ξ ̸= 0 due
to the assumption in eq. (5). Hence, as any change in ξ will
lead to an increase in the value of f (C3), the passive gait
corresponding to x∗ is the only local solution to eq. (6) with
zero cost (C2).

E. Continuation of First-Order Optimality

Now that we have established that passive gaits can
be interpreted as optimally actuated gaits within a non-
dissipative model, we trace these optimal gaits throughout
the model homotopy (Fig. 1). For notational convenience, the
first-order conditions in eq. (6) and eq. (7) can be generalized
as ∂/∂zL(z, Ō, ε) = 0, with the Lagrangian

L(z, Ō, ε) = f(x, ε) + λTh(x, Ō, ε), (9)

and the vector zT = [xT λT].

Remark II.6. With the aforementioned differentiability con-
ditions on f and h, the Lagrangian L(z, Ō, ε) is also at least
twice differentiable in all its variables.

Algorithm 1: Continuation on First-Order Optimality
Input: Regular passive gait x∗ with ε∗ = 0 and fixed Ō;

Step size h > 0
Output: Stationary point γ = (z, 1)

1 uniquely solve for λ∗ /* eq. (7) */
2 γ∗ = (z∗, ε∗) with z∗ = (x∗, λ∗)
3 compute initial tangent vector p∗ /* eq. (10) */
4 dp = sign(p∗

end) /* orientation of curve */
5 γ ← γ∗, p← p∗, ε← ε∗

6 while ε < 1 do
7 γpred ← γ + dphp /* predictor step */
8 compute ppred at γpred /* eq. (10) */

9 Newton’s Method (γpred, ppred):

10 γ ← γ −
[

R(γ)
pT

]−1
·
[

r(γ)
0

]
/* corrector */

11 until convergence /* loop */
12 return {γcorr = (zcorr, εcorr); pcorr}
13 γ ← γcorr, p← pcorr, ε← εcorr

14 check 2nd-order optimality of γ = (z, 1) /* eq. (8) */

We use the subscript notation LŌ(z, ε) and Lε(z, Ō) to
emphasize the fixed parameters Ō and ε in eq. (9), re-
spectively. For a given passive gait defined by a regular
point (x0, t, 0, Ō, 0), the stationary condition of eq. (9) can
now be traced into a unique direction of increasing ε.

Proposition (Regularity of First-Order Optimality). A pas-
sive gait (x∗, ε = 0) that is a regular point of eq. (6) at Ō,
is also a regular point of ∂/∂zLŌ(z, ε) = 0.

Proof. Due to Lemma II.1, x∗ is a strict local minimizer
and λ∗ is uniquely given by eq. (7). This implies that for
a fixed ε = 0, the point z∗T = [x∗T λ∗T] is isolated in
the solution space of ∂/∂zLŌ(z, ε) = 0 and thus, the square
matrix ∂2/∂z2LŌ|(z∗,0) is regular. Hence, (z∗, 0) is a regular
point since

∂

∂(z, ε)

(
∂LŌ

∂z

) ∣∣∣∣
(z∗,0)

=
[

∂2LŌ

∂z2

∣∣∣∣
(z∗,0)

∂2LŌ

∂ε∂z

∣∣∣∣
(z∗,0)

]
has maximum (row) rank.

With the homotopy map r(z, ε) :=∂/∂zLŌ(z, ε) for a
fixed Ō, we define a sequence of root-finding problems in ε
that is solved by a pseudo-arclength continuation (Chap-
ter 6.1 [8]). Algorithm 1 employs a predictor-corrector (PC)
method which takes small iterative steps in the tangent space
of r(z, ε) = 0 to locally trace the solution curve γ of regular
points. The tangent vector p at a regular point (z∗, ε∗) is
uniquely defined by

∂r(z, ε)
∂(z, ε)︸ ︷︷ ︸
=:R(z,ε)

∣∣∣∣
(z∗,ε∗)

· p = 0, (10a)

∥p∥2 = 1, det
([

R(z∗, ε∗)
pT

])
> 0. (10b)

Initially, the orientation dp of the solution curve should corre-
spond to an increase of ε. Therefore, we set dp = sign(p∗

end),
where p∗

end is the last entry of the tangent vector p∗ at the
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regular point γ∗ = γ(z∗, 0). Note, p∗
end is always nonzero

initially, since regular passive gaits do not correspond to a
turning point in ε (see proof of Proposition (Regularity of
First-Order Optimality)). Algorithm 1 is terminated when ε
crosses the value of one. Since we only trace gaits from
the template to anchor (Fig. 1) that meet the necessary
first-order condition (7), it remains to confirm the sufficient
condition (8) for COP(Ō, 1).

III. EXAMPLE: TWO-DIMENSIONAL MONOPED

To demonstrate the applicability of these methods, we gen-
erate optimally actuated gaits for a 2D one-legged hopping
robot with parallel elastic actuation (Fig. 2), as it has been the
subject of study in [16], [18], [19]. To this end, we develop
a suitable model homotopy in ε, and define a constrained
optimization problem by choosing a cost function, an input
parameterization, and a set of operating points.

The hopper consists of a torso with mass mt and in-
ertia Θt, an upper leg segment (ml, Θl), and a lower leg
segment (mf , Θf ) with a spherical foot (radius rf ). The
torso’s configuration is given by the orientation φ and the hip
position (x, y). On its proximal end, the upper leg segment
is connected to the hip via a rotational joint (with joint
angle α) and on the distal end it is connected to the lower
leg with a prismatic joint (overall leg length of l). Thus, the
generalized coordinates are q = [x y φ α l]T, with nq = 5. In
both joints, linear elastic springs (with stiffnesses kα, kl and
damping ratios bα, bl) are mounted in parallel to actuators
that produce the torques u = [τmot fmot]T. The remaining
model parameters are defined in Fig. 2 and Table I. All values
have been normalized with respect to total mass mo, leg
length lo and gravity g. The hopper has two phases: stance S
and flight F. During stance, the foot stays on the ground and
is constrained to a pure rolling motion gS(q) = 0 with the
associated constraint forces λ S = [λT λN]T.

A. Model Homotopy

To create the model homotopy, we start with a standard
multibody dynamic model of the hopper. This model con-
stitutes the dynamics for ε = 1. Since it includes damp-
ing and collision losses, we follow a similar approach as
the one reported in IV.A [4] to yield a non-dissipative
model for ε = 0. In order to bring limε→0 GS(q, ε)−1

to zero, we scale the masses and inertias mf , ml, Θf , Θl
which are involved in the projection GS. This is achieved
by redefining the foot and leg mass with mf = εm̂f and
ml = εm̂l, respectively. Due to this scaling, the inertial
torques originating from the leg will vanish for ε → 0. In
order to maintain meaningful pitch dynamics, we thus also
have to scale the torso inertia with Θt = εΘ̂t. The degrees of
freedom describing the massless limbs need to be constrained
in all phases to meet A2 [4], [20]. Hence, we introduce
the flight constraint gF(q) = l − lo with constraint force λF.
Similar to [4], we introduce new auxiliary forces λ̂F and
λ̂ S in the constraint forces λF(ε) = ελ̂F and λ S(ε) = ελ̂ S,
respectively. Additionally, since gF(q) = 0 is only needed
for ε = 0, we multiply the resulting constraint force λF with

Fig. 2. A one-legged hopper with parallel elastic actuation in the leg
and hip joint (u = [τmot fmot]T). Its planar configuration is described by
q = [x y φ α l]T.

mf = 0.1 mo kl = 20 mog/lo rf = 0.05 lo

ml = 0.2 mo kα = 100 mfglo/rad dl = 0.25 lo

mt = 0.7 mo bl = 0.4
√

2 mo

√
g/lo df = 0.25 lo

Θf = 0.04 mf l
2
o bα = 3.5 mf lo

√
glo/rad

Θl = 0.02 mll
2
o

Θt = 0.40 mtl2o

TABLE I
ALL MODEL PARAMETERS ARE TAKEN FROM [18] AND NORMALIZED

WITH RESPECT TO TOTAL MASS mo , LEG LENGTH lo AND GRAVITY g.

(1 − ε) when we include it in eq. (1a). Similarly to eq. (18)
in [4], we scale the spring stiffness in the hip (kα = εk̂α)
to yield a finite leg swing frequency for ε → 0. Since the
damping force bαα̇ and the actuation u would experience a
similar singularity, we further introduce the scaling:

J i =
[

0 0 0 ε 0
J21

i J22
i 0 0 ε

]
, bα = ε2b̂α, (11)

where J21
F = J22

F = 0, J21
S = − sin(α + φ)(1 − ε) and

J22
i = cos(α + φ)(1 − ε). Herein, the repeated multiplica-

tion of the damping b̂α by ε results from the final scaling
law: in order to remove damping losses in eq. (1) for ε → 0,
we simply scale the damping coefficients with ε. Similarly,
we set bl = εb̂l.

B. Results

For this model, we generated optimal gaits at different av-
erage forward velocities ẋavg := Ō. To this end, we defined
O(x0, t, ξ, ẋavg) := x(T ) − x(0) − ẋavgT , where x(0) and
x(T ) are extracted from the initial conditions and the flow,
respectively. We further restricted all motions to the phase
sequence S → F, which is started right after the touch-
down event eS

F(q) = [0 1] · gS(q). This event takes on the
role of the anchor constraint a, which thus can be dropped
in the implementation of eq. (6). To allow for a horizontal
forward motion during the gait, the matrix Anp in eq. (6)
selects the initial state x0 = Anpx0 (i.e., Anp = [1 0 · · · 0]).
The remaining periodic states are selected by its orthogonal
complement Ap. While eS

F(q) was defined kinematically, the
lift-off event eF

S (x, ε) = λN is triggered when λN changes
sign from positive to negative. For u = [τmot fmot]T, we
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Fig. 3. Shown is the evolution of the stance time tS, the flight time tF,
the cost value f and µmin in the transition from the non-dissipative
model at ε = 0 (blue) to the full model at ε = 1 (red). The value of
the smallest eigenvalue of the projected Hessian matrix HM at ε = 0 is
µmin(0) = 0.005. It always remains positive, indicating that the motion
remains strictly optimal throughout the homotopy. This data is from a
forward hopping motion with ẋavg = 1

√
glo. All values have been

normalized with respect to total mass mo, leg length lo and gravity g.

choose a 3-term Fourier series (nξ = 14):

u(·) = ξ0 +
3∑

k=1

(
ξ2k−1 cos

(
2π

T
kt

)
+ ξ2k sin

(
2π

T
kt

))
,

Finally, we used torque-squared as cost function:
f =

∫ T

0 u(·)Tu(·) dt, for which C1-C3 are easy to
confirm.

Using these choices and the methods described in [4],
we first explored the connected space of passive gaits.
This search was initialized with a simple hopping-in-place
motion that was derived analytically. Due to different pa-
rameter choices, our non-dissipative model had a much
larger leg swing frequency than the model used in [5]. In
contrast to the results reported in [5], we thus found the
first bifurcation that connected the hopping-in-place branch
with forward/backward hopping motions at a significantly
smaller flight time of tF ≈ 0.1658

√
g/lo. Subsequently, the

branch of passive forward hopping motions was identified
for average speeds of up to ẋavg = 1.4

√
glo.

Algorithm 1 was initialized with these motions and the
first-order optimality was successfully traced from the pas-
sive gaits of the non-dissipative model (ε = 0) to the
desired optimally actuated gaits of the model at ε = 1.
For ẋavg = 1

√
glo, this process is illustrated in Figure 3

and visualized in the multimedia extension1. In the transition
from ε = 0 to ε = 1, the cost f is monotonically increasing
from 0 to 0.737 mog

√
glo. Throughout the model homotopy,

the motion remained optimal. That is, not only the first-order
optimality conditions are fulfilled, but also the second-order
conditions (8). This can be shown by the projected Hessian
matrix HM which projects H onto the tangent space M. From
this, we can readily compute its eigenvalues µ. Herein, the
smallest eigenvalue µmin has to be greater than zero to satisfy

1It took approximately 150 minutes to generate this curve on a laptop
with an i5-8265U CPU @1.60GHz and 4GB RAM. The code is available
online https://github.com/raffmax/GeneratingFamiliesofOptimally
ActuatedGaitsfromaLeggedSystemsEnergeticallyConservativeDynamics

Fig. 4. Shown is a projection of the space of initial states (α0 and y0).
Passive gaits (shown in blue) with f = 0, u ≡ 0, have been identified
via numerical continuation that was started from a passive hopping-in-place
motion. By applying a model homotopy, these gaits have been traced from
ε = 0 into locally optimal solutions of the model at ε = 1 (shown in red).
A different continuation with a fixed ε = 1 (red line) reveals a turning
point at ẋ∗

avg ≈ 0.12
√

glo, at which the stationary points become saddle
points and are thus no longer optimal gaits.

the sufficient condition (Chapter 11.6 [17]). This eigenvalue
is also illustrated in Fig. 3.

We repeated this process for a range of other forward
speeds ẋavg between 0 and 1.4

√
glo, always using the

passive gaits as the starting point. This process always
converged for speeds larger than ẋ∗

avg ≈ 0.12
√

glo. For a
number of selected forward speeds, it is illustrated in a
projection of the space of initial states x0 in Fig. 4. In this
figure, the branch of passive forward hopping gaits is shown
as a red line, emerging from the family of hopping-in-place
motions (red dashed line), while the active gaits of the full
model are shown as blue dots. The connecting black lines
show how x0 changes throughout the homotopy.

To understand why the process failed for speeds smaller
than ẋ∗

avg ≈ 0.12
√

glo, we performed a continuation on sta-
tionary points of Lε=1(z, ẋavg). That is, rather than keeping
ẋavg constant and varying ε, we kept ε constant and varied
ẋavg (blue line in Fig. 4). When one is interested at optimal
gaits over a range of speeds, this process is not only more
efficient than individually tracing motions from passive to
active, but also reveals something about the structure of the
optimal gaits. In particular, we again considered the smallest
eigenvalue µmin of HM while tracing the first order condition
towards lower forward speeds ẋavg. As shown in Fig. 4, the
blue curve indicates a turning point at ẋ∗

avg at which the
stationary points become saddle points (dashed line) and are
thus no longer optimal gaits.

IV. DISCUSSION & CONCLUSION

In this paper, we introduced a systematic method for the
gait generation of legged robots. It works by linking the
passive periodic motions of a legged system’s underlying en-
ergetically conservative dynamics (w.r.t. eq. (1) and eq. (2))
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to optimally actuated gaits of a full robot model. Using
numerical continuation methods, our approach is based on
a model homotopy that continuously connects the full robot
model with a non-dissipative version. This homotopy is
embedded in a constrained optimization problem (COP). A
key insight in this process is the interpretation of the passive
gaits as optimal points of the COP. As we showed, this
holds for a broad class of energetic cost functions, input
parameterizations and operating points.

The most important property of our approach is that it
can be started from very basic motions. In our example, this
starting point was a simple hopping-in-place motion. Since
the passive periodic motions form connected components [4],
this starting point can be systematically grown into a range
of seeds for our homotopy-based algorithm. Within the
algorithm, the seeds are then grown further along stationary
curves of the COP that lead to the optimal gaits of the
fully dissipative system. As a consequence, optimality is
maintained throughout the process. In our example, we only
considered a single branch of a passive periodic forward
hopping motion to generate these seeds. However, for more
complex multi-legged systems, this space of passive gaits
is much larger and encompasses a broad range of different
gaits with different footfall sequences [5]. We believe that
the automated generation of suitable seeds is the biggest
advantage of our method in comparison to methods for gait
generation which rely on a manually chosen initial guess
which must often be based on empirical domain-knowledge.

From a technical point of view, there are currently three
main limitations that we continue to work on. First, it would
be desirable to have an automated process to generate the
non-dissipative model abstraction. The method described in
Section III is fairly systematic, but still requires intimate
knowledge about the system dynamics. While the scaling of
dissipative forces in the continuous dynamics (1) is straight
forward, there are potentially better ways to introduce a
homotopy in the discrete map (2) without affecting the
continuous dynamics and its well-posedness. Secondly, a
key assumption in this paper and in [4] is that the contact
sequence is fixed. This is needed to guarantee the existence
of the derivatives that are necessary for the continuation
methods. Being able to relax this assumption would greatly
increase the versatility of our approach as it would allow
us to connect gaits with different contact sequences, such
as walking or running to the same starting point. A third
avenue to build up on the model homotopy is to incorporate
physical and actuator limitations of the robotic system as
well as contact friction models by inequality constraints. For
instance, in the motions of our example hopper, the foot
actually swings through the ground for the identified families
of optimal gaits in (ε ∈ [0, 1]). To avoid that, inequality
constraint must be introduced and reflected in the COP [21].

From a topological perspective, it is an interesting result
that the range of optimal forward gaits (the blue line in
Fig. 4) does not connect to the passive gaits at low speeds,
yet has a turning point at around ẋ∗

avg ≈ 0.12
√

glo. Quite
obviously, this connectedness and topological structure of the

space of optimal gaits is an important feature for our algo-
rithm to work. Understanding how we can provide conditions
when a curve γ of the COP can be successfully traced from
ε = 0 to ε = 1 using the map r(z, ε) = 0, would hence be
a very useful insight. This could potentially be achieved by
using other forms of homotopies that build up on functions
like r, and for which the existence of γ can be proven [8],
[21]. Such insights would have implications beyond the field
of motion generation and robotics, as they would establish
fundamental connections between the passive dynamics of
simple templates and the gaits that we can observe in nature.
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