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The tippedisk is a mathematical-mechanical
archetype for a peculiar friction-induced instability
phenomenon leading to the inversion of an
unbalanced spinning disc, being reminiscent of
(but different from) the well-known inversion of the
tippetop. A reduced model of the tippedisk, in the
form of a three-dimensional ordinary differential
equation, has been derived recently, followed by
a preliminary local stability analysis of stationary
spinning solutions. In the current paper, a global
analysis of the reduced system is pursued using
the framework of singular perturbation theory.
It is shown how the presence of friction leads to
slow–fast dynamics and the creation of a two-
dimensional slow manifold. Furthermore, it is
revealed that a bifurcation scenario involving a
homoclinic bifurcation and a Hopf bifurcation leads
to an explanation of the inversion phenomenon. In
particular, a closed-form condition for the critical
spinning speed for the inversion phenomenon is
derived. Hence, the tippedisk forms an excellent
mathematical-mechanical problem for the analysis of
global bifurcations in singularly perturbed dynamics.

1. Introduction
The aim of the present paper is to perform a global
analysis of the tippedisk, a spinning unbalanced disc
in frictional contact with a support, by exploiting its
singularly perturbed structure. The tippedisk forms a
new mechanical-mathematical archetype that exhibits
a friction-induced homoclinic bifurcation followed by
a Hopf bifurcation, which explains the inversion
phenomenon.

2021 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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invertednot inverted

Figure 1. Inversion of the tippedisk, showing the rise of the COG (black dot).

Although the goal of nonlinear dynamics is to understand and predict nonlinear dynamic
phenomena in engineering applications, it proves notoriously difficult to apply the body of
methods and concepts provided by nonlinear dynamics to real-world applications. Several
reasons for this can be named. First of all, a closed-form analysis of a nonlinear system can only
be performed for a system with a few degrees of freedom, whereas models used in industry
easily involve thousands of degrees of freedom. Furthermore, the concepts and fundamental
theorems of nonlinear dynamics have been developed for ordinary differential equations (ODEs)
with enough differentiability properties. The extension of these concepts to non-smooth systems,
stochastic systems, delay differential equations, differential algebraic systems, partial differential
equations and the like is still a topic of intense ongoing research. For this reason, one often finds
that methods and concepts of nonlinear dynamics are explained, developed and tested on a
set of ODEs that have virtually no resemblance to any real-world application. One may argue
that nonlinear dynamics, as a branch in applied mathematics, can universally be applied and it
therefore also suffices to use abstract models. However, by restricting the use of global analysis
techniques (e.g. Melnikov theory) to either abstract ODEs or almost trivial systems (e.g. the
pendulum equation) one risks to oversee the original goal of nonlinear dynamics. This motivates
the quest for a set of easily understandable, non-trivial, ‘real’ problems on which global analysis
techniques of nonlinear dynamics may be applied, and, at the same time, may be tested in a
laboratory set-up. At this point, a number of gyroscopic ‘scientific toy’ systems enter the scene,
which all consist of a single rigid body in frictional contact with a supporting hyperplane such
as the Euler disc [1–3], the rattleback [4,5], spinning axisymmetric bodies [6–9] (e.g. spinning
eggs [10]) and the tippetop [11–14]. Together, they form a mathematical playground to explain,
develop and test novel methods in nonlinear dynamics without losing touch with the real world.
This special feature of such types of systems explains that the research on the tippetop, which
originated in the 1950s, is a topic of increased current research [15–17].

In [18], we introduced a new mechanical-mathematical archetype, called the tippedisk, to the
scientific playground and derived a suitable mechanical model. Essentially, the tippedisk is an
eccentric disc, for which the centre of gravity (COG) does not coincide with the geometric centre
of the disc. Neglecting spinning friction (i.e. pivoting friction), two stationary motions can be
distinguished. For ‘non-inverted spinning’, the COG is located below the geometric centre and
the disc is spinning with a constant velocity about the in-plane axis through the COG and the
geometric centre. The second stationary motion is referred to as ‘inverted spinning’, being similar
to ‘non-inverted spinning’, but with the COG located above the geometric centre of the disc, see
figure 1. If the non-inverted tippedisk is spun fast around an in-plane axis, the COG rises until
the disc ends in an inverted configuration, shown in figure 2.

In [19], a reduced model of the tippedisk has been developed by making use of physical
constraints and simplifying assumptions of the model derived in [18]. This three-dimensional
model was preliminary studied by a linear stability analysis using Lyapunov’s indirect method.
Moreover, a closed-form expression has been derived, which characterizes the critical spinning
velocity Ωcrit at which a Hopf bifurcation occurs, indicating for supercritical spinning velocities
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Figure 2. Tippedisk: inversion phenomenon. (Online version in colour.)

Ω > Ωcrit a stable inverted spinning solution. For subcritical spinning velocities Ω < Ωcrit, the
equilibrium associated with inverted spinning is unstable.

The overarching goal is to understand the qualitative dynamics behind the inversion
behaviour of the tippedisk. Therefore, we aim to conduct an in-depth stability analysis based
on the reduced model, derived in [19]. In this paper, a harmonic balance analysis is performed
in order to characterize the Hopf bifurcation as sub- or supercritical. Moreover, the closed-form
expressions are validated by a numerical shooting method. The structure of the system equations
suggests the application of the theory of singular perturbations, indicating slow-fast system
behaviour.

Section 2 briefly introduces the kinematics of the model derived in [19]. Furthermore, we
provide the dimensions of the considered specimen and the reduced equations of motion. In
§3, the local stability analysis of [19] is briefly repeated, raising the question of the type of Hopf
bifurcation, which is answered subsequently. The nonlinear dynamical behaviour is studied in §4,
visualized in §5 and discussed in §6.

2. Model of the tippedisk
In [18], a variety of different models, using various parametrizations and force laws, have been
presented. With the aim to focus on the main physical effects, a reduced minimal model has
been derived in [19], which forms the basis of the current paper. Before diving into the nonlinear
dynamic analysis, we briefly review the kinematics of the reduced model from [19] to facilitate
the transition to the present paper.

An orthonormal inertial frame I = (O, eI
x, eI

y, eI
z) is introduced, attached to the origin O, such

that eI
z is perpendicular to a flat support. The body fixed B-frame B = (G, eB

x , eB
y , eB

z ) is located at
the geometric centre G, so that eB

z is normal to the surface of the disc. The unit vector eB
x is in

the direction of rGS, i.e. points from the geometric centre G to the centre of gravity S. The disc is
assumed to be in permanent contact with the support at the contact point C. For a more detailed
description, we refer the reader to [18,19].

(a) Dimensions and parameters
To be consistent with previous works [18,19], the dimensions and mass properties of the specimen
under consideration are given in table 1. Here, the inertia tensor with respect to G, expressed in
the body-fixed B-frame, is given as BΘG = diag(A, B, C), where B < A < C holds. To obtain more
compact expressions, the variable B̄ is introduced as B̄ := B − m e2, which is equal to the moment
of inertia BΘS(2, 2) with respect to the centre of gravity S. The mass properties have been derived
in detail in [18].

(b) Equations of motion
In figure 3, the angles α, β and γ define the orientation of the unbalanced disc, corresponding
to Euler angles in the custom z − x − z convention. It is worth mentioning here that the angles
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Figure 3. Mechanical model: tippedisk.

Table 1. Dimensions and mass properties of the tippedisk

property parameter magnitude unit

disc radius r 0.045 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eccentricity e 2.5 × 10−3 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mass m 0.435 kg
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BΘG(1, 1) A 0.249 × 10−3 kg m2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BΘG(2, 2) B 0.227 × 10−3 kg m2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BΘG(3, 3) C 0.468 × 10−3 kg m2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

correspond to an intrinsic parametrization, not to be confused with an extrinsic description. The
angle α characterizes the rotation around the eI

z-axis. The angle β describes the inclination of the
disc, whereas γ defines the relative angle between the grinding G-frame and body-fixed B-frame.
In [19], it is shown that the spinning velocity α̇ = Ω can be approximately assumed to be constant
during the inversion of the disc, leading to a time evolution of the angle α expressed by the affine
function

α(t) = Ωt + α0. (2.1)

Without loss of generality, α0 can be set to zero. Introducing minimal coordinates z = [β, γ ]T and
the scalar minimal velocity v = β̇, the dynamical behaviour of the tippedisk is described by the
system of equations (see [19])

ż = B(z)v + β(z)

M(z)v̇ − h(z, v) = fG + wyλTy.
(2.2)

This reduced system in minimal coordinates z ∈ R
2 and minimal velocities v ∈ R corresponds to a

first-order ODE of total dimension three. The scalar mass matrix M and the vector of gyroscopic
forces h are given as1

M = A cos2 γ + B̄ sin2 γ + m(r + e sin γ )2 cos2 β (2.3)

1For consistency with previous works, and to highlight the general structure, the quantities M and h as well as other quantities
are written in bold, although they are scalar in this special case.
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and

h = +(A cos2 γ + B̄ sin2 γ )Ω2 sin β cos β − 2(A − B̄)Ωβ̇ cos β sin γ cos γ

+ m(r + e sin γ )2β̇2 sin β cos β + me(r + e sin γ )Ω2 sin β cos3 β sin γ

− me(r + e sin γ )(3 sin2 β − 2)Ωβ̇ cos β cos γ . (2.4)

The generalized gravitational force

fG = −mg(r + e sin γ ) cos β, (2.5)

and generalized friction force wyλTy with corresponding force direction

wy = (r + e sin γ ) sin β, (2.6)

lateral sliding velocity

γy = (r + e sin γ )β̇ sin β − eΩ sin2 β cos γ , (2.7)

and friction force λTy given by regularized Coulomb friction, also known as smooth Coulomb
friction law

λTy = −μmg
γy

|γy| + ε
, (2.8)

form the right-hand side of equation (2.2). In the following analysis, we assume the linearized
version of the smooth Coulomb friction law

λTy = −μmg
ε

γy, (2.9)

to obtain more compact expressions. This assumption does not affect the qualitative dynamical
behaviour. Assuming a linear friction law may seem artificial at this point, but its validity will be
shown later in this paper. The friction coefficient is chosen as μ = 0.3, the smoothing parameter is
assumed to be ε = 0.1 m s−1. The kinematic equations (β)· = β̇ and γ̇ = −Ω cos β are gathered in
the first equation of system (2.2)

ż = B(z)v + β(z, t), (2.10)

with

B(z) =
[

1
0

]
and β(z) =

[
0

−Ω cos β

]
. (2.11)

3. Local dynamics of the three-dimensional system
In [19], a linear stability analysis has been conducted in closed form that characterizes the stability
of the inverted spinning solution, being an equilibrium of system (2.2). As we aim to analyse the
qualitative behaviour in this paper, a brief summary of the results obtained in [19] is provided in
§3a.

(a) Linear stability analysis
As the tippedisk is called inverted when β = +π/2 and γ = +π/2 holds, new shifted coordinates

z̄ :=
[
β̄

γ̄

]
:=

⎡
⎢⎣β − π

2
γ − π

2

⎤
⎥⎦ (3.1)

are introduced, such that the system equations (2.2), can be locally approximated by neglecting
higher order terms of β̄ and γ̄ . The linearization of the system (2.2) around the ‘inverted spinning’
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Figure 4. Eigenvalues for the inverted tippedisk for varying spinning velocity Ω [19]. The critical spinning velocity Ωcrit

characterizes a Hopf bifurcation as a pair of two complex conjugate eigenvalues enters the right half of the complex plane.

equilibrium then yields the linear homogeneous system with constant coefficients

ẋ =

⎡
⎢⎣

˙̄β
˙̄γ
¨̄β

⎤
⎥⎦=

⎡
⎢⎣ 0 0 1

Ω 0 0
A31 A32 A33

⎤
⎥⎦
⎡
⎢⎣β̄

γ̄
˙̄β

⎤
⎥⎦= Ax, (3.2)

with

A31 = mg

B̄
(r + e) − Ω2 =O(1)

A32 = −μmg

εB̄
e(r + e)Ω =O( 1

ε
)

A33 = −μmg

εB̄
(r + e)2 =O( 1

ε
).

(3.3)

As we see from equation (3.3), the matrix coefficient A31 does not depend on the smoothing
parameter ε and is therefore of order O(1). Both A32 and A33 depend proportionally on 1/ε and
are therefore of order O(1/ε). The non-inverted spinning is always unstable, whereas the stability
of inverted spinning is characterized by the eigenvalues λi for i ∈ {1, 2, 3} of equation (3.2). The
evolution of λi is shown in figure 4 as a function of the spinning velocity Ω . The real part of λ3 is
approximately given as

λ3 = A33 + O(ε) = −μmg

εB̄
(r + e)2 + O(ε) ≈ −129.04

1
s

, (3.4)

and therefore not shown in figure 4. For Ω = Ωcrit, a pair of complex conjugate eigenvalues is
crossing the imaginary axis, indicating a Hopf bifurcation. If the spinning speed Ω is lower than
the critical spinning velocity

Ωcrit =
√

(r + e)2

r
mg

B̄
= 30.92 rad s−1, (3.5)

the inverted spinning solution is unstable. For supercritical spinning velocities inverted spinning
becomes stable on ‘fast’ and ‘intermediate’ time scales. Perhaps somewhat unexpectedly, it turns
out that the critical spinning velocity Ωcrit, and thus the occurrence of the Hopf bifurcation, does
not depend on the friction parameters μ and ε, see [19].
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(b) Harmonic balance method
To characterize the Hopf bifurcation as sub- or supercritical, we apply a harmonic balance method
(HBM) to obtain a closed-form expression for the existence of the periodic solution. Isolating
quartic orders O(||z̄||4) in equation (2.2) by making use of

sin β = cos β̄ = 1 − 1
2 β̄2 + O(β̄4), (3.6)

cos β = − sin β̄ = −β̄ + 1
6 β̄3 + O(β̄5), (3.7)

sin γ = cos γ̄ = 1 − 1
2 γ̄ 2 + O(γ̄ 4), (3.8)

cos γ = − sin γ̄ = −γ̄ + 1
6 γ̄ 3 + O(γ̄ 5), (3.9)

yields the local approximation

M̃(z̄) β̈ − h̃(z̄, ˙̄z) = f̃(z̄, ˙̄z) + O(||z̄||4), (3.10)

which corresponds to a scalar second order equation for the shifted inclination angle β̄. To classify
the nature of the Hopf bifurcation, the equations of motion equation (3.10) must be approximated
at least up to cubic orders. The mass matrix M̃(z̄) and vector of gyroscopic forces h̃(z̄, ˙̄z) are given
as

M̃(z̄) = (A − B̄)γ̄ 2 + B̄ + m(r + e)2β̄2 + O(||z̄||4) (3.11)

and

h̃(z̄, ˙̄z) = −B̄Ω2β̄ + (B̄ − A)Ω2β̄γ̄ 2 +
[

2
3

B̄ − me(r + e)
]

Ω2β̄3

− 2[A − B̄ + me(r + e)]Ω ˙̄ββ̄γ̄ − m(r + e)2 ˙̄β2β̄ + O(||z̄||4). (3.12)

The right-hand side of equation (3.10) is defined as generalized force f̃ := f̃G + w̃yλTy, with

f̃G = +mg(r + e)β̄ − 1
2

mgeβ̄γ̄ 3 − 1
6

mg(r + e)β̄3 + O(||z̄||4) (3.13)

and

w̃yλTy = −μmg
ε

[
−Ωe

4e + r
6

γ̄ 3 + (r + e)2 ˙̄β − 3
2
Ωe(r + e)β̄2γ̄

−(r + e)2 ˙̄ββ̄2 + e(r + e)Ωγ̄ − e(r + e) ˙̄βγ̄ 2
]

+ O(||z̄||4). (3.14)

According to the second row of equation (2.10), the kinematic relation is approximately given
in terms of ˙̄γ and β̄ as

˙̄γ = +Ωβ̄ + O(|β̄|3). (3.15)

If the harmonic ansatz

β̄ = C sin(ωt) (3.16)

γ̄ = D sin(ωt + ϕ), (3.17)

with amplitudes C, D, angular frequency ω and phase ϕ is inserted into the kinematic relation
equation (3.15), we obtain by coefficient comparison ϕ = π

2 and D = −C Ω
ω

, yielding

β̄ = C sin(ωt) γ̄ = −C
Ω

ω
cos(ωt)

˙̄β = Cω cos(ωt) ˙̄γ = CΩ sin(ωt)

¨̄β = −Cω2 sin(ωt),

(3.18)
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where the identity cos(ωt) = sin(ωt + π/2) is used and orders of O(|β̄|3) are neglected. Substitution
of the harmonic ansatz in vectorial form

ẑ =
[

C sin(ωt)
−C Ω

ω
cos ωt

]
, (3.19)

into the quartic approximated system (3.10), leads to an equation of the form

− M̂(C, ω)Cω2 sin(ωt) = ĥ(C, ω) + f̂(C, ω) + O(C4), (3.20)

with mass matrix M̂(C, ω) := M̃(ẑ), vector of gyroscopic forces ĥ(C, ω) := h̃(ẑ, ˙̂z) and external
forces f̂(C, ω) := f̃(ẑ, ˙̂z). Since equation (3.20) contains higher orders of trigonometric expressions
(cos2(ωt), sin2(ωt), . . . ), we shift the exponents into the arguments by applying trigonometric
addition theorems

sin(ωt) cos2(ωt) = 1
4

sin ωt + 1
4

sin 3ωt (3.21)

sin2(ωt) cos(ωt) = 1
4

cos ωt − 1
4

cos 3ωt (3.22)

sin3(ωt) = 3
4

sin ωt − 1
4

sin 3ωt (3.23)

cos3(ωt) = 3
4

cos ωt + 1
4

cos 3ωt, (3.24)

in harmonics of ω. Neglecting higher harmonics in equation (3.20), the balance of sin(ωt) and
cos(ωt) yields

sin(ωt) : C2κ1 +
[
B̄(Ω2 − ω2) − mg(r + e)

]
= 0 (3.25)

and

cos(ωt) :
1
4

C2 κ2

ω
+ (r + e)

[
e
Ω2

ω
− (r + e)ω

]
= 0, (3.26)

with the parameters

κ1 = 1
4

[
B̄ − 3A − 2me(r + e)

]
Ω2 − 1

2
m(r + e)2ω2 + 1

8
mge

Ω2

ω2 − 1
4

(B̄ − A)
Ω4

ω2 + 1
8

mg(r + e) (3.27)

and

κ2 = −e
r + 4e

2
Ω4

ω2 + 3
2

e(r + e)Ω2 + (r + e)2ω2. (3.28)

If O(C2) are neglected in equation (3.26), we obtain

ω2 = e
r + e

Ω2 + O(C2), (3.29)

which is constant with respect to orders O(C2) and corresponds to the imaginary part of the critical
eigenvalues λ1,2 = ±iω. As the classification of the Hopf bifurcation depends on quadratic terms,
C2 cannot be neglected, so that the solution must be approximated up to higher order terms.
Therefore, the correction term δ = δ(C, ω) is added, such that

ω2 = e
r + e

Ω2 + δC2 + O(C4), (3.30)

describes the solution of equation (3.26) up to orders O(C4). Multiplying equation (3.26) with the
factor 4ω and inserting equation (3.28) yields

C2

[
−e

r + 4e
2(r + e)

Ω4

ω2 + 3
2

eΩ2 + (r + e)ω2

]
+ 4

[
eΩ2 − (r + e)ω2

]
= 0, (3.31)

and the ansatz equation (3.30)

C2
[
− r + 4e

2
Ω2 + 5

2
eΩ2

]
− 4(r + e)δC2 =O(C4), (3.32)
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from which δ is obtained up to second orders O(C2) as

δ = −1
8

r − e
r + e

Ω2 + O(C2). (3.33)

Thus the solution

ω2 =
(

e
r + e

− 1
8

r − e
r + e

C2
)

Ω2 + O(C4), (3.34)

of equation (3.26) is given up to quartic orders O(C4), which can be inserted into the balance of
sin(ωt) from equation (3.25)

C2κ1 +
[

B̄
(

1 −
(

e
r + e

− 1
8

r − e
r + e

C2
))

Ω2 − mg(r + e)
]

=O(C4), (3.35)

yielding the quadratic equation in amplitude C

C2
(

κ1(r + e) + 1
8

B̄(r − e)Ω2
)

+ [B̄rΩ2 − mg(r + e)2] =O(C4). (3.36)

The amplitude C follows in closed form as

C = 2
√

e
r + e

√
− B̄rΩ2 − mg(r + e)2

χΩ2 + mge(r + e)
+ O(C4) (3.37)

with constant

χ = A(r − 2e) − B̄
2r2 + e(r + e)

2(r + e)
= 1.31 × 10−7 kg m3, (3.38)

and exists, if the argument below the square root of equation (3.37) is greater than zero. As χ > 0,
the denominator χΩ2 + mge(r + e) is positive for all spinning velocities Ω , such that a real valued
amplitude C exists for

Ω ≤
√

mg

B̄

(r + e)2

r
= Ωcrit. (3.39)

This condition of existence is in accordance with the critical spinning velocity Ωcrit derived in [19].
A branch of periodic solutions emerges at the bifurcation point, i.e. when the spinning speed Ω

is equal to the critical spinning velocity Ωcrit. Combining the knowledge of a Hopf bifurcation
and the existence of periodic solutions for Ω ≤ Ωcrit, the bifurcation at Ωcrit is characterized
as a supercritical Hopf2 bifurcation where stable periodic orbits coexist around an unstable
equilibrium. The angular frequency ω of the periodic solution is obtained by inserting equation
(3.37) into equation (3.34), which, neglecting O(C4), yields

ω =
√√√√ e

r + e

(
1 + 1

2
(r − e)
(r + e)

B̄rΩ2 − mg(r + e)2

χΩ2 + mge(r + e)

)
Ω , (3.40)

with corresponding period time T = 2π/ω of the periodic solution. The period time Tcrit = 0.886 s
at the bifurcation point, is calculated from equation (3.40) by inserting the critical spinning
velocity Ω = Ωcrit. In figure 5a, the β̄-amplitude β̄max = C is depicted as a function of angular
velocity Ω . Furthermore, the equilibrium corresponding to the inverted steady-state solution
is shown as a horizontal line β̄max = 0. Figure 5b shows the dependence of the period time
T under influence of the spinning velocity Ω . Here, it is worth mentioning that for spinning
velocities Ω > Ωcrit there is no periodic solution and hence no period time T. The bifurcation point
corresponding to the Hopf bifurcation is marked as a black dot. To illustrate the local validity of
the closed-form solutions obtained with the HBM approach, the solutions are continued by dotted
lines in each case.

2The name supercritical Hopf is somewhat misleading, since the branch of stable periodic solutions exists for ‘subcritical’
spinning velocities Ω ≤ Ωcrit. Nevertheless, we stick to this terminology as it is common in classic literature [20,21]
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Figure 5. Harmonic balance method (HBM) results aroundΩcrit. (a) Bifurcation diagram obtained from HBM in closed form,
depicting the supercritical Hopf bifurcation and the birth of a branch with stable limit cycles. (b) Closed-form approximation of
the period time of the limit cycle. (Online version in colour.)

4. Nonlinear dynamics
In the previous section, the dynamics is studied by closed-form expressions coming from
a linearization and the HBM from equation (3.18). The search for closed-form expressions
necessitates local approximations of the dynamics by neglecting higher order terms in C as well
as higher harmonics. For this reason, the single harmonic balance result is valid only for small
amplitude C and thus near the bifurcation point. Of course, a more accurate result could have been
obtained with a multi-HBM without approximations, but this would not be possible in closed
form. As we are not only interested in the local dynamics near Ω ≈ Ωcrit, in this section we identify
periodic solutions using the numerical shooting method in combination with continuation in Ω .
Moreover, we exploit the singularly perturbed structure of the system equations to gain a deeper
understanding of the qualitative behaviour behind the inversion of the tippedisk.

(a) Continuation of periodic solutions
The shooting method [21,22] combined with a continuation method [23] is a popular approach
to construct a numerical bifurcation diagram. However, a direct application of these classical
numerical methods to the problem of the tippedisk leads to convergence problems as the
singularly perturbed structure of the system equations results in an extremely stiff set of ODEs.
In particular, more elaborate variants of these methods, such as the multiple shooting method
and arclength continuation with variable stepsize, proved to be prone to convergence problems.
For completeness, we briefly review the adopted shooting method and sequential continuation
technique together with the chosen modifications to guarantee a robust continuation. The basic
idea behind the classical sequential shooting method is to change the bifurcation parameter
sequentially and formulate a zero-finding problem that can be solved by a Newton-type
algorithm. Here, the spinning velocity Ω is chosen as a bifurcation parameter. The single shooting
method formulates a two-point boundary value problem in terms of a zero-finding problem that
can be solved with Newton-like methods. For an autonomous nonlinear system of the form

q̇ = F(q) ∈ R
3, (4.1)

the two-point boundary value problem consists of the periodicity condition

rp(q0, T) = ϕ(q0, t0 + T) − q0 =
∫ t0+T

t0

F(q(τ )) dτ ∈ R
3, (4.2)

together with a suitable anchor equation as the period time is a priori unknown. For the reduced
model of the tippedisk, we have the state vector q = [z, v]T ∈ R

3 and the most robust results can

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 D

ec
em

be
r 

20
21

 



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210536

..........................................................

Table 2. Initial guess for sequential continuation

estimated quantity magnitude unit

β̄0 0 rad
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ̄0 1.69 rad
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

˙̄β0 −1.72 rad s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T0 1.10 s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

be obtained by choosing the simple anchor

ra(q0, T) = β̄0 ∈ R. (4.3)

The combination of the periodicity residual rp and the anchor equation ra yields the four-
dimensional residuum

r(q0, T) :=
[

rp(q0, T)
ra(q0, T)

]
∈ R

4. (4.4)

Periodic solutions are associated with the zeros of the residuum r(q0, T) = 0, which specifies a
state q0 on the T-periodic solution. To solve the zero-finding problem, any standard Newton-
type algorithm can be applied, starting with an initial guess (q(0)

0 , T(0)
0 ) and resulting in the

converged solution (q(∗)
0 , T(∗)

0 ). The dependence on the spinning velocity Ω is studied by a
sequential continuation method, where Ωi is an element of the set A= {Ω0, Ω1, . . . , Ωn} and the
index i ∈ N is incremented stepwise. Sequential continuation combines a predictor step, where
the initial estimate (q(0),i

0 , T(0),i
0 ) for a given Ωi comes from the solution (q(∗),i−1

0 , T(∗),i−1
0 ) of the

shooting problem at Ωi−1 with a subsequent corrector step, viz. the shooting procedure. The
initial estimate of the periodic solution for Ω0 = Ωcrit − 0.5 rad s1 is given in table 2 and defines
the starting point for the sequential continuation. To track the evolution of periodic orbits, in a
first step the spinning speed Ω is increased to analyse the behaviour near the Hopf bifurcation at
Ωcrit. The corresponding increasing set Ain is chosen as

Ain = {Ωi+1 ∈ R|Ωi+1 = Ωi + (Ωcrit − Ωi)/100, i ∈ I}, (4.5)

with respect to the index set I = {1, 2, . . . , 400}. In a second step, the behaviour for decreasing Ω

is analysed by defining the decreasing Ω-set

Ade = {Ωi+1 ∈ R|Ωi+1 = Ωi + (Ωh − Ωi)/100, i ∈ I}. (4.6)

Note both sets Ain and Ade are generated by convergent sequences, which results in a fine
resolution around Ωcrit and Ωh. The spinning speed Ωcrit corresponds to the critical spinning
velocity at the Hopf bifurcation.

In figure 6, the branch of limit cycles obtained numerically with the adapted shooting-
continuation method is shown. For comparison, the closed-form solutions obtained by the
harmonic balance approach are depicted in black. According to the sequential shooting results,
the bifurcation is identified as supercritical Hopf, since a stable periodic solution exists for
Ω < Ωcrit. For decreasing spinning velocities, the periodic solution vanishes at Ωh = 30.07 rad s−1,
with corresponding period time Th = ∞. At this point, Ωh is not yet defined, but will be identified
as the heteroclinic/homoclinic spinning speed in the following.

(b) Singularly perturbed dynamics
In [19], it is shown that the dynamics of system (2.2) must be considered on different time
scales. Before analysing the dynamical behaviour on the tippedisk in the framework of slow–fast
systems, we introduce the basics of singular perturbation theory [24–26].
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Figure 6. Numerical results from the shooting-continuation method. For comparison, the closed-form HBM approximations
are shown in black. (a) bifurcation diagram, (b) period time. (Online version in colour.)

(i) Basics of singular perturbation theory

Singular perturbation theory deals in the context of dynamics with systems of the form

ẋ = f(x, y; ε)

εẏ = g(x, y; ε),
(4.7)

where ε � 1 is identified as small fixed perturbation parameter and •̇ := d
dt • denotes the

derivative with respect to ‘slow’ time t. The system

ẋ = f(x, y; ε) ∈ R
n, (4.8)

is called the slow subsystem with the corresponding slow variable x ∈ R
n, while the fast

subsystem is identified as

εẏ = g(x, y; ε) ∈ R
m, (4.9)

with associated fast variable y ∈ R
m. By introducing the ‘fast’ time variable τ := 1

ε
t and the

associated derivative •′ := d
dτ

•, the rescaled dynamical system is given by the differential equation

x′ = ε f(x, y; ε)

y′ = g(x, y; ε).
(4.10)

Setting the perturbation parameter ε in equation (4.7) to zero, yields the critical system

ẋ = f(x, y; 0)

0 = g(x, y; 0),
(4.11)

which corresponds to a differential algebraic equation on the slow time-scale t. According to the
implicit function theorem, the algebraic equation g(x, y; 0) = 0 can locally (i.e. in a neighbourhood
U of x̄ with g(x, y; ε) = 0) be cast in explicit form y = hc(x) if the Jacobian ∂g

∂y |x̄,ȳ;0 is invertible. This
relation y = hc(x) between y and x describes the behaviour of the fast coordinate y induced by the
evolution of the slow variable x, defining the n-dimensional critical manifold

Mc := {(x, y) ∈ R
n+m| y = hc(x), x ∈ U}. (4.12)

The dynamical behaviour on this critical manifold is characterized by the differential equation

ẋ = f(x, hc(x); 0). (4.13)

Equivalently, equation (4.10) with ε = 0 gives the critical boundary layer system

x′ = 0

y′ = g(x, y; 0),
(4.14)
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which, with respect to the fast time-scale τ , implies on the one hand a constant slow variable
x = x∗ and on the other hand that y∗ = hc(x∗) is an equilibrium point, i.e. an element of the critical
manifold Mc. For ε 	= 0, the fast system indicates the equilibrium condition g(x, y; ε) = 0, which
implies the relation y = hs(x; ε), which defines the corresponding n-dimensional slow invariant
manifold

Ms := {(x, y) ∈ R
n+m| y = hs(x; ε), x ∈ U}. (4.15)

The form of the slow manifold Ms can be obtained through a perturbation technique by exploiting
its invariance. Inserting y = hs(x; ε) and ẏ = (∂hs/∂x|x;ε)ẋ into the fast dynamics (4.9) yields

ε
∂hs

∂x

∣∣∣∣
x;ε

f(x, hs(x); ε) = g(x, hs(x); ε), (4.16)

which is expanded using the convergent series

hs(x; ε) = h0(x) + h1(x)ε + O(ε2), (4.17)

up to orders of O(ε2) into equation

ε

[
∂h0(x)

∂x

∣∣∣∣
x

+ ∂h1(x)
∂x

∣∣∣∣
x
ε

][
f(x, h0; 0) +

(
∂f
∂ε

∣∣∣∣
x,h0;0

+ ∂f
∂y

∣∣∣∣
x,h0;0

h1

)
ε

]

= g(x, h0(x); 0) +
[

∂g
∂ε

∣∣∣∣
x,h0;0

+ ∂g
∂y

∣∣∣∣
x,h0;0

h1

]
ε + O(ε2). (4.18)

Comparing the coefficients of powers of ε yields

ε0 : 0 = g(x, h0; 0) (4.19)

ε1 :
∂h0

∂x

∣∣∣∣
x

f(x, h0; 0) = ∂g
∂ε

∣∣∣∣
x,h0;0

+ ∂g
∂y

∣∣∣∣
x,h0;0

h1(x) (4.20)

...

From equation (4.19), we conclude that h0(x) = hc(x), which indicates that the critical manifold
Mc is equal to the zero-order approximation of the slow manifold Ms. If ∂g/∂y|x,h0;0 is invertible,
h1(x) is deduced from equation (4.20) as

h1(x) = ∂g
∂y

∣∣∣∣−1

x,h0;0

[
∂h0

∂x

∣∣∣∣
x

f(x, h0; 0) − ∂g
∂ε

∣∣∣∣
x,h0;0

]
. (4.21)

If this procedure is continued to compute h2, h3, . . . , hn, the slow manifold Ms can be
approximated up to arbitrary orders O(εn+1). The distance function to the slow manifold

d := y − hs(x; ε), (4.22)

i.e. y ∈Ms ⇔ d = 0, is governed by the fast dynamics

d′ = y′ − ∂hs

∂x
x′ = y′ + O(ε) = g(x, d + hs(x; ε); ε) + O(ε). (4.23)

Linearizing the distance dynamics around the slow manifold Ms, i.e. d = 0, yields

d′ = g(x, h0(x), 0)︸ ︷︷ ︸
=0

+ ∂g
∂y

∣∣∣∣
x,h0;0

d = ∂g
∂y

∣∣∣∣
x,h0;0

d, (4.24)
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neglecting orders O(ε). According to Lyapunov’s indirect method, the slow manifold is locally
attractive, if ∂g/∂y|x,h0;0 is Hurwitz. If the slow manifold is attractive, solutions converge on
the fast time-scale to the slow manifold Ms. The slow and thus the asymptotic behaviour
is then governed by the dynamics on the slow manifold Ms, indicating the reduction to the
n-dimensional system

hs(x; ε) ≈ h0(x) + εh1(x)

ẋ = f(x, hs(x; ε); ε),
(4.25)

neglecting orders O(ε2).

(ii) Singularly perturbed dynamics of the tippedisk

In this section, the singular perturbation theory presented in §4b(i) is applied to the reduced
model of the tippedisk. Introducing the slow variables x = [β, γ ]T and the fast variable y = η = β̇,
we obtain the singularly perturbed system

ẋ = f(x, y)

ε ẏ = g(x, y; ε) = g0(x, y) + g1(x, y) ε,
(4.26)

with

f(x, y) =
[

η

−Ω cos β

]
∈ R

2, (4.27)

g0(x, y) = −M−1μmg wy(x)γy(x, y) ∈ R, (4.28)

and g1(x, y) = M−1[h(x, y) + fG(x, y)] ∈ R, (4.29)

by normalizing and pre-multiplying equation (2.2) with the ‘small’ smoothing coefficient ε > 0 of
the friction law, cf. [25]. The fast subsystem is given as

ε ẏ = g(x, y; ε) = g0(x, y) + g1(x, y) ε. (4.30)

For ε = 0, the fast subsystem collapses to the algebraic equation g0(x, y) = 0, which according
to equation (4.28) states that the relative velocity γy(x, y) vanishes, i.e. the contact point of the
tippedisk is in a state of pure rolling. Since the relative velocity γy(x, y) depends linearly on the
fast variable η = β̇, the critical manifold exists globally as the Jacobian ∂g0/∂y|x,y is invertible. The
associated critical manifold Mc is given as

Mc :=
{

(x, y) ∈ R
3| y = hc(x) = e sin β cos γ

(r + e sin γ )
Ω , x ∈ R

2
}

, (4.31)

being the zero-order approximation of the slow manifold, which is given up to orders O(ε2) as

Ms :=
{

(x, y) ∈ R
3| y = e sin β cos γ

(r + e sin γ )
Ω + h1(x)ε + O(ε2), x ∈ R

2
}

, (4.32)

with

h1(x) = ∂g
∂y

∣∣∣∣−1

x,hc

[
∂hc

∂x

∣∣∣∣
x
f(x, hc) − g1(x, hc)

]
. (4.33)

The stability of the slow manifold, characterized by the distance dynamics

d′ = ∂g0
∂y

∣∣∣∣
x,hc

d, (4.34)
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is asymptotically stable, since the Jacobian

∂g0
∂y

∣∣∣∣
x,hc

= −M−1μmg (r + e sin γ )2 sin2 β, (4.35)

is strictly negative for all β ∈ (0, +π ), i.e. in a basin of attraction orbits are attracted to the invariant
manifold Ms. Therefore, the asymptotic behaviour of attracted solutions is governed by the
reduced two-dimensional system

hs(x) ≈ hc(x) + εh1(x)

ẋ = f(x, hs(x)),
(4.36)

neglecting orders O(ε2).

5. Dynamics on the slowmanifold
After having analysed the qualitative behaviour of the system in the previous sections, we
will now depict the dynamical behaviour on the slow manifold embedded in the three-
dimensional state space. According to the linear stability analysis of [19], equilibria corresponding
to ‘non-inverted spinning’ are unstable. The ‘inverted spinning’ equilibrium is unstable for
Ω < Ωcrit and stable for supercritical spinning velocities Ω > Ωcrit. Due to the ambiguity of
trigonometric expressions, we find that both the state xnon = (+π/2, −π/2, 0) and the state
xnon = (+3π/2, +π/2, 0) correspond to an equilibrium that is associated as non-inverted spinning
(alternatively we may employ a cylindrical state space). Inverted spinning is characterized by the
equilibrium xin = (+π/2, +π/2, 0).

Figure 7 shows the behaviour of trajectories in β-γ -β̇ state space under variation of the
spinning speed Ω . The associated discrete spinning velocities are shown in figure 8, where the
dots represent the inverted spinning equilibrium, and the square marks correspond to periodic
solutions. The slow manifold Ms, defined in equation (4.15), is depicted as grey surface in figure 7.
Unstable equilibria are shown as blue dots, stable ones as red dots. For each subfigure, two orbits,
initialized as black crosses at x1

0 = (+π/2, −π/2, 2) and x2
0 = (+π/2, +π/2 + 0.4, 0), are shown

as cyan trajectories. For Ω < Ωh, solutions are repelled by the inverted spinning equilibrium
(figure 7a). At Ωh, a periodic solution (with period time T = ∞) arises that includes both non-
inverted spinning equilibria. For Ωh < Ω < Ωcrit, this periodic solution attracts both orbits and
shrinks for increasing Ω (figure 7b–e). At Ωcrit, the periodic solution collapses, such that the
inverted spinning equilibrium becomes stable (depicted as a red dot) and attracts the initialized
trajectories (figure 7f ). In addition, we observe that all trajectories converge rapidly onto the slow
manifold Ms. After convergence, the orbits evolve on this two-dimensional manifold. Due to
this attractivity and the resulting reduced two-dimensional behaviour, it is possible to project the
three-dimensional dynamics in figure 9 onto the (β, γ )-plane to obtain a clearer representation
without losing too much information.

6. Discussion
In the vicinity of the bifurcation point at Ωcrit, the results of sequential shooting and the harmonic
balance approach agree, showing the validity of the HBM at the bifurcation point Ω = Ωcrit.
Together with results from [19], the bifurcation at

Ωcrit =
√

(r + e)2

r
mg

B̄
= 30.92 rad s−1, (6.1)

is characterized as supercritical Hopf bifurcation where a stable periodic solution collapses
with an unstable equilibrium, resulting in a stable equilibrium for Ω > Ωcrit. For significantly
subcritical spinning velocities Ω < Ωcrit, the amplitude and period time determined from
numerical shooting and approximated closed-form harmonic balance differ increasingly with the
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Figure 7. Dynamics of the tippedisk for the three-dimensional reduced model for various values of the spinning speed Ω .
The grey surface corresponds to the slow manifoldMs. (a)Ω = Ωh − 0.1 rad s−1, (b)Ω = Ωh + 0.01 rad s−1 ≈ Ωh,
(c)Ω = Ωh + 0.1 rad s−1, (d)Ω = Ωcrit − 0.5 rad s−1, (e)Ω = Ωcrit − 0.2 rad s−1, (f )Ω = Ωcrit + 0.5 rad s−1.
(Online version in colour.)

distance from the Hopf bifurcation. According to the results of numerical shooting, the periodic
solution vanishes at Ω = Ωh, with a corresponding infinite period time Th = ∞. Section 4b(ii)
discusses the singularly perturbed structure of the system, indicating an attractive slow manifold
Ms. To obtain more compact expressions, a linearized version of the regularized Coulomb friction
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Figure 8. Location of the parameter values of figures 7 and 9 in the bifurcation diagram. Unstable inverted spinning is marked
as blue dots, whereas stable spinning is indicated by a red dot. Stable periodic solutions are shown as red squared marks. The
branch of periodic solutions has been obtained by numerical shooting. (Online version in colour.)

law has been assumed. Due to this linear friction law, the attractivity of the slow manifold
Ms is global, i.e. would attract all solutions. However, here we have to bear in mind that we
have made the approximation of a small smoothing parameter ε. For the chosen parameters,
applying a smooth Coulomb friction (i.e. a nonlinear friction law) does not change the qualitative
behaviour, since the slow manifold still seems to be globally attractive. However, this statement
is based on numerical studies, as it is not trivial to prove. The critical manifold Mc defining pure
rolling, approximates the slow manifold Ms to zero order. Since all solutions are attracted to the
slow manifold Ms and thus also lie near the critical manifold, the relative sliding velocity must
be small, justifying the assumed linearized version of smooth Coulomb friction (i.e. linear and
smooth Coulomb friction describe the same asymptotic behaviour).

Due to the singularly perturbed structure, the long-term behaviour of the dynamics of
the tippedisk is governed by a two-dimensional system describing the dynamics on the slow
manifold Ms. This slow manifold is approximated to zero order O(ε0) by the critical manifold
Mc. This approximation suggests the reduction of the dynamics onto the critical manifold, like
it is often assumed (e.g. [27]). Interestingly, this approximation is not sufficient to study the
inversion phenomenon of the tippedisk. Since the critical manifold characterizes pure rolling,
a reduction on the critical manifold is not able to capture the friction-induced instability of non-
inverted spinning, nor the Hopf bifurcation at inverted spinning. Hence, the slow manifold must
be approximated at least up to order O(ε), to study the behaviour ‘near’ pure rolling.

Figure 7 shows that the periodic solution defines an asymptotic attractive limit set embedded
in the two-dimensional slow manifold. For Ω = Ωh, the periodic solution degenerates into a
heteroclinic cycle consisting of two heteroclinic connections on non-inverted spinning equilibria.
Physically, both non-inverted equilibria can be identified with themselves, since both describe the
same non-inverted spinning solution, and hence we may also speak of homoclinic connections.
The birth of the stable periodic solution at Ωh separates the slow manifold into two invariant
sets, namely the ‘interior’, containing the inverted spinning solution, and the ‘exterior’. If the
spinning speed is subhomoclinic Ω < Ωh, solutions are repelled from inverted spinning xin.
For Ωh < Ω < Ωcrit, the inverted spinning equilibrium remains unstable and orbits starting near
inverted and non-inverted spinning are attracted by the stable periodic solution. For increasing Ω

the amplitude β̄max and the period time T are decreasing, until the supercritical Hopf bifurcation
occurs at the bifurcation point Ωcrit. After crossing this Hopf bifurcation, i.e. if the spinning speed
Ω is higher than the critical spinning speed Ωcrit derived in [19], the inverted spinning solution
attracts almost all trajectories, so that these orbits end up in an inverted configuration.
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Figure 9. Projected three-dimensional dynamics onto (β , γ )-plane, corresponding to figure 7. (a)Ω = Ωh − 0.1 rad s−1,
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7. Conclusion
In this work, the nonlinear dynamics of the tippedisk has been studied. The starting point
of the analysis is a three-dimensional dynamical system, derived in [19]. To characterize the
Hopf bifurcation at Ωcrit, a harmonic balance approach is applied, indicating the existence of a
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periodic solution for subcritical spinning velocities and thus characterizing the bifurcation as a
supercritical Hopf bifurcation. For a feasible HBM in closed form, a local approximation of the
system equations has been used, restricting the validity to the neighbourhood of the bifurcation
point Ωcrit. The results obtained from the harmonic balance approach are validated by the
application of a numerical shooting method and show the sudden birth of a periodic solution at
Ωh (far away from the Hopf bifurcation) followed by a vanishing at the critical spinning velocity
Ωcrit, derived in [19]. Due to the singularly perturbed structure of the system, solutions on a ‘fast’
time scale are attracted to a slow manifold almost immediately. After this transient ‘jump’ on the
boundary layer, the orbits remain on this slow manifold Ms, so that the asymptotic behaviour
is characterized by the dynamics on this manifold. Since the dimension of the slow manifold is
two, the three-dimensional dynamics can be reduced to a two-dimensional first-order ODE that
qualitatively describes the inversion phenomenon of the tippedisk. The qualitative dynamics of
the two-dimensional system will be compared with experiments in future research.

In summary, the bifurcation scenario is characterized by a homoclinic bifurcation in which a
stable periodic orbit arises, followed by a supercritical Hopf bifurcation, after which the periodic
solution has disappeared. If the spinning speed is supercritical (i.e. Ω > Ωcrit, where a closed-form
solution exists for Ωcrit), the inverted spinning solution attracts almost all trajectories, leading to
the inversion of the tippedisk.
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