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Abstract: Slots with viscoelastic filling media increase the local damping of circular saw blade, which 

stabilizes the cutting process. In order to model the damping behaviour more accurately, a fractional 

viscoelastic model is introduced. Applying viscoelastic reciprocal theorem and eigenfunction expansion 

theorem leads to exact eigensolutions of the system with viscoelastic filling media. The method is applied 

to a circular plate with viscoelastic filling media. The comparison with a finite element simulation shows 

good agreement. 
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

0. NOMENCLATURE 

𝒓: placement vector 

𝜽: angle vector 

𝒖: displacement vector 

𝑚: mass 

𝐹: external force 

𝛼: fractional order 

J(r): unit step jump function 

𝜌: mass density 

𝜆: Lamé first parameter 

μ: shear Modulus 

𝜆∗: complex damping modulus 

μ∗: loss factor 

𝜎𝑖𝑗: stress tensor 

𝜀𝑖𝑗: strain tensor 

𝐸: Young’s modulus 

𝜂: loss factor 

𝐾: complex modulus 

f: complex eigenvalue 

𝝍(𝒓): complex eigenvector of the slotted plate 

𝝓(𝒓): eigenvector of perfect plate 

𝐷0: flexural rigidity 

𝜎0: Poisson’s ratio 

h:   thickness of the plate 

1. INTRODUCTION 

In order to improve the surface quality of woodcuts by 

rotating sawblades, the steel blades are modified by including 

thin slots which are filled by viscoelastic media (Fig.1.). As 

the cutting process excites bending modes of the rotating 

blade, the surface quality of the cuts is deteriorated. An 

improved surface quality is achieved by filling optimal 

shaped thin slots by viscoelastic material which provides high 

damping in a broad frequency range when undergoing shear 

deformation due to the relative blade deflection within the 

viscoelastic layers.  

       

Fig. 1. a circular saw blade with slots and a cutting piece 

The purpose of deliberately included slots in circular saw 

blades with or without filling media has been investigated by 

many scientists and engineers for a long time. Nishio, et al. 

showed by experiments and finite element simulation in a 

detailed way what the advantages and disadvantages the slots 

cause the performance of circular saw blades. Essentially, the 



 

 

     

 

number and the length of the slots will decrease the stiffness 

of the blade, which cause the decrease in the critical 

rotational speed. However, with a clever configuration of the 

slots as well as the filling media, additional local damping is 

introduced, so as to stabilize the cutting process. 

Gudmundson also studied how the cracks influence the 

eigenfrequencies of thin plates, proposing a method of 

calculating the disturbed eigenfrequencies based on the “cut-

out energy”. Shen developed a rigorous mathematical model 

based on Betti’s reciprocal theorem and Green’s function. In  

his work, an analytical formulation of the eigensolutions due 

to the filling media in the slots is deduced. Perturbation 

method is applied accordingly, in order to solve the 

eigensolutions. Both Shen and Nishio found out, that the 

configurations as well as the number of slots play a 

significant role in influencing the eigensolutions. Shen also 

showed that the Kelvin-Voigt viscoelastic model can be 

applied combined with the aforementioned method to model 

the damping properties of filling media in the slots of circular 

saw blade. 

However, it is well known that the Kelvin-Voigt viscoelastic 

model indicates the linear frequency dependence of damping, 

which violates the physics. Viscoelastic model based on 

fractional derivatives provide a much weaker frequency 

dependence of damping. Therefore, this paper is contributed 

to the improvement of modelling the damping behaviour of 

the filling media by means of a fractional Kelvin-Voigt 

viscoelastic model (Gaul., Schmidt et al.). 

 

2. THEORETICAL BASIS 

2.1 Boundary Value Problem Formulation 

 

Fig.2. an elastic structure containing damping slots 

As is shown in Fig. 2., Γ1 and  Γ2 are the boundaries of elastic 

structure and damping slots respectively while  Ω1  and  Ω2 

are the domains of these two materials. 

In order to combine the filling material in the slots with the 

steel, we define a unit step function J(r) as follows: 

𝐽(𝒓) = {
1,      𝒓 ∈ Ω𝟏

0,      𝒓 ∈ Ω𝟎
                                                          (1) 

where Ω𝟏 is the domain of the slots and Ω0 for the steel. 

With 𝐽(𝒓), all the material parameters are functions of the 

field position.  

𝜆(𝒓) = 𝜆0 − 𝜆1𝐽(𝒓),                                                           (2a) 

μ(𝒓) = μ0 − μ1𝐽(𝒓),                                                           (2b) 

𝜌(𝒓) = 𝜌0 − 𝜌1𝐽(𝒓),                                                           (2c) 

𝜆∗(𝒓) = 𝜆0
∗ 𝐽(𝒓),                                                                  (2d) 

μ∗(𝒓) = μ0
∗ 𝐽(𝒓),                                                                  (2e) 

The field equation with example boundary conditions is: 

𝜎𝑖𝑗,𝑗(𝒖(𝒓, 𝑡); 𝜆, 𝜇) = 𝜌(𝒓)�̈�𝑖(𝒓, 𝑡)                                      (3a) 

The Dirichlet boundary condition is: 

𝒖(𝒓) = 𝟎  on Γ1,    𝑢1 = 𝑢2  on  Γ2                                    (3b)                                                 

which means there is no relative displacement between the 

steel and the damping media. 

The Neumann boundary condition describes a traction free 

boundary on Γ1 : 

𝜎𝑖𝑗,𝑗(𝒖(𝒓, 𝑡); 𝜆, 𝜇)𝑛𝑗 = 0  on Γ1                                          (3c) 

2.2 Fractional Viscoelastic Formulation 

The general definition of a fractional derivative by Riemann-

Liouville is: 

𝐷𝛼(𝒖(𝑡)) =
𝑑𝛼𝒖(𝑡)

𝑑𝑡𝛼
 =

1

Γ(1 − 𝛼)

𝑑

𝑑𝑡
∫

𝒖(𝜏)

(𝑡 − 𝜏)𝛼
𝑑𝜏

𝑡

0

, 

                                                                                              (4) 

where the fractional order  α  satisfies 0 < α < 1  and the 

Euler-Gamma function Γ is defined as 

Γ(1 − 𝛼) = ∫ 𝑥−𝛼𝑒−𝑥𝑑𝑥
∞

0

. 

                                                                                              (5) 

As the modal analysis is based on a harmonic Ansatz, we can 

transform the displacement field 𝒖(𝑡) from the time domain 

to the frequency domain by means of the Fourier transform 

which is in the case of fractional derivative order. 

𝐷𝛼(𝒖(𝑡)) = (𝑖𝜔)𝛼𝑈𝑒𝑖𝜔𝑡  
                                                                                              (6) 

The constitutive equation of a fractional Kelvin-Voigt model 

is then: 

 



 

 

     

 

𝜎𝑖𝑗(𝒖; 𝜆, 𝜇, 𝜆∗, 𝜇∗, 𝛼) = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘(𝒖) + 2𝜇𝜀𝑖𝑗(𝒖) 

                                      +𝜆∗𝛿𝑖𝑗
𝑑

𝛼
𝜀𝑘𝑘(𝒖)

𝑑𝑡𝛼 + 2𝜇∗ 𝑑
𝛼

𝜀𝑖𝑗(𝒖)

𝑑𝑡𝛼              (7) 

Assuming the system is geometrically linear, the strain and 

displacement field has the following relationship: 

 𝜀𝑖𝑗(𝒖) =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖).                                                       (8) 

𝑑𝛼𝜀𝑖𝑗(𝒖)

𝑑𝑡𝛼
=

1

2
[

𝑑𝛼𝑢𝑖,𝑗(𝒖)

𝑑𝑡𝛼
+

𝑑𝛼𝑢𝑗,𝑖(𝒖)

𝑑𝑡𝛼
].                                     (8) 

Inserting (8) and (9) into (7), we have the constitutive 

equation in frequency domain: 

𝜎𝑖𝑗(𝒖, 𝑓; 𝜆, 𝜇, 𝜆∗, 𝜇∗, 𝛼) = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘(𝒖) + 2𝜇𝜀𝑖𝑗(𝒖) 

                                          +𝑓𝛼[𝜆∗𝛿𝑖𝑗𝜀𝑘𝑘(𝒖) + 2𝜇∗𝜀𝑖𝑗(𝒖)],  (10) 

The complex modulus, which contains loss factor 𝜂 is: 

𝐾 = 𝐸[1 + (𝑖𝜂𝜔)𝛼].                                                          (11) 

According to the following viscoelastic reciprocal theorem 

(Christensen),  

an isotropic viscoelastic body, when subjected to two 

different states of loading with corresponding body forces, 

surface stresses, and displacements, 𝐹𝑖,  𝜎𝑖, 𝑢𝑖, 𝐹𝑖
′, 𝜎𝑖

′, 𝑢𝑖
′, 

respectively, has a field variable solution which satisfies the 

relationship 

∫ [𝝈𝒊 ∗ 𝒅𝒖𝒊
′]𝒅𝒂

𝑩

+ ∫ [𝑭𝒊 ∗ 𝒅𝒖𝒊
′]𝒅𝒗

𝑽

 

= ∫ [𝝈𝒊
′ ∗ 𝒅𝒖𝒊]𝒅𝒂

𝑩

+ ∫ [𝑭𝒊
′ ∗ 𝒅𝒖𝒊]𝒅𝒗

𝑽

. 

                             

                                                                                            (12) 

 

Together with the divergence theorem, we derive the 

following equation in polar coordinate: 

∫ 𝜎𝑖𝑗(𝒖, 𝑓; 𝜆, 𝜇, 𝜆∗, 𝜇∗, 𝛼)𝜀𝑖𝑗(𝒖′)𝑑𝑟2

Ω

 

= ∫ 𝜎𝑖𝑗(𝒖′, 𝑓; 𝜆, 𝜇, 𝜆∗, 𝜇∗, 𝛼)𝜀𝑖𝑗(𝒖)𝑑𝑟2

Ω

 

= ∫ 𝛪(𝒖, 𝒖′; 𝜆, 𝜇)
Ω

 𝑑𝑟2 + 𝑓𝛼 ∫ 𝛪(𝒖, 𝒖′; 𝜆∗, 𝜇∗)
Ω

 𝑑𝑟2      

 

where 

𝛪(𝒖, 𝒖′; 𝜆, 𝜇) = 𝜆𝜀𝑘𝑘(𝒖)𝜀𝑘𝑘(𝒖′) + 2𝜇𝜀𝑖𝑗(𝒖)𝜀𝑖𝑗(𝒖′)         (13) 

2.3 Exact Eigensolutions 

The complex-valued Green’s function under a concentrated 

force  𝛿(𝒓 − 𝒓0)𝑒𝑓𝑡 within the unslotted system satisfies also 

the following equation: 

 

𝑑

𝑑𝑥𝑗

[𝜎𝑖𝑗(𝑮𝒌(𝒓|𝒓0), 𝑓; 𝜆0, 𝜇0, 0,0)] = 𝑓2𝜌0(𝒓)𝑮𝒊
𝒌(𝒓|𝒓0) 

                                                                      + 𝛿𝑖𝑘𝛿(𝒓 − 𝒓0)     (14)  

Combining (12), (13), (14), one can build the following 

integral equation. 

𝝍𝑘(𝒓0) = 𝑓2 ∫ 𝜌1𝐽(𝒓)𝝍(𝒓) ∙ 𝑮𝒌(𝒓|𝒓0)𝑑𝑟2

Ω

 

               −𝑓𝛼 ∫ 𝑰(𝑮𝒌(𝒓|𝒓0), 𝝍(𝒓); 𝜆0
∗ 𝐽(𝒓), 𝜇0

∗𝐽(𝒓))𝑑𝑟2
Ω

                

               + ∫ 𝑰(𝑮𝒌(𝒓|𝒓0), 𝝍(𝒓); 𝜆1𝐽(𝒓), 𝜇1𝐽(𝒓))𝑑𝑟2
Ω

, 

𝑘 = 1,2,3                                                                                      (15) 

By means of an orthonormal eigenfunction expansion 

theorem, the exact eigensolutions can be derived as follows 

for the example boundary conditions: 

𝝍(𝒓) = 𝝓𝒏(𝒓) − ∑
𝑈(𝜓, 𝜙𝑚;𝑓)

𝑓2 + 𝜔𝑚
2

∞

𝑚=1
𝑚≠𝑛

𝝓𝒎(𝒓). 

                                                                                            (16) 

 𝑓2 = −𝜔𝑚
2 − 𝑈(𝝍, 𝝓𝒎;𝑓).                                               (17) 

 

3. APPLICATION TO CIRCULAR PLATES 

Consider the transverse vibration of a thin slotted plate, we 

have found from experiment that geometrical nonlinearity is 

negligible, and therefore it suffices to use the Kirchhoff plate 

model. The eigenvalue problem is formulated in (18), ∇4is a 

biharmonic operator, which can be decomposed into two 

second-order equations (Szabo). 

∇4𝝓(𝒓, 𝜽) − 𝛽4𝝓(𝒓, 𝜽) = 0, 𝛽 =
𝜔2𝑚

𝐷0
                             (18)                                                 

The corresponding eigenfunction is a linear combination of 

Bessel functions (Meirovitch).The eigenvalues 𝜔𝑚,±𝑛  and 

eigenfunctions can be classified by the number of the nodal 

diameters 𝑚  and nodal circles  𝑛 . The eigenfunctions must 

satisfy the orthonormal conditions. 

∫ 𝜌0ℎ𝛷𝑚𝑛(𝒓)
𝐴

𝛷𝑝𝑞(𝒓)𝑑𝐴 = 𝛿𝑚𝑝𝛿𝑛𝑞 

𝑚, 𝑝 = 0,1,2, … , ∞ 

𝑛, 𝑞 = ±0, ±1, ±2, … , ±∞.                                                (19) 
 

∫ 𝐼(𝛷𝑚𝑛(𝑟), 𝛷𝑝𝑞(𝑟); 𝐷0, 𝜎0 )
𝐴

𝑑𝐴 = 𝜔𝑚𝑛
2 𝛿𝑚𝑝𝛿𝑛𝑞 

𝑚, 𝑝 = 0,1,2, … , ∞ 

𝑛, 𝑞 = ±0, ±1, ±2, … , ±∞.                                                (20) 

 
with the bilinear operator  



 

 

     

 

𝐼(𝑢, 𝑣; 𝐷0, 𝜎0)

= 𝐷0 [𝛻2𝑢𝛻2𝑣

+ 2(1 − 𝜈0) {(
1

𝑟

𝜕2𝑢

𝜕𝑟𝜕𝜃
−

1

𝑟2

𝜕𝑢

𝜕𝜃
) (

1

𝑟

𝜕2𝑣

𝜕𝑟𝜕𝜃
−

1

𝑟2

𝜕𝑣

𝜕𝜃
)

−
1

2
[(

1

𝑟

𝜕𝑢

𝜕𝑟
+

1

𝑟2

𝜕2𝑢

𝜕𝜃2
)

𝜕2𝑣

𝜕𝑟2
+ (

1

𝑟

𝜕𝑣

𝜕𝑟
+

1

𝑟2

𝜕2𝑣

𝜕𝜃2
)

𝜕2𝑢

𝜕𝑟2
]}] 

                                                                                            (21) 

 

The elastic eigenfunctions corresponding to each eigenmode 

are computed and plotted from Fig. 3. to Fig. 6. 

 

 

 

 

Fig. 3. elastic eigenfunction 𝛷01 

 

 

Fig. 4. elastic eigenfunction 𝛷11 

 

 

Fig. 5. elastic eigenfunction 𝛷02 

 

 

Fig. 6. elastic eigenfunction 𝛷12 

Inserting the eigenvalues and eigenfunctions of unslotted 

circular plates into the formulae (15), (16) and considering 

the geometry of the slots as the perturbation parameter, we 

can build up the following first-order perturbation solution in 

order to calculate the eigenvalues and eigenvectors of the 

circular plates with viscoelastic filling media. 

𝝍𝒏(𝒓) = 𝝓𝒏(𝒓) − ∑
𝑈(𝜓, 𝜙𝑚;𝑓𝑛)

𝑓𝑛
2 + 𝜔𝑚

2

∞

𝑚=1
𝑚≠𝑛

𝝓𝒎(𝒓) + Ο(Ω𝑐
2) 

                                                                                            (21) 

 𝑓𝑛
2 = −𝜔𝑚

2 − 𝑈(𝝍, 𝝓𝒎;𝑓) + Ο(Ω𝑐
2)                                 (22) 

 

4. VALIDATION BY FINITE ELEMENT SIMULATION 

 

A numerical modal analysis is carried out based on finite 

element method in order to validate the mathematical model.  



 

 

     

 

 

Fig. 7. FE model of the circular plate with viscoelasic media 

filled in rectangular slots 

As is shown in Fig. 7., a circular plate containing six equally 

distributed rectangular slots filled by viscoelastic media is 

built using ANSYS v18. The radius is 0.15m and the 

thickness of the plate is 0.0016m. The length of each slot is 

0.05m whereas the width is 0.002m. The slots start from the 

inner radius of 0.075m from the plate centre till the outer 

radius of 0.125m from the plate centre. The shell element 181 

using linear shape function is applied in the calculation.  

 Table 1.  Material parameters of the FE model  

 

Material Mass 

density 

(kg/𝑚3) 

Young’s 

modulus 

(kg/𝑚2) 

Poiss

on’s 

ratio 

Loss 

factor 

Fract

ional 

order 

steel 7.85𝑒3 2.1e11 0.3   

Viscoela

stic 

media   

3.9𝑒3 1.05e11 0.3 0.05 0.4 

 

In the mathematical model, modal damping is calculated for 

each mode with the input of the fractional order regarding the  

viscoelastic material property. Such modal dampings are used 

as the inputs for the FE model, so that we can compare the 

eigenfrequencies among two methods and unslotted 

Kirchhoff plate model.  

Table 2.  Eigenfrequencies of the mathematical model, FE 

model and the unslotted Kirchhoff plate model 

Mode FE 

Model 

(Hz) 

Mathematical 

model 

(Hz) 

Unslotted 

Kirchhoff plate 

model(Hz) 

(0,1) 180.88 181.86 181.55 

(1,1) 377.41 378.44 377.81 

(0,2) 706.76 701.21 706.77 

(1,2) 1084.5 1079.3 1081 

The relative differences between two models and their 

difference with the Kirchhoff plate model are below 1%, 

which shows good agreement.  

 

 

5.  CONCLUSIONS AND DISCUSSION 

It has been proven that fractional viscoelastic model has the 

advantages over those classical models, such as Kelvin-Voigt 

viscoelastic model, Maxwell model and three parameter 

model. In the Kelvin-Voigt model, as the frequency 

increases, the dependence of damping with respect to 

frequence is linear, which violates the physics. By means of 

fractional viscoelastic model, such a problem can be 

remedied by a weaker frequency dependency of damping.  

Moreover, with possibly fewer parameters, fractional 

viscoelastic model shows a better fitting to the experiment, 

which is another advantage. 

In this presented paper, the fractional viscoelastic model is 

applied to model the damping property due to the filling 

media in the slots of circular saw blades. It is shown that 

fractional viscoelastic model can be applied to model such a 

coupling problem. 

Although the fractional viscoelastic model is easy to 

implement in the frequency domain, the complexity of the 

presented mathematical model itself restrict the application of 

a more generalized fractional viscoelastic model.  

It would be of great interest if a new and simpler 

mathematical model, which combines the primary material 

and the filling media, can be developed. And therefore, finer 

fractional viscoelastic model can be put into practice. 
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