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ABSTRACT
One important property of the finite element method is the fact that it leads to symmetric system matrices which
results in advantageous numerical characteristics. The initial relation is the weak form of the underlying differen-
tial equation where a partial integration ’shifts’ one order of derivative from the unknown variable to its virtual
counterpart. This results in the same order of derivatives for both quantities and, since the same shape functions for
each of them are used, consequently it leads to symmetric system matrices. This means in turn that only differential
equations can be treated which are even-ordered. In this work we consider a first-order differential equation and
apply fractional calculus to obtain a weak form which contains semi-derivatives. This serves as a starting point to
deduce a respective finite-element formulation.
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1. INTRODUCTION

Even though the research field of fractional calculus is more than 300 years old it is only little known by engineers
and scientists. In fact, the term ’fractional’ is misleading since the order of derivatives or integrals may exhibit
any real or even complex value. Nevertheless, the name ’fractional’ is kept for historical reasons. One reason for
the shadowy existence of fractional calculus is the missing geometrical interpretation of a fractional derivative or
integral. Another reason is the lack of applications up to the 20th century. The usefulness of fractional derivatives
in the framework of viscoelasticity was first realized by Nutting [7] and Gemant [5]. In the 70s Bagley and Torvik
[1] started an extensive investigation of fractional calculus in viscoelasticity including appropriate parameter iden-
tifications which ensure the thermomechanical consistency of the resulting constitutive equations [2]. Since then
some fundamental textbooks on fractional calculus have been published which include applications of fractional
calculus to different fields in physics and engineering such as diffusion problems, control theory, chaos or image
processing [8, 9, 4, 6]. In this contribution fractional calculus including a formula for fractional partial integration
is used to deduce the weak form of a first-order differential equation which is the starting point for a finite-element
formulation. To the best knowledge of the author such an attempt has not been made in the literature.

2. UNDERLYING DIFFERENTIAL EQUATION

In order to evaluate the different numerical approaches a simple one-dimensional first-order differential equation
with constant coefficients is considered for which the analytical solution is known. In especially, the so-called
barometric formula is regarded which describes the air pressure p as a function of the altitude h by

dp(h)
dh

=−Mg
RT

p(h) . (1)

In its simplest (isothermal) form the molar mass M, the acceleration of gravity g, the universal gas constant R and
the temperature T are taken to be constant. Thus, the differential equation can be simplified to

1
p

dp =−cdh, c =
Mg
RT

= const. (2)



A unique solution requires one boundary condition which is given by

p(0) = p0 (3)

and describes the air pressure at ground level h = 0.

2.1. Analytical Solution
The analytical solution is found by integration of Eq. (2)

p∫
p0

1
p̃

d p̃ =

h∫
0

−cdh̃

ln
p
p0

=−ch

p = p0 exp(−ch) (4)

where p0 is the boundary condition defined in Eq. (3).

2.2. Forward Difference Approximation
For our first numerical scheme we apply the finite difference method (fdm) using a forward-difference approxima-
tion of the derivative in Eq. (1) to obtain

pk+1− pk

∆h
=−pk c (5)

or
pk+1 +(c∆h−1)pk = 0 (6)

where ∆h denotes the step size and the indices k and k+ 1 denote two adjacent discretization points. In matrix
notation Eqs. (3) and (6) can be written as

1
c∆h−1 1

c∆h−1 1
. . .




p0
p1
p2
...

=


p(0)

0
0
...

 . (7)

2.3. Backward Difference Approximation
Alternatively, we may use the fdm in conjuction with a backward-difference approximation of the derivative in
Eq. (1) which leads to

pk+1− pk

∆h
=−pk+1 c (8)

or
(1+ c∆h)pk+1− pk = 0 . (9)

Together with the boundary condition Eq. (3) one obtains
1
−1 1+ c∆h

−1 1+ c∆h
. . .




p0
p1
p2
...

=


p(0)

0
0
...

 . (10)

2.4. Finite Element Approximation
Since we are dealing with a first-order differential equation a finite element formulation with symmetric system
matrices cannot be deduced using classical calculus. However, a finite element formulation with a nonsymmetric
system matrix can be deduced applying the method of weighted residuals to the underlying Differential Equation
(1)

`∫
0

w
(

dp
dh

+ cp
)

dx = 0 (11)



where w denotes the weight function and x ∈ [0, `] is the domain of the element. Dealing with even-ordered differ-
ential equations, at this point partial integration is applied resulting in derivatives of the same order of the weight
function and the field variable which is not possible with Eq. (11). Using linear shape functions for p and w

p =
[
1− x

`

x
`

][ p1
p2

]
= [h1 h2]

[
p1
p2

]
= H p (12)

w =
[
1− x

`

x
`

][ w1
w2

]
= [h1 h2]

[
w1
w2

]
= H w (13)

yields
`∫

0

wTHTD1
xH dxp+

`∫
0

wTHTcH dxp = 0 (14)

where the indices 1 and 2 denote the respective quantities at the boundaries of the domain x = 0 and x = ` and the
operator D1

x =
d
dx denotes the first-order derivative with respect to x. Since Eq. (14) must hold for any w and c is a

constant, we finally obtain
`∫

0

(
HTD1

xH + cHTH
)

dxp = 0 (15)

or (
1
2

[
−1 1
−1 1

]
+

c`
6

[
2 1
1 2

])[
p1
p2

]
=

1
6

[
−3+2c` 3+ c`
−3+ c` 3+2c`

][
p1
p2

]
= 0 (16)

for a single finite element. If we consider a discretization with n identical finite elements of length `= ∆h and use
the boundary condition Eq. (3) we obtain

1
6



6
−3+2c∆h 3+ c∆h
−3+ c∆h 4c∆h 3+ c∆h

. . .
−3+ c∆h 4c∆h 3+ c∆h

−3+ c∆h 3+2c∆h





p0
p1
p2
...

pn−1
pn


=



p(0)
0
0
...
0
0


(17)

as the system’s matrix equation.

3. APPLICATION OF FRACTIONAL CALCULUS

Based on Eq. (11) an equal distribution of derivatives can be achieved if we employ a fractional partial integration
of order 1/2. A respective formula for fractional Riemann-Liouville derivatives is given in [3]

b∫
a

RLDα
a+q1(t)q2(t)dt =

b∫
a

q1(t)RLDα
b−q2(t)dt +q1(b)RLI1−α

b− q2(b)−RL I1−α
a+ q1(a)q2(a) (18)

where the operators RLIα and RLDα denote a fractional integral and a fractional derivative of order α and Riemann-
Liouville type respectively. The lower indices a+ and b− mark the starting point and direction (+: right, −: left)
of the operation. The definition of the fractional operators is given by, see [8]

RLIα
a+q(t) =

1
Γ(α)

t∫
a

q(τ)
(t− τ)1−α

dτ (19)

RLIα
b−q(t) =

1
Γ(α)

b∫
t

q(τ)
(τ− t)1−α

dτ (20)

RLDα
a+q(t) =

1
Γ(n−α)

Dn
t∫

a

q(τ)(t− τ)n−α−1 dτ (21)

RLDα
b−q(t) =

1
Γ(n−α)

(−D)n
b∫

t

q(τ)(τ− t)n−α−1 dτ . (22)



In Eqs. (21) and (22) n is a natural number such that

n−1 < α < n (23)

holds. Since only semi derivatives and semi integrals occur, i.e. α = 1/2, Eqs. (19) — (22) simplify to

RLI
1
2
a+q(t) =

1
Γ(1/2)

t∫
a

q(τ)√
(t− τ)

dτ (24)

RLI
1
2
b−q(t) =

1
Γ(1/2)

b∫
t

q(τ)√
(τ− t)

dτ (25)

RLD
1
2
a+q(t) =

1
Γ(1/2)

D1
t∫

a

q(τ)√
(t− τ)

dτ = D1
(

RLI
1
2
a+q(t)

)
(26)

RLD
1
2
b−q(t) =

−1
Γ(1/2)

D1
b∫

t

q(τ)√
(τ− t)

dτ =−D1
(

RLI
1
2
b−q(t)

)
. (27)

Note that the semi derivatives can directly be calculated from the semi integrals by application of an ordinary
first-order derivative. In order to obtain a symmetric system matrix from Eq. (11) we modify the first term of the
integrand using the composition rule of fractional calculus

`∫
0

wD1 pdx =
`∫

0

w
(

RLD
1
2
0+

RLD
1
2
0+p
)

dx (28)

which holds as long as
RLI

1
2
0+

(
RLD

1
2
0+p
)
= p (29)

is fulfilled, see e.g. [8]. Application of fractional partial integration Eq. (18) yields

`∫
0

wD1 pdx =
`∫

0

RLD
1
2
`−w RLD

1
2
0+pdx+RL I

1
2
`−w(`)RLD

1
2
0+p(`)−w(0)p(0) , (30)

where Condition (29) is used to deduce the last term of Eq. (30). A finite-element ansatz for Eq. (11) with linear
shape functions for the field variable p and the weight function w as given in Eqs. (12) and (13) and making use of
Eq. (30) results in

wT

 `∫
0

RLD
1
2
`−HT RLD

1
2
0+H dx+RL I

1
2
`−HT(`)RLD

1
2
0+H(`)−HT(0)H(0)+ c

`∫
0

HTH dx

 p = 0 (31)

For a further evaluation of Eq. (31) the right and left semi integrals of the shape functions h1 and h2 have to be
calculated. Having in mind that fractional operators are linear, i.e.

Iα(c1 f1 + c2 f2) = c1Iα( f1)+ c2Iα( f2) , c1,c2 = const. (32)

holds for all fractional operators Ia+, Ib−,Da+,Db− (see e.g.[8]) it is sufficient to consider a constant and a linear
function. Using Eqs. (24) and (25) we obtain

RLI
1
2
0+(1) =

1
Γ(1/2)

x∫
0

1√
x− τ

dτ =
−1√

π

[
2
√

x− τ
]x

0 =
2√
π

√
x (33)

RLI
1
2
0+(x) =

1
Γ(1/2)

x∫
0

τ√
x− τ

dτ =
−1√

π

[
2
3
(τ +2x)

√
x− τ

]x

0
=

4
3
√

π
x
√

x (34)

RLI
1
2
`−(1) =

1
Γ(1/2)

`∫
x

1√
τ− x

dτ =
1√
π

[
2
√

τ− x
]`

x =
2√
π

√
`− x (35)

RLI
1
2
`−(x) =

1
Γ(1/2)

`∫
x

τ√
τ− x

dτ =
1√
π

[
2
3
(τ +2x)

√
τ− x

]`
x
=

2
3
√

π
(`+2x)

√
`− x . (36)



Therefore we have

RLI
1
2
0+(h1) =

2√
π

(
1− 2

3
x
`

)√
x (37)

RLI
1
2
0+(h2) =

4
3
√

π

x
`

√
x (38)

RLI
1
2
`−(h1) =

4
3
√

π

(
1− x

`

)√
`− x (39)

RLI
1
2
`−(h2) =

2
3
√

π

(
1+2

x
`

)√
`− x . (40)

The fractional semi derivatives can be derived from Eqs. (37) – (40) using relationships (26) and (27) which yields

RLD
1
2
0+(h1) = D1

(
RLI

1
2
0+(h1)

)
=

1√
π

(
1√
x
−2
√

x
`

)
(41)

RLD
1
2
0+(h2) = D1

(
RLI

1
2
0+(h2)

)
=

2√
π

√
x
`

(42)

RLD
1
2
`−(h1) = D1

(
RLI

1
2
`−(h1)

)
=

2√
π

√
`− x
`

(43)

RLD
1
2
`−(h2) = D1

(
RLI

1
2
`−(h2)

)
=

1√
π

(
1√
`− x

−2
√
`− x
`

)
. (44)

From Eqs. (39) – (42) we see that the expression RLI
1
2
`−HT(`)RLD

1
2
0+H(`) in (31) vanishes. Making use of Eqs. (41)

– (44) the first term in Eq. (31) can be evaluated by performing the necessary integrations. Thus, we finally get

`∫
0

RLD
1
2
`−HT RLD

1
2
0+H dx =

1
2

[
1 1
−1 1

]
. (45)

Since the third term in (31) is

HT(0)H(0) =
[

1 0
0 0

]
(46)

the resulting equation for one finite element reads(
1
2

[
−1 1
−1 1

]
+

c`
6

[
2 1
1 2

])[
p1
p2

]
=

1
6

[
−3+2c` 3+ c`
−3+ c` 3+2c`

][
p1
p2

]
= 0 (47)

which is exactly the same result obtained without the use of fractional calculus, see Eq. (16). However, symmetry
of the system’s matrix is not achieved in the above derivation due to the occurence of left and right fractional
derivatives of the shape functions.

4. COMPARISON OF THE APPROACHES

A comparison between the different schemes is realized using the values given in Table 1, where the data from the
International Standard Atmosphere is applied and the temperature is taken to be constant.

Table 1 – Values used within the barometric formula.

molar mass M gravitational constant g universal gas constant R absolute temperature T
28.95 g/mol 9.807m/s2 8.314 J/(mol K) 288.15 K

Thus, the constant c is given by

c =
Mg
RT

= 1.18510−4 1
m

. (48)

The Dirichlet boundary condition which is needed to obtain a unique solution is given by the air pressure at sea
level

p(0) = 1.0135bar (49)



Figure 1 – Comparison between the different numerical schemes and the analytical solution.

and is also taken from the International Standard Atmosphere.
The air pressure is calculated for a height h ∈ [0m,10000m] using a spacing ∆h of 500m where the result of all
schemes is displayed along with the analytical solution, see Figure 1. All schemes converge as expected as the
spacing ∆h is reduced. However, as can be seen from Figure 2 the finite element method with a non-symmetric
system matrix by far performes best.

Figure 2 – Image enlargement of the results.

5. CONCLUSION

The main goal of this research work was the derivation of the weak form of an first-order differential equation by
application of fractional calculus. Since the weak form requires the same order of derivative for both quantities the
field variable and its virtual counterpart partial fractional integration of order 1/2 has to be applied. The resulting
weak form served as the basic equation for a finite-element formulation which should result in symmetric system
matrices. However, since forward and backward fractional derivatives/integrals occur, the symmetry could not be
achieved. Nevertheless, compared to finite-difference approximations the resulting scheme performes much better.
A closer look at the system matrix shows that it coincides with the system matrix obtained without application
of fractional partial integration. If this is generally the case also for higher-order shape functions still has to be
examined. As an alternative approach Petrov-Galerin method could be used instead of Bubnov-Galerin method



where the weight functions are directly derived from the requirements of symmetry. In addition, the use of Caputo-
type fractional derivatives instead of the classical Riemann-Liouville ones may lead to better results.
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