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ABSTRACT 
The paper at hand shows how structural damping and stiffness parameters in shrunk joints can be determined by a generic 
joint experiment. With thin-layer elements these parameters from the joint experiment are coupled to the structures finite 
element model. Equivalent modal damping factors can be determined by performing a complex numerical modal analysis, by 
which the stability of the rotor can be tested. The two-disc rotor is examined as an application sample. This rotor consists of a 
shaft with two shrunk-on discs. With the above mentioned approach, and by considering structural damping added to material 
damping, the modal damping of the first torsional eigenfrequency is calculated and then compared to the results of an 
experimental modal analysis. The paper shows that the presented approach leads to a reliable approximation of the examined 
structure’s dissipation properties. It serves as a prediction tool for the response behavior of a turbo-generator. 
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1   Introduction 
For many applications damping is the major factor when stable operating states of a rotating machine are to be identified. In 
order to reliably predict if the operation state of a system is stable, dissipation properties have to be considered [1]. Predictive 
conclusions regarding stability therefore are only possible if the damping properties of a structure under consideration can be 
determined and then included into a numerical model as e.g. the FEM. Besides material damping, which can easily be 
determined from experiments or from literature, dissipation of a standardized joint is of particular importance. In metallic 
structures damping of joints usually outweighs material damping by one to two decades. 
In order to quantitatively determine damping of joints, experimental testing needs to be developed by which properties of 
joints can be identified. Besides its dissipation properties also the tangential stiffness of the joint is relevant, since the 
structure is weakened by the joint which reduces eigenfrequencies compared to a solid connection. However, normal stiffness 
of joints only has minor influence on eigenfrequencies and -modes. Therefore it can simply be estimated or taken from 
experience. Alternatively the normal stiffness can also be determined by numerical contact analysis.  
 
2   The two-disc rotor as a test structure 
The examined structure consists of a shaft with two shrunk discs (see Figure 1) which will perform torsional vibrations. All 
pieces are made of steel. Measures such as material allowance in the contact area, surface roughness and press fit are 
common parameters used for turbine construction. 



  
 

Fig. 1  3-D view of the two-disc rotor 
 
A FE-analysis of the contact pressure with a press fit of 0.05 % contact overlap is shown in Figure 2. This results in an 
average contact pressure of 100 MPa; locally the pressure is as high as 150 MPa. This contact pressure corresponds to 
common values for rotating turbines. However, the two-disc rotor structure is examined without rotation and therefore shows 
the above mentioned contact pressure in a stationary state. A numerical modal analysis of the FE-model of the test structure 
shows that the torsional eigenfrequency is approximately 165 Hz. 
 

 
Fig. 2   Calculated contact pressure distribution between rotor and shrunk-on disc 

 
3   Layout of the generic joint experiment 
Since the contact parameters between rotor and discs are known in terms of surface roughness, contact pressure and 
frequency, a generic experiment can be conducted in order to determine the corresponding isolated joint’s parameters. Figure 
3 shows the measurement set-up. It consists of two small contact interfaces which are pressed against each other. The normal 
force in the joint is controlled by a bolt and measured by a force measurement ring. An excitation of the joint in the axial 
direction is realized by two masses on both sides of the joint where one mass is attached to a shaker. The mass shown on the 
right is connected to a leaf spring, such that the set-up is a two-mass resonator. When the resonance frequency is transmitted 
the axial force is increased considerably. On both sides of the joint two 3-dimensional accelerometers are placed. Their 
signals are used for the calculation of the relative displacement and therefore also for the stiffness of the joint and its 
dissipation behavior (see Section 4). 

 
 



The boundary conditions for this generic experiment are known from the examination of the two-disc rotor: the experiment 
should be conducted with normal pressure of about 100 MPa and an excitation frequency nearby 165 Hz. The surface 
roughness also corresponds to the two-disc rotor.    

The size of the contact interfaces measures 30 mm x 40 mm with a 14 mm diameter drilled hole in the middle. This results in 
a contact area of A = 1046 mm², for which a bolt force of 104.6 kN is needed. The amplitude of the axial force is defined by 
the input signal of the shaker. 
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Fig. 3   Layout of the measurement set-up for determination of isolated joint’s parameters 

 
4   Determination of isolated joint’s parameters 
In order to determine stiffness and damping of the joint, the resonator is suspended by two thin wires attached to the masses 
at their centers of gravity. The excitation frequency of the shaker is 165 Hz. The relative displacement  is calculated by
integrating the acceleration signals twice with respect to time 
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The tangential force FT transmitted by the joint is obtained from the product of the free suspended mass and its 
acceleration  
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Using the results from these two time-dependent parameters, a hysteresis curve is determined (see Figure 4). The area of the 
hysteresis curve equals the energy  dissipated in one period. The ratio of the energy dissipated  divided by dW dW π2 times 
the maximum potential energy  gives the loss factor  maxU

max2 U
Wd
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representing the damping in the examined joint. The slope of the hysteresis curve represents the tangential stiffness c of the 
joint 
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Fig. 4   Example of a hysteresis curve 

 
Figure 5 shows several measured hysteresis curves recorded at different excitation amplitudes. The received signals are 
filtered in order to smoothen the curves. It can be seen that the joint’s stiffness is nearly constant and the energy dissipation is 
small. This is due to the fact that with the chosen contact pressure and the excitation amplitudes only microslip occurs. 
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Fig. 5   Measured hysteresis curves 
 
The experiment is carried out with different parameters in order to determine their influence on the parameters of the joint. In 
Figure 6 the influence of the contact pressure on the loss factor and the tangential stiffness are shown. The excited tangential 
force is between 2 kN and 6 kN. It can be seen that above a contact pressure of 20 MPa the parameters of the joint nearly stay 
the same. If the contact pressure is small only macro slip occurs and the measured loss factor increases significantly, while 
the contact stiffness collapses. 

As shown in Figure 7 an increase of the excitation force results in a moderate change of the loss factor. However, it has to be 
taken into account that identifying the loss factor is related to some uncertainty. An influence of the excitation force on the 
tangential stiffness cannot be found (see Figure 5). 

The influence of the surface finish is studied by changing its roughness to . However, a change of the joint’s 
parameters cannot be found. 
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Fig. 6   Influence of contact pressure on loss factor and tangential stiffness 

 
 

 
Fig. 7   Influence of tangential force on loss factor 

 
In order to quantify the uncertainties of the measurements, the experiments are repeated a number of times with multiple 
reassemblies of the joint. Figure 8 shows exemplarily all measured results with variation of the excitation force. The result 
shows that the stiffness of the joint can be measured with high accuracy while the damping measurements contain a relatively 
high degree of uncertainty (± 30 %). The problem of precisely determining the energy dissipation in joints is also known in 
literature [12,13]. 

The average data determined by the joint measurements are:  
 

kN/mm580028.0 ≈≈ cχ .     (5) 
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Fig. 8   Variation of loss factor (left) and tangential stiffness (right) measurements plotted versus different excitation 

levels 
5   Two-disc rotor measurements 
The experimental test set-up for measurements on the two-disc rotor is shown in Figure 9. The rotor is held by two cone-
shaped supports in a lathe. This set-up minimizes the losses on the boundaries at the same time allowing torsional vibration of 
the rotor. A small cut-out at one disc allows for torsional excitation. Modal analysis with two accelerometers and impact 
excitation is performed. Later, additional measurements at the driving point are made. 

 

 
Fig. 9   Examined two-disc rotor with bearings and accelerometers 

 
The FRF is shown in Figure 10. It can be seen that the torsional mode at 162 Hz is excited. The measurements are done with 
a block size of 28.800 points and a limit frequency of fmax = 1125 Hz. The measurement time per sample is 26 seconds. 
During the measurement time the acceleration signal decayed to noise level. 

The amplitude decay measurement is shown in Figure 11. Three parameter identification methods are used to obtain damping 
and frequency of the torsional mode. At first, Me'Scope software is used to extract the damping from all measured data. 
Then, the measurements are transferred to MatLab and the damping is estimated by half-power method. Finally, an 
exponential function is curve-fitted to the amplitude decay measurements (Figure 11). The extracted modal damping factors 
ξ range from 0.024% to 0.029% of critical damping, with amplitude decay measurements showing a better consistency and a 
value of %025.0=ξ  [3]. 
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Fig. 10   Frequency Response Function (FRF) of the two-disk rotor 
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Fig. 11   Determining the damping factor by amplitude decay measurement 

 
6   FE-modeling 
It has been shown by experimental investigations that joint damping in metal structures is nearly frequency independent. 
Similar results have been shown for material damping in metals. Thus, for FE approach the model of constant hysteresis will 
be used. Such model makes sense only in frequency domain, while in time domain it might lead to non-casual material 
behavior [7]. The model of constant hysteresis of structural damping implies that damping is frequency independent. 

Derivation of the FE equation of motion begins with an undamped system 
 

0=+ xKxM &&       (6) 
 

where M is a mass matrix, K is a real valued stiffness matrix, and x is the displacement vector. Eigenvalues and eigenmodes 
can be determined from a numerical modal analysis. Using the model of constant hysteresis, the damping in frequency 
domain will be incorporated by complex stiffness matrix *K [1,3,6,7,10,14] with experimentally determined dissipation 
multipliers íα and íβ  for the material and the joint damping [4,9,11], respectively, and the associated elements stiffness 
matrices 
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where  are the number of different materials and joints with different properties used in the model, respectively. The 
damping is low, implying 

mn,
1, <<ií βα . The modified equation of motion (6), (7) can be solved for complex eigenvalues and 

eigenmodes with some commercial FE packages offering a complex solver, and in this case was performed with 
MSC.Nastran. The modal damping factors of the structure are read out from the solution file. 

Thin-layer elements are used for the simulation of joints in the FE model [2]. The experimentally determined contact stiffness 
and dissipation parameters are used for constructing the stiffness matrices.  
Thin-layer elements are normal hexahedral or pentahedral elements in which length or width to thickness ratio can be up to 
1000: 1 without causing numerical problems during the calculation. 

The stiffness of the generic joint (5) must be transferred into the FE model as a parameter of the thin-layer elements. A 
schematic of an arbitrary joint modeled by a thin layer is depicted in Figure 12. The force F, acting on both sides of the joint 
produces a shear stress τ in the layer. This stress can be expressed as 
 

d
uGG ≈= γτ ,      (8) 

 
where is the shear modulus and G γ  is the shear angle. The shear stress can also be calculated from the ratio of the applied 
tangential force F and the area of contact A 
 

A
F
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Fig. 12   Schematic of a joint with a thin-layer element 
 
By combining both equations the force can be calculated as 
 

ucu
d
AG

F =≈ .      (10) 
 

The stiffness  in the equation is obtained from the generic joint experiment. c

A basis for further examinations is that the joint shows orthotropic behavior, thus the thin-layer elements are modeled with 
respective material characteristics. Consequently the contact stiffness in normal and tangented direction may differ 
significantly. From Equation (10) the shear modulus can be approximated as 

 

A
dcG = ,      (11) 

 
which depends linearly on the thickness d of the thin-layer elements. 

 
Normal stiffness is not determined experimentally, but can be estimated from contact analysis. Physically sound limiting 
values for the selection of the normal stiffness are Youngs modulus of the surrounding material for the upper limit; for the 
lower limit isotropic joint behavior with disappearing transversal contraction GE 2= can be used. The orthotropic matrix is 
defined as follows 
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The off-diagonal terms are zero for physical reasons (there is no transversal contraction generated by the contact interface). 
Also, since the interface has no stiffness in x and y direction (parallel to the joints surface), the terms 11  and 22  disappear. 

33  represents the normal stiffness, whereas 
E E

E GEE == 6655 define the tangential stiffness of the joint. Since the joint 
exhibits no stiffness for in-plane shearing, is also zero. 44E
 
7   FE Simulation 
The FE-model of the simulated two-disc rotor can be seen in Figure 13. It is modeled exclusively with isotropic hexahedral 
elements where the thin-layer elements have =d 0.1 mm thickness. In MSC.Nastran hysteretic damping can be defined by a 
material property card. In the FE calculation material damping is applied to all elements belonging to one of the three 
components of the structure, and joint damping is realized by application of damping to thin-layer elements. The parameters 
for the thin-layer elements are acquired from the generic joint experiment, while material damping was found in literature 
with a value of 0001.0=χ [12]. For normal stiffness a value of 33 80=E  GPa is assumed, the result for the tangential 
direction is MPa. Youngs modulus of steel is presumed with 526655 == EE 212=E GPa and Poisson’s ratio 3.0=ν . 

 
Fig. 13   FE-model of the examined two-disc rotor 

 
With these values the torsional eigenfrequency is 160 Hz and the corresponding damping coefficient is 00038,0=χ , 
converted to a modal damping factor %019.0=ξ . 

A comparison of these values with the measured data (see Section 5) shows very good agreement. The difference in the 
eigenfrequency is only about 1%, the modal damping factor can be well estimated under the given uncertainties. The 
deviation is less than 25 %. 
 
8   Summary 
In this article a generic joint experiment is presented which enables an engineer to extract both, the tangential stiffness and 
the damping properties of a bolted joint connection. It turns out that the determination of damping properties of weakly 
damped structures, such as joints which only show microslip, goes along with substantial uncertainties. However, it succeeds 
to properly determine the dimension of damping. With this procedure at hand, a design engineer is enabled to make general 
statements about a structure’s dynamic behavior before a prototype is being built and investigated. 



 
 

As an example a two-disc rotor was investigated. The above mentioned approach was used to model the dynamic behavior of 
the structure with the FEM. The results of a numerical modal analysis were compared with the outcome of an experimental 
investigation by means of the first torsional eigenmode. It shows that the eigenfrequency can be calculated accurately, while 
the deviation of damping properties is in the range of 25%. Due to the difficulties of measuring small damping values the 
results are quite satisfactory.  
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