
A COMPARISON OF EIGENVALUE FOLLOWINGALGORITHMS APPLIED TO STRUCTURES WITHSYMMETRIC COMPLEX-VALUED STIFFNESS MATRICESMiller, U.; Bograd, S.; Shmidt, A.; Gaul, L.Institute of Applied and Experimental Mehanis, University of StuttgartPfa�enwaldring 9, 70550 Stuttgart, Germanymiller�iam.uni-stuttgart.deSUMMARY: A vibration analysis of a struture with joints is performed. The simulation is ondutedwith FE software apable of performing a numeri modal analysis with hystereti damping ansatz. Thejoints are modeled with thin layer elements, representing dissipation and sti�ness of the joints. Thematries desribing the system onsist of the mass, as well as real and omplex-valued sti�ness matries.If the eigenvalues of this system are found in one step, due to the mode rossing ourring for the loselyspaed modes, it is diÆult and time onsuming to assign modal damping fators to the orrespondingundamped eigenvalues. In order to avoid this problem, the eigenvalue following method is used. Theoutome of the solution is the graphial presentation of ontinuous eigenvalue paths, showing the hangein the eigenvalues from the undamped to the fully damped ase. For every undamped eigenvalue existsits equivalent eigenfrequeny and damping fator that an be used for further numerial analysis.In sope of this artile a omparison of a Preditor-Corretor and Rayleigh-Quotient Iteration eigen-value following algorithms, targeting spei�ally the type of matries resulting from the weakly dampedhystereti formulation, is performed. The goal is to �nd a ompromise between the auray and the pro-essing speed, as well as to �nd the maximum reasonable size of a problem for a Matlab based solution.KEYWORDS: Hystereti Damping, Complex Eigenvalues, Path Following, Complex Sti�ness Matrix1 INTRODUCTIONVisous damping is usually used for modeling of dissipation in Finite Element vibration analysis, beausethere exists a relatively simple mathematial model in time and frequeny domain, whih is well studiedand is available in most FE odes. However, visous damping is proportional to the veloity, so it inreaseswith growing frequeny, whih is not a ommon behavior for most strutures. Strutures made out ofmetals ontaining joints have nearly frequeny independent damping in most appliations.Another method to model vibration dissipation in strutures is with hystereti damping whih is om-pletely frequeny independent. A onstant damping fator (loss fator) is taken for the modeling of thedissipation in materials, and joints are modeled with thin layer elements representing equivalent dissi-pation and sti�ness of the joints [8℄. This method shows a better orrelation with real life strutures,however it an be used only in frequeny domain, sine in time domain it leads to non-ausal materialbehavior [4, 11℄. Sine it is often needed to perform simulations in time domain, for example for transientanalysis, the modal damping fators are alulated in frequeny domain for eah mode and then are usedwith the undamped eigenfrequenies and modes for further simulations. So it is neessary to have a tablewith undamped eigenfrequenies and orresponding modal damping fators. The problem, disussed inthis artile, ours for strutures with losely spaed modes, where it is possible that due to the di�erentmodal damping fators the undamped eigenfrequenies do not orrespond to the damped eigenfrequen-ies | mode order hanges, making a diret damping assignment diÆult. Finding appropriate dampingvalues for the eigenfrequenies an be done by visual omparison of the damped and undamped modes,but for ompliated strutures with many modes this method is quite tedious and time onsuming. Analternative is to use the eigenpath following method to �nd the damping in the system. The results ofthe eigenpath alulation an be represented by a table or graphially by plotting real and imaginary



omponents of the omplex eigenvalues versus the homotopy number, whih is a number between zeroand one, orresponding to the undamped and to the fully damped system respetively.There exist numerous methods for pathfollowing algorithms. Two of them { Preditor-Corretor Method(PC) and Rayleigh Quotient Iteration (RQI) are tested in sope of this artile [1℄. The algorithms areimplemented in Matlab and the system matries as well as the undamped eigenvalues and eigenvetorsare exported from MSC.Nastran. The goal is to see whih method performs faster and gives betterauray. Fators a�eting both of these omparison parameters are also disussed. Sine the alulationsare performed in Matlab, whih has a limit on the size of the matries used, the maximum matrix size isalso investigated.2 Modelling of material and joint dampingIt has been shown by experimental investigations that joint damping is nearly frequeny independent[5, 6, 7℄. Similar results have been shown for material damping in metals, where the main ause ofdissipation is inner frition in the material [12, 18, 20℄. So for FE modeling the priniple of onstanthysteresis will be used. Suh model makes sense only in frequeny domain, while in time domain it leadsto non-ausal material behavior [4, 11℄. Some investigations to this model have been made already andshow a good orrelation with experimentally determined joint parameters [10, 13, 14℄.During the alulation of the vibrational harateristis of the struture with the FEM the followingequation of motion for an undamped system is usedM �u+Ku = 0 ; (1)where M and K are symmetri real-valued n�n mass and sti�ness matries, and u is the displaementvetor. An exponential ansatz ui = �ie�it leads to an eigenvalue problem(M �2i +K)�i = 0 : (2)Eigenvalues and eigenmodes an be determined by performing a numerial modal analysis with a standardFE software. Using the priniple of onstant hysteresis, the damping will be inorporated into the sti�nessmatrix by augmenting it with the omplex-valued produt of experimentally determined dissipationmultipliers �i and �i for the material and the joint damping, respetively, and the assoiated elementssti�ness matries K� =K + jD =K + j X�iK(Material)i + j X�iK(Joint)i : (3)For the onsidered systems, damping is low and �i ; �i � 1 holds. The solution of the omplex-valuedsystem (M �2i + jD +K)�i = (M �2i +K�)�i = 0 (4)leads to omplex eigenvalues �i = Æi + j!i and eigenvetors �i = riej�i . The solution vetor representedby an exponential ansatz may be written asui = �ie�it = riej�ie�it = rieÆit+j(!it+�i) ; (5)where ri is the amplitude of vibration, Æi is the modal damping, !i and �i are the frequeny and phaseshift, respetively.This modi�ed equation of motion an be solved for omplex eigenvalues and eigenmodes with someommerial FE pakages, and in this ase was performed with Nastran. The modal damping fators ofthe struture are read out from the solution.3 Path FollowingA transient or an operational vibration analysis of mehanial systems often requires a orrespondenebetween the damped and the undamped eigenvalues to assign modal damping to the undamped eigen-modes. For systems with high mode density, it is diÆult to �nd this orrespondene if the dampedsystem is solved in one step without any relation to the undamped one.



To �nd this mapping between the eigenvalues, a so alled homotopy parameter � is introdued so that thesolution an follow the eigenvalues from the undamped system at � = 0 to the damped system at � = 1[1℄. Then the alulated paths an be onstruted, showing learly where the modes ross eah other. Inaddition, the sensitivity of the alulated modal damping fators may be analyzed [19℄. Alternatively, atext �le with a table ontaining undamped eigenvalues and modal damping fators an be exported andread into the Nastran or other ommerial FE solvers and used for further analysis.The system equation of motion (4) with homotopy parameter � has the following form(M �2i + �jD +K)�i = 0 ; 0 � � � 1 ; (6)where �i und �i are the omplex eigenvalues and orresponding eigenvetors of the system whih oinidewith the eigenvalues and eigenvetors of the undamped system for � = 0 [2, 3℄. Now the path following,also known as the numeri ontinuation method is implemented. Based on the undamped system at � = 0,the homotopy parameter is inreased step by step and the eigenvalue problem (6) is solved.There are two di�erent methods desribed in this artile. First method shown { the Preditor-CorretorMethod { is based on the initial predition of the desired solution of the eigenvalue problem and then ituses Newton's method to orret it to ahieve appropriate auray. Afterward, the Rayleigh QuotientIteration is presented whih is a widely used iterative method to ompute eigenvalues and eigenvetorsof symmetri systems.3.1 Preditor-Corretor MethodBeause the eigenvetors an be saled arbitrarily, the eigenvalue problem (6) is expanded by a suitablesaling equation � (M�2i + j�D +K)�i�Hi 0 �i � = � 01 � ; (7)with the starting eigenvalue �i 0 (for � = 0). If the eigenpair (�i; �i) is denoted by a vetorzi = � �i�i � ; (8)then Equation (7) an be written asg(z i(�); �) = � g1g2 � = � (M�2i + j�D +K)�i�Hi 0�i � 1 � = 0 : (9)This equation depends nonlinearly on �i, and is solved with the help of the Preditor-Corretor Formu-lation (PC) with the ansatz g(z i(�); �) = g(�z i(�); ��) + g;z���zi;���z = 0 ; (10)where �zi; �� are known values and Æ;x are derivatives with respet to di�erent values of x [19℄. The requiredderivatives are g1;�i = �2iM + j�D +K (11)g1;�i = 2�iM�i (12)g2;�i = �Hi (13)g2;�i = 0 : (14)Di�erentiating Equation (9) with respet to � leads tog;� = g;zz;� = � g1;�i g1;�ig2;�i g2;�i � � �i;��i;� � ; (15)and Equation (10) reformulated yieldsg;z���zi;�� �z = � g1;�i g1;�ig2;�i g2;�i � �z = � � g1g2 � : (16)



For the preditor step, the derivationg;� = � (2�i�i;�M + jD)�i + (�2iM + j�D +K)�i;��Hi 0�i;� � = 0 (17)is used, whih leads to � g1;�i g1;�ig2;�i 0 � z;� = � �(K + jD)�i0 � : (18)Equation (7) an be solved iteratively for the atual homotopy parameter�n+1 = �n + h (19)with preditor n+1zi = nzi + h � nz i;� (20)alulated from equation (18). Then the result is orreted with Newton's Method from Equation(16)n+1z(t+1)i = n+1z(t)i +�z ; t = 1; 2 ; ::: (21)until the residual reahes a set onvergene parameter.3.2 Rayleigh-Quotient IterationIfK andM are real symmetri n�n matries and � is a given vetor of dimension n, then the Rayleigh-Quotient of � is de�ned as [9, 15, 17℄ r(�) � �TK��TM� : (22)If �0 is an approximation to an eigenvetor of the generalized eigenvalue problem K� = �M�, thenr(�0) an be used to �nd an approximation to the orresponding eigenvalue �0. Alternatively, the probleman be solved for the eigenvetor, if there exists an approximate value �0, then the solution of(K � �0M)�0 = b (23)is almost always a good hoie for the eigenvetor of the generalized eigenvalue problem [9℄. Also, Equation(23) an be solved with a suitable assigned approximation to the eigenvetor for the right hand side b (e.g.:undamped eigenvetor for the damped problem). In ase there is no approximate eigenvetor available,one an hoose a random vetor, but it an lead to divergene and long solution times.These two ideas are ombined and adjusted to �t the available problem with symmetri real matrix Mand omplex matrixK to the Rayleigh-Quotient Iteration algorithm (RQI). The starting vetor �0 fromthe undamped eigenvalue solution with k�0k = 1 is taken. Now iterating for k = 0; 1; : : : using Equation(22) the eigenvalue �k = r(�k) (24)is found. In the next step equation (K � �kM )zk+1 = �k (25)is solved for zk+1. The approximation of the eigenvetor from the previous iteration, starting with �0, istaken for the right hand side of the Equation (25). Then the solution is normalized�k+1 = zk+1=kzk+1k : (26)The norm of the omputed vetor kzk+1k inreases while iterating and serves as a onvergene riterion.Unfortunately, the algorithm sometimes has problems to onverge to the eigenvalue next to the start value�0 [16℄. In order to avoid this problem for the path following algorithm the number of the homotopy stepsan be inreased and the eigenvetor from the last homotopy step is taken as a starting vetor.



4 Appliation and Results4.1 Test StruturesThe initial idea was to test both algorithms on a struture shown in Figure 1. The struture is madeout of two 3 mm thik steel plates joined by bolts. In this ase the joints are modeled with thin layerelements with onstant damping. Sine steel has very low damping and no maro-slip ours in the joints,damping of the assembly for the �rst ten modes is lower than 0.2 %. The struture is modeled with brikelements and has 76 800 degrees of freedom. The undamped eigenvalues and eigenmodes are found withNastran and exported into ASCII �les together with mass, sti�ness, and damping matries. The exportedmatries are imported into Matlab in sparse format, but due to the large number of elements the softwareshows an "out of memory" error. No further data manipulation, like using binary format or exportingsparse matries diret out of Nastran, was performed in time for this paper. With the urrent proesshain, data input algorithms are the limiting fator for the size of matries. Up to ira 50 000 DOFs thematries ould be read into Matlab.

Figure 1: Test strutureTwo smaller models shown in Figure 2 were reated for purposes of analyzing omputing speed andauray of the algorithms. Model 1, shown on the left, has 13872 DOFs, half of whih are rotationaland are equal to zero. After all zero DOFs are removed the problem has 6936 DOFs. Model 2, shown onthe right, is exatly 2 times smaller { it has 3468 DOFs. Also, a small model with 164 DOFs and manylosely spaed modes used to hek the reliability of the algorithms was generated. Figure 3 shows anexample of an eigenpath following for this small model. The paths of modes 3 and 4 ross eah otherbeause of the signi�antly di�erent damping values, as it an be seen on the right side of the �gure.4.2 Computational Time and AurayCalulations were performed on a 3.0 GHz dual ore proessor with 16 GB RAM. Only one proessor orewas used for eah Matlab alulation. 20 modes were found for eah model and average time in seondsper one mode are shown in Table 1. As expeted RQI method is muh faster, sine it uses only matrix-vetor operations. PC on the other hand uses matrix inversion, making the alulation times signi�antly



Figure 2: FE models with 6936 and 3468 DOFs used for algorithms testing
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Homotopy parameterFigure 3: Imaginary and real part of �ve eigenvalues of the 164 DOF modellonger. Also, the solution time for the RQI algorithm inreases quadratially with inrease of DOFs andubially for the PC method. No di�erene in time is notied for the alulation of the eigenvalues forlosely spaed modes and for those loated far apart from eah other.Algorithm Model 1 (Seonds) Model 2 (Seonds)Preditor-Corretor 93860 14480Rayleigh Quotient 6 2.1Table 1: Computional times for one mode for both models and algorithmsApart from the di�erenes resulting from non-idential matrix operations, an important role in ompu-tational time plays the auray of the results, whih in turn is dependent on the onvergene riterion {residual error and number of homotopy steps needed for the problem to onverge and to give appropriateauray.The benhmark solution is performed with omplex eigenvalue solver in Nastran. Both algorithms showednearly idential results with less than 0.5 % di�erene between the Nastran and Matlab values.
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