
 

 

 

INTEGRATION OF DAMPING PROPERTIES OF ASSEMBLED 

STRUCTURES INTO THE FINITE ELEMENT METHOD  

USING THIN-LAYER ELEMENTS AND THE MODEL OF 

CONSTANT HYSTERESIS 
 

 

Schmidt, A., Al-Tameemi, H., Bograd, S., Gaul., L. 

 

Institut für Angewandte und Experimentelle Mechanik, Universtät Stuttgart 

Pfaffenwaldring 9, 70550 Stuttgart, Germany 

schmidt@iam.uni-stuttgart.de 

 

 

SUMMARY: The vibration and damping characteristics of an assembled structure made of steel are investigated by 

an experimental modal analysis and compared with the results of a finite element modal analysis. A generic 

experiment is carried out to evaluate the stiffness and the damping properties of the structure's join patches. Using 

these results, an appropriate finite element model of the structure is developed where the join patches are 

represented by thin-layer elements containing material properties which are derived from the generic experiment's 

results. The joint's stiffness is modeled by orthotropic material behavior whereas the damping properties are 

represented by the model of constant hysteresis, leading to a complex-valued stiffness matrix. A comparison 

between the experimental and the numerical modal analysis shows good agreement. An optimization procedure for 

the joint's stiffness and the damping properties leads to an improved correlation between the experimental and the 

numerical modal quantities and reveals that the results of the generic experiment are sound. 
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NOMENCLATURE 

 

EMA 

FEM 

TLE 

i 

d 

Experimental modal analysis 

Finite element method 

Thin-layer element 

Imaginay unit 

Thickness of the TLEs  

𝑓exp
, 𝑓FEM

 EMA eigenfrequency, FEM eigenfrequency 

k, m Tangential stiffness, Mass 

a, u 

r, A 

Acceleration, Displacement 

Residuum, Contact surface  

E, E
*
 Young‟s modulus, Complex Young‟s modulus 

E11…E66 Entries of the 3d material matrix 

F, G Force, Shear modulus 

Wd,  𝑈max  Dissipated energy, Maximal stored energy 

η, ηm Loss factor, Modal damping in percent  

γ, τ, 𝜍, ε Shear strain, Shear stress, Stress, Strain 

λ, λ
*
 Real Eigenvalue, Complex Eigenvalue 

K, K
*
, M 

𝝋, 𝝋∗  

Stiffness matrix, Complex stiffness matrix, Mass matrix 

Real eigenvector, Complex Eigenvector 

 



 

1.  INTRODUCTION 

 

Vibrating mechanical systems assembled from metallic components dissipate energy due to the existence of 

damping. Besides the loss of energy in the material itself (material damping) especially the join patches contribute to 

the energy dissipation since microslip within the contact surfaces cannot be avoided. As long as the exciting forces 

do not exceed a certain level, the damping properties are nearly linear with respect to the excitation level. In 

addidtion, experimental investigations show that the stiffness and the damping properties of materials as well as 

those of the joints are nearly frequency independent [1].  

For numerical simulations of the dynamical behavior of structures, the finite element method (FEM) has established 

itself as a common powerful tool. Even though the mass and the stiffness distribution of a structure can be modeled 

within the FEM quite precisely, there is still a lack of suitable damping models. Classical approaches such as the 

Rayleigh damping or the identification of relaxation or creep functions by a Prony series result in a high frequency 

dependency of the damping properties which is in contrast to results from respective measurements [2]. Other 

approaches such as the use of fractional derivatives [3,4] are not available within commercial software programs. 

Another option offered by some FE codes is the „constant hysteretic model‟ often introduced as „structural 

damping‟. This model assumes frequency independent damping properties, i.e. the hysteresis in a stress-strain 

diagram encloses the same area for all frequencies (and constant amplitude) [5,6]. Since the model leads to non-

causal behavior in time-domain calculations [7] it can only be used in the frequency domain where one obtains a 

complex stiffness matrix. Thus, a modal analysis of a structure which incorporates hysteretic damping in general 

leads to complex eigenmodes and eigenvectors which have to be identified by a complex eigenvalue solver. 

Depending on the location of a join patch within a structure, its contribution to the energy dissipation changes from 

mode to mode. This is why – in contrast to material damping – the damping properties of joints have to be modeled 

locally. 

 

In this paper we consider a structure made of steel which includes two bolted joints. An EMA of the assembled 

structure is carried out to detect the eigenfrequencies, eigenmodes and the respective modal damping values. Then, a 

generic experiment is used to identify the tangential stiffness and the damping properties in terms of a loss factor of 

the join patches. Using these results, a FE model is set up in NASTRAN where the join patch is represented by thin-

layer elements (TLEs) with orthotropic material behavior. The material parameters of the TLEs are calculated from 

the measured joint‟s tangential stiffness, an estimated normal stiffness and the damping properties from the generic 

experiment which are included in terms of the constant hysteretic model. A numerical modal analysis of the FE 

model is calculated and the results are compared with those obtained from the EMA. In order to get a further 

reduction of the deviation between experimental and numerical results, an optimization procedure based on the 

least-squares method is coded in Matlab where the normal stiffness, the tangential stiffness and the loss factor are 

taken as free variables.  

 

 

2.  STRUCTURE AND ITS FE MODEL 

 

The structure under consideration consists of a hollow cylindrical body (wall thickness: 8 mm) with flanges on the 

ends, which is enclosed by two circular cover plates (10 mm thick), each mounted with 12 bolts (M8, see Figure 1). 

The contact surface between the flanges and the circular plates are modeled in the FEM by thin-layer elements 

(TLEs) with orthotropic material behavior. The model of constant hysteresis is used to model the damping resulting 

in complex-valued stiffness matrices of the TLEs.  

 

In order to detect the tangential stiffness and loss factor of the joint, a so-called generic joint experiment is 

performed (see Figure 2). The set-up consists of two masses m1 and  m2 connected by a lap joint, which has the same 

surface finish as the joints of the structure. The normal pressure is nearly constant due to a sufficient thickness of the 

lap. The normal force can be adjusted by the bolt and is measured by a piezoelectric washer. The normal force is 

adjusted to obtain the same contact pressure as in the assembly. Mass 2 is excited by an electro-mechanic shaker 

with a sine input signal. Once the vibration reaches a constant level, the accelerations a1 and a2 on both sides of the 

joint are acquired. These signals are integrated twice with respect to time to receive the absolute displacement. By 

taking the difference between them, the relative displacement in the joint is determined. The force transmitted by the 

joint is calculated as a product of the mass m1 and its acceleration a1. Knowing the transmitted force and relative 

displacement, a force-displacement diagram is constructed (see Figure 3) where the loss factor 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 – Structure with bolted joints. 

 

 

𝜂 =
𝑊d

2𝜋 𝑈max

                                                                                                 (1) 

 

is calculated from the area 𝑊d  enclosed by the hysteresis curve (representing the dissipated energy) devided by the 

2𝜋-fold of the maximal stored energy 𝑈max  [8]. The slope of the hysteresis loop represents the tangential stiffness k 

of the joint. 

 

The stiffness k from the generic joint experiment must be transferred into the FE model as a parameter of the TLEs. 

A schematic of an arbitrary joint with an TLE is depicted in Figure 4. The force F acting on both sides of the joint 

produces a shear stress τ in the TLE. This stress can be expressed as 

 

𝜏 = 𝐺𝛾 ≈ 𝐺
𝑢

𝑑
                                                                                             (2) 
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Figure 2 – Set-up of the generic experiment 

 
 

 
Figure 3 – Hysteresis curve 

 

 

where G is the shear modulus, γ is the shear strain, u is the displacement and d is the thickness of the TLE. The shear 

stress can also be expressed as the ratio of the applied tangential force F and the area of the contact A  

 

𝜏 =
𝐹

𝐴
                                                                                                    (3) 

 

By combining Equations (2) and (3) the force can be calculated 

 

𝐹 ≈
𝐺𝐴

𝑑
𝑢 = 𝑘𝑢                                                                                        (4) 

 

And from (4) one finally obtains 

  

𝐺 =
𝑘𝑑

𝐴
  .                                                                                                 (5) 

 

                                                                                                    

 
 

 
Figure 4 – Schematic joint 

 

 

Since the join patch shows different stiffness and damping properties in normal and in tangential direction, an   

orthotropic material model has to be used for the TLEs. The respective material matrix reads 
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                                                    (6) 
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where z is the normal direction of the joint's interface. For the TLEs all off-diagonal terms in (6) vanish since no 

transversal contraction occurs within the contact surface. In addition, as the interface obeyes no stiffness in x- and y-

direction, the terms 𝐸11  and 𝐸22  are zero. Since the joint also exhibits no stiffness for in-plane shearing, 𝐸44  vanishes 

as well.  

𝐸33  represents the normal stiffness, whereas E55 = E66 define the tangential stiffness of the joint. The relations 

between E55 and E66 with the shear moduli Gzx and Gzy  are 

 

E55 = 2Gzy   and    E66 = 2Gzx .                                                                      (7) 

 

For numerical reasons the values of 𝐸11 , 𝐸22 , and 𝐸44  entered in the NASTRAN must be different from zero but can 

be set to a value many magnitudes smaller than those for 𝐸33 , 𝐸55 , and 𝐸66 .  

 

The eigenvalue problem of an undamped system with n degrees of freedom, the stiffness matrix 𝑲 and the mass 

matrix 𝑴 is given by 

 

 𝑴𝜆𝑖
2 + 𝑲 𝝋𝑖 = 0 ,                                                                                    8  

 

where 𝜆𝑖  are the n (real) eigenvalues and 𝝋𝑖  the respective (real) eigenvectors. Using the model of constant 

hysteresis, the equation is extended to 

 

 𝑴𝜆𝑖
∗2 + i𝑫 + 𝑲 𝝋𝑖

∗ =  𝑴𝜆𝑖
∗2 + 𝑲∗ 𝝋𝑖

∗ = 0,                                                                9  

 

where the superscript ∙∗ shall denote complex quantities. The damping matrix D is constructed from the TLEs as the 

real stiffness matrix 𝑲TLE  derived from Eq. (6) multiplied by the loss factor 𝜂 from the generic experiment, see Eq. 

(1). Thus, the complex stiffness matrix 𝑲TLE
∗  of a TLE reads 

 

𝑲TLE
∗ = 𝑲TLE  1 + i𝜂TLE   .                                                                          (10) 

 

The system matrices are then assembled from all element matrices. The first 20 complex eigenvalues λ
*
 and the 

respective eigenvectors 𝝋𝑖
∗ are calculated in NASTRAN using the upper Hessenberg method.  

 

 

3.  EXPERIMENTAL RESULTS 

 

The EMA of the assembled structure is performed up to 4.5 kHz and 14 modes are identified through this range of 

frequency. The eigenfrequencies and the respective modal damping values are given in Table 1. Due to the 

symmetry of the structure double modes appear except for modes 5 and 6. 

 

The generic joint experiment is performed in a frequency range from 200 Hz up to 1500 Hz. In order to stay well 

below the first eigenfrequency of the experimental set-up, measurements at higher frequencies are not carried out. 

Since the identified stiffnesses and loss factors does not change notably with the frequency, the assumption of a 

constant hysteresis is confirmed. The identified values are 

 

𝑘 = 520  
kN

mm
     and      𝜂 =  0.028,                                                                            11  

 

where especially the loss factor shows some uncertainty which can be seen if the measurement is repeated with the 

same contact pressure and excitation after the set-up of the generic experiment is unmounted and re-assembled. 

 

 

 

 

 

 

 
 



Table 1 – Experimental eigenfrequencies and modal damping 

 

Eigenfrequency number Eigenfrequency (Hz) Modal damping [%]

1 2038 0.06979

2 2084 0.06979

3 2809 0.07633

4 2874 0.07633

5 2961 0.3135

6 3277 0.3012

7 3986 0.1369

8 3988 0.1369

9 4242 0.113

10 4251 0.113

11 4353 0.1369

12 4353 0.1369

13 4462 0.03198

14 4462 0.03198  
 

 

4.  FE RESULTS AND OPTIMIZATION 

 

A FE modal analysis is carried out where the structure is discretized with more than 250000 dof by 8-noded brick 

elements. Neither the bolts nor the holes are included in the FE model. The thickness of the TLEs is chosen as d=0.1 

mm. Since the contact area A=1087 mm² of the generic experiment is known, the entries of the material matrix can 

be calculated from (5) and (7) as 

 

𝐸55 = 𝐸66 = 95.7 
N

mm²
  .                                                                              (12) 

 

Since no measurements of the normal stiffness are available, 𝐸33  is estimated to 5000 N/mm². The material data for 

the structure itself (steel, isotropic) is taken to be 𝐸 = 207500 N/mm² for the cylinder, 𝐸 = 210000 N/mm² for 

the cover plates, density 𝜌 = 7790 kg/m³, and Poisson‟s ratio 𝜇 = 0.3. 

A comparison between the measured and the calculated eigenfrequencies of the first 12 modes shows a mean 

absolute deviation of 1.8 %. However, the calculated modal damping values are notably underestimated. Possible 

reasons are the negligence of material damping, energy dissipation into the surrounding air and the simplified 

modeling of the bolts. I.e. all contact surfaces of the 24 bolts and the screw nuts are neglected but also the threads of 

the scews are in contact with the nuts and possibly also with the bored holes of the structure. 

 

In order to obtain better results, a model-updating procedure is coded in Matlab, where the loss factor, normal and 

tangential stiffnesses of the TLEs are taken as free variables. This optimization is run with the „lsqnonlin‟ command 

in Matlab which minimizes the residuum r from the measured and the calculated data (eigenfrequencies 𝑓𝑖  and 

percentage modal damping 𝜂𝑚 ) in a least-squares sense for non-linear problems 

 

𝑟 =   𝑓𝑖
exp

− 𝑓𝑖
FEM  

2
+  𝑤 𝜂m,𝑖

exp
− 𝜂m,𝑖

FEM   
2

= min

𝑖

.                                                  (13) 

 

Since the modal damping values are by some orders of magnitude smaller than the eigenfrequencies, a weighting 

factor 𝑤 = 100  is introduced. During the optimization, Matlab runs the program NASTRAN with different sets of 

parameters to test the sensitivity of the residuum 𝑟 on the three parameters and then reduce it step by step. The 

whole procedure takes some hours as each numerical modal analysis in NASTRAN lasts more than 10 minutes. 

 



Special care has to be taken due to the swapping of modes in the numerical calculation for different sets of 

parameters. In order to compare the eigenfrequencies and damping values of the same modes (measured and 

calculated) in Eq. (13) a special routine is coded in Matlab which identifies the calculated eigenmodes and refers 

them to the corresponding measured eigenmodes. 

The optimization results (TLE parameters) are the normal stiffness 𝐸33 = 786 N/mm², the tangential stiffness 

𝐸55 = 𝐸66 = 956 N/mm² and the loss factor 𝜂 = 0.0590. According to these parameters, the average deviation for 

the eigenfrequencies is 1.03%. The average deviation for the modal damping values is 28.13% which is a good 

result considering the uncertainties in the experimental work and the simplification in the FE model. The resulting 

eigenfrequencies and modal damping measures of the optimization are given in Tables 2 and 3. In Figures 5 and 6 

the respective results are displayed graphically. 
 

 

Table 2 – EMA and FEM results for the eigenfrequencies 

 

Eigenfrequency number EMA FEM Difference (%)

1 2038 2083.8 2.2483

2 2084 2084.1 0.029311

3 2809 2908.5 3.5609

4 2874 2915.5 1.4371

5 2961 2930.4 -1.0307

6 3277 3255.3 -0.67335

7 3986 4011.3 0.63486

8 3988 4011.4 0.58796

9 4242 4227 -0.35248

10 4251 4227.2 -0.55958

11 4353 4348.5 -0.10368

12 4353 4348.6 -0.10086

13 4462 4524.9 1.4335

14 4462 4536.1 1.6841

Eigenfrequency (Hz)

 
 

 
Table 3 – EMA and FEM results for the modal damping 

 

Eigenfrequency number EMA FEM Difference (%)

1 0.06979000 0.11592 66.092

2 0.06979000 0.11588 66.043

3 0.07633000 0.054337 -28.812

4 0.07633000 0.054208 -28.981

5 0.31350000 0.31001 -1.1124

6 0.30120000 0.29173 -3.1449

7 0.13690000 0.091385 -33.247

8 0.13690000 0.091355 -33.269

9 0.11300000 0.061808 -45.303

10 0.11300000 0.061816 -45.296

11 0.13690000 0.16116 17.718

12 0.13690000 0.16114 17.709

13 0.03198000 0.033143 3.637

14 0.03198000 0.0331 3.5007

Modal damping [%]

 



 

 
 

Figure 5 – Eigenfrequency vs. mode number 

 

 

 

 

 
 

Figure 6 – Modal damping vs. mode number 
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5.  CONCLUSIONS 

  

Using the model of constant hysteresis in conjunction with thin-layer elements for finite element calculations leads 

to good results when the damping properties of assembled structures are investigated. This approach allows to model 

the damping locally and thus results in complex eigenvalues and eigenvectors. In contrast to global damping models, 

modes with high or low modal damping values can be identified. This fact can be essential, if the crucial (low-

damped) eigenfrequencies of a structure shall be identified in the design phase in order to modify the construction 

before any prototype is produced. While the eigenfrequencies and the eigenmodes can be predicted by the FEM to a 

high degree of accuracy, the predicted damping values may notably differ from measured values. This is due to 

many uncertainties in the FE model but also a result of significant scattering of measured damping values. 

Nevertheless, a qualitative prediction of modes with high damping and lowly-damped modes is possible. 

The constant hysteretic damping model obviously fits measured data much better than classical models such as the 

Rayleigh damping or other approaches with velocity-proportional damping forces. The model needs only one 

parameter (for a 1d problem) which can easily be identified. However, time-domain calculations are not possible 

with this damping model since it leads to non-causal behavior. 

The generic experiment is a good way to find a first approximation for the stiffness and the energy losses in joints of 

assembled structures but the parameter optimization (model updating) reveals a potential for further improvement. 
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