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ABSTRACT: Viscoelastic material behavior implies the capability to store a portion of its deformation energy
whereas the remaining portion is dissipated, so called material damping. The damping properties of a structure
may be modeled locally or globally using differential operators or hereditary integral viscoelastic constitutive
equations.
Rheological damping models consisting of springs and dashpots result in constitutive stress-strain relations
of differential operator type. They are known to have deficiencies when being applied to a broad range of
time or frequencies. These drawbacks can only be minimized by using a large number of material parameters.
Improved adaptivity with respect to measured constitutive behavior is obtained by the differential operator
concept including fractional derivatives, where the theory of fractional derivatives can be considered as an
extension of derivatives of integer order. This generalization to any real-order derivative results in non-local
operators. Material models involving fractional time derivatives provide good curve-fitting properties, require
only few parameters and lead to causal behavior. In addition, the concept of fractional derivatives in conjunction
with viscoelastic constitutive equations is physically justified.
The implementation of fractional constitutive equations based on the Grünwaldian formulation into an elastic
FE code is demonstrated. Parameter identifications for the fractional 3-parameter model in the time domain as
well as in the frequency domain are carried out. The identified material model is used to perform an FE analysis
of a viscoelastic structure.

1 INTRODUCTION

The history of fractional derivatives can be dated back
to 1695, when L’Hospital and Leibniz were commu-
nicating whether it made sense to define an operator
dn

dtn for n � 1
�
2 (Leibniz 1962).

In the 18th century there were only few contribu-
tions to this topic and it was Euler who again raised
the question of a derivative of order n for n being
a fraction. In 1819 Lacroix first mentioned deriva-
tives of arbitrary order in a text (Lacroix 1819). The
first application of fractional derivatives was given in
1823 by Abel who applied the fractional calculus in
the solution of an integral equation that arises in the
formulation of the tautochrone problem (Abel 1881).
Later, Liouville attempted to give a logical definition
of fractional derivatives (Liouville 1832a, b, 1834).

One can state that the whole theory of fractional
derivatives and integrals was established in the 2nd
half of the 19th century. Further names to be men-
tioned are Grünwald, Krug, Riemann, and Letnikov.
A more detailed overview concerning the history of
fractional derivatives in general is given by Ross

(1975).
However, the term ‘fractional’ integrodifferential

operators is misleading as it implies that only ratio-
nal numbers as orders of derivatives or integrals are
defined. In fact, the order of derivatives or integrals
may be any real number; even for complex numbers
fractional derivatives are defined.

In 1921 Nutting observed that stress relaxation of
some materials might be modeled by fractional pow-
ers of time (Nutting 1921) and Gemant stated that the
stiffness and damping properties of viscoelastic ma-
terials are fit much better by using fractional pow-
ers of frequency. The latter was the first who sug-
gested explicitly to use fractional derivatives in the
constitutive equation (Gemant 1936, 1938). Scott-
Blair & Caffyn (1949) again suggested the applica-
tion of fractional time-derivatives to meet the obser-
vations of Nutting and Gemant. Caputo and Mainardi
(Caputo & Mainardi 1971a, Caputo 1974) also found
good agreement with experimental results when us-
ing fractional derivatives for the description of vis-
coelastic materials and established the connection be-
tween fractional derivatives and the theory of linear
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viscoelasticity (Caputo & Mainardi 1971b). Up to
the beginning of the 80s, the concept of fractional
derivatives in conjunction with viscoelasticity had to
be seen as a sort of curve-fitting method. Then,
Bagley & Torvik (1983) gave a physical justification
for this concept. Starting point is the molecular the-
ory of Rouse (1953), later modified by Ferry, Landel
& Williams (1955), resulting in fractional derivatives
of order 1/2 in the shear stress-strain relation. Simi-
lar considerations for the molecular theory of Zimm
(1956) lead to a fractional derivative of order 2/3.
As an example, Bagley & Torvik (1984) derived the
equation of motion of a plate which is immersed into
a Newtonian fluid and connected by a spring to a fixed
point. The resulting damping force is found to be pro-
portional to the fractional time derivative of the dis-
placement of order 3/2.

Bagley & Torvik also developed constraints for the
fractional 3-parameter model, ensuring the model to
predict a non-negative rate of energy dissipation and
internal work (Bagley & Torvik 1986).

The implementation of fractional constitutive equa-
tions into FE formulations was studied substantially
by Padovan (1987). An application to a three dimen-
sional structure is given by Schmidt, Oexl & Gaul
(2000). Implementations into the BEM were inves-
tigated by Gaul & Schanz (1999) for the time domain
and by Gaul (1999) for the frequency domain, respec-
tively.

2 GRÜNWALD DEFINITION OF FRACTIONAL
DERIVATIVES

There are different definitions of fractional deriva-
tives. Best known are the Riemann-Liouville and
the Grünwald definition which can be transformed
into one another. However, the Grünwald definition
involves the fewest restrictions on the functions to
which it is applied and can be implemented easily into
numerical algorithms.
Starting point is the definition of the first (integer or-
der) time derivative in terms of a backward difference
quotient

d1 f
�
t �

dt1
� lim

∆t � 0

1
∆t

�
f
�
t ��� f

�
t � ∆t ���	� (1)

Repeated application leads to

d2 f
�
t �

dt2
� lim

∆t � 0

1�
∆t � 2 � f � t ��� 2 f

�
t � ∆t �


f
�
t � 2∆t ��� (2)

d3 f
�
t �

dt3
� lim

∆t � 0

1�
∆t � 3 � f � t ��� 3 f

�
t � ∆t �


3 f
�
t � 2∆t ��� f

�
t � 3∆t ��� (3)

...

that can be written for any integer-order derivative as

dn f
�
t �

dtn
� lim

∆t � 0

�
1�

∆t � n n

∑
j � 0

� � 1 � j 
 n
j � f

�
t � j∆t ��� (4)

where the binomial coefficient
 n
j � ��� n!

j! � n � j � ! for 0 � j � n

0 for 0 � n � j
(5)

is used. If we replace the time step ∆t by the fraction
t
N , N � 1 � 2 � 3 ������� , equation (4) can be written as

dn f
�
t �

dtn
�

lim
N � ∞

���
t
N � � n N � 1

∑
j � 0

� � 1 � j 
 n
j � f

�
t � j t

N ��� (6)

noting that
 n
j � � 0 for j � n � (7)

The upper limit of the sum N � 1 seems to be some-
what arbitrary. However, it derives from defining the
lower limit of an integral, when (6) is used to define
integrals as a limit of a Riemann sum, see Oldham &
Spanier (1974) or Podlubny (1999).
In order to deduce a formulation that is valid for any
real order derivative, we use the extended definition
of the binomial coefficient
 a

j � � � a � a � 1 ��� a � 2 �!   � a � j � 1 �
j for j � 0

1 for j � 0
(8)

wherein a is real and j is a natural number. For j � 0

the expression
� � 1 � j 
 n

j � can then be written as� � 1 � j 
 n
j � �

� � 1 � j

j factors" #%$ &
n
�
n � 1 � � n � 2 �('�'�' � n � j



2 � � n � j



1 �

j!

�
�
j � n � 1 � � j � n � 2 �('�'�' � � n



1 � � � n �

j!

� 
 j � n � 1
j �*) Γ

�
j � n �

Γ
� � n � Γ � j 
 1 � (9)

such that Γ is the gamma function. For j � 0 equa-
tion (9) of course holds as well. Inserting (9) into (6),



we obtain
dn f

�
t �

dtn
�

lim
N � ∞

� �
t
N � � n N � 1

∑
j � 0

Γ
�
j � n �

Γ
� � n � Γ � j 
 1 � f

�
t � j t

N ��� (10)

which is valid for any real-order derivative (n � 0).
If we now reinterpret n to be any real number ν , the
Grünwald definition (Grünwald 1867) of fractional
derivatives (and integrals) is derived

dν f
�
t �

dtν
� lim

N � ∞

� �
t
N � � ν N � 1

∑
j � 0

A j
�

1 f
�
t � j t

N � � � (11)

wherein

A j
�

1 ) Γ
�
j � ν �

Γ
� � ν � Γ � j 
 1 � (12)

are the so-called Grünwald coefficients A j
�

1 .
As indicated above, Equation (10) is also valid for

integer-order integrals, as can be seen directly from
the Riemann definition of an integral, where the lower
limit is taken to be zero. In this case, n ranges from� 1 to � ∞ and Equation (11) can be interpreted as a
definition of either fractional integrals and derivatives,
where ν ranges from � ∞ to ∞ .

Note in this context, that all Grünwald coefficients
A j

�
1 are different from zero as long as the order of

derivative ν is not a positive integer. If, e.g. ν � � 1,
then A j

�
1

� 1 for all j , according to the Riemann
sum.
For ν being a natural number n , only the first n
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Grünwald coefficients A j
�

1 are non-zero, indicating
a local operator. On the other hand, as for any posi-
tive non-integer number all coefficients A j

�
1 are non-

zero, fractional derivatives are non-local operators,
except for integer-order derivatives. Analogous to the
fractional integral, the lower limit (also called ‘ter-
minal’) of the fractional derivative in (11) is zero.
This is indicated by the function values taken into ac-
count in the sum in Equation (11), i.e. the first ad-
dend ( j � 0) is A1 f

�
t � and the last ( j � N � 1) is

AN f
�
t � N � 1

N t � � AN f
� t

N � . Thus, the interval
�
0 � t � is

divided into N sections of equal size for the calcula-
tion of the fractional derivative or integral.
In this paper the lower terminal is assumed to be zero.
This may be indicated using the differential operator
representation

0Dν
t

� dν f
�
t �

dtν

� lim
N � ∞

� �
t
N � � ν N � 1

∑
j � 0

A j
�

1 f
�
t � j t

N � � (13)

such that the lower indices 0 and t indicate the lower
and upper terminal of the fractional differential oper-
ator, respectively.

3 NUMERICAL EVALUATION OF FRACTIO-
NAL DERIVATIVES

Analogous to the numerical evaluation of integrals,
fractional derivatives can be calculated by approxi-
mating the infinite sum in Equation (11) by a finite
sum, such that N � ∞ ,

dν f
�
t �

dtν
�

� �
t
N � � ν N � 1

∑
j � 0

A j
�

1 f
�
t � j t

N � � � (14)

The relative roundoff error R using Equation (14) can
be approximated by comparing the results of succes-
sive approximations, calculated with N and N


 ∆N
addends in the sum

R
�
N � ∆N � �

�
0Dν

t f
�
t ��� � N � � �

0Dν
t f

�
t ��� � N � ∆N ��

0Dν
t f

�
t ��� � N � ∆N � � (15)

such that
�
0Dν

t f
�
t ��� � N � is calculated with N addends

in the sum while
�
0Dν

t f
�
t ��� � N � ∆N � uses N


 ∆N ad-
dends.

Further reduction of the calculation effort is moti-
vated by the property of the ‘fading memory’. Using

Γ
�
x � � �

x � 1 � Γ � x � 1 � (16)

we obtain the recursive relationship

A j
�

1
� Γ

�
j � ν �

Γ
� � ν � Γ � j 
 1 � � j � 1 � ν

j
Γ
�
j � 1 � ν �

Γ
� � ν � Γ � j �

� j � 1 � ν
j

A j � (17)

If we restrict ourselves to fractional derivatives,
i.e. ν � 0, one can see that

�
� A j

�
1

�
� �

� 1" #%$ &�
�
�
�
j � 1 � ν

j

�
�
�
�

�
� A j

�
� � �

� A j
�
� for j � ν � (18)

This means that the series given by
�
� A j

�
1

�
� is strictly

decreasing from the moment where j becomes larger
than the order of derivative ν . The limit j � ∞ of the
series follows from the estimation

lim
j � ∞

�
A j

�
1

� �
�
�
�
�

1
Γ
� � ν � �

�
�
� lim

j � ∞

�
�
�
�
Γ
�
j � ν �

Γ
�
j



1 � �
�
�
�

� �
�
�
�

1
Γ
� � ν � �

�
�
� lim

j � ∞

�
�
�
�

Γ
�
j �

Γ
�
j



1 � �
�
�
�

for j � ν 
 2, as the gamma function Γ
�
x � is strictly

non-decreasing for x � 2. Because of j � NN, we can
write Γ

�
j



1 � � j! and thus

lim
j � ∞

�
A j

�
1

� � �
�
�
�

1
Γ
� � ν � �

�
�
� lim

j � ∞

�
�
�
�

�
j � 1 � !

j!

�
�
�
�

�

�
�
�
�
�

1
Γ
� � ν � �

�
�
� lim

j � ∞

 1

j � � 0 � (19)



As with growing j the Grünwald coefficients weight
function values that are situated further in the past,
events are faded out as time goes by. This property is
called the ‘fading memory’ and motivates the trunca-
tion of (14)

dν f
�
t �

dtν
�
�

t
N � � ν N�

∑
j � 0

A j
�

1 f
�
t � j t

N � � (20)

where N� � N � 1. The error E of approximation
(20) compared to (14) is given by

E
�
N � N��� �

�
t
N � � ν N � 1

∑
j � N� �

1
A j

�
1 f

�
t � j t

N � (21)

and can be estimated by

�
E
�
N � N��� � � �

�
�
�

�
t
N � � ν

�
�
�
�

N � 1

∑
j � N� �

1

�
A j

�
1 f

�
t � j t

N � � � (22)

Since t and N are positive numbers

�
E
�
N � N� � � � �

t
N � � ν �

N � N� � 1 �
max

�
A j

�
1 f

�
t � j t

N � � �
j �

�
N�



1 � N � 1 � � (23)

4 FRACTIONAL VISCOELASTIC CONSTITU-
TIVE EQUATIONS

Usually, rheological models of linear viscoelasticity
consist of springs and dashpots. The constitutive
equations of these elements may be generalized (see
Figure 1) using fractional derivatives. The resulting
fractional constitutive equation

σ � p
dν

dtν ε (24)

includes p as a proportionality factor and ν as the or-
der of derivative which is commonly taken to range
between 0 and 1. If ν is 0 , Equation (24) describes
the behavior of a spring where p specifies the springs’
stiffness. For ν � 1, (24) defines the constitutive
equation of a dashpot, in which p defines the viscos-
ity. Thus, the fractional constitutive equation (24) ’in-
terpolates’ between the material behavior of a spring
and that of a dashpot. The rheological element which
refers to Equation (24) was therefore introduced by
Koeller (1984) as a ’spring-pot’.

By replacing the dashpots in rheological models
by spring-pots, fractional rheological models are de-
rived. Application to the classical 3-parameter model
(see Figure 2) results in

σ 
 p
E1



E2

dν

dtν σ � E1E2

E1



E2
ε 
 pE2

E1



E2

dν

dtν ε (25)

which will be called the constitutive equation of the
fractional 3-parameter model in what follows. Since
the spring-pot contains 2 parameters p and ν , the
fractional 3-parameter model in fact is a 4-parameter
model. By introducing the constants

a � p
E1



E2

� b � pE2

E1



E2
and

c � E1E2

E1



E2

equation (25) simplifies to

σ 

a

dν

dtν σ � cε 
 b
dν

dtν ε � (26)

Improved adaptivity to measured material behavior
may be realized by fractional Kelvin-chains or differ-
ent fractional Maxwell elements in parallel. However,
as can be seen from the literature, the fractional 3-
parameter model already leads to good curve-fitting
properties.

An extension of Equation (26) to three dimensions,
differentiating between the hydrostatic parts (index h)
and the deviatoric parts (index d) of the stresses and
strains leads to

σh



Ah
dνh

dtνh
σh

� Ch εh



Bh
dνh

dtνh
εh (27)

σd



Ad
dνd

dtνd
σd

� Cd εd



Bd
dνd

dtνd
εd � (28)

where underlined lower case letters denote vectors
and underlined capital letters denote matrices. The
matrices A , B and C depend on the material behav-
ior. If we restrict ourselves to isotropic materials, the

Figure 1. Rheological elements of viscoelasticity



Figure 2. Fractional 3-parameter model

hydrostatic and the deviatoric parts of the stresses and
strains are calculated from the stress vector

σ � �
σxx σyy σzz σxy σyz σzx � T (29)

and the strain vector

ε � �
εxx εyy εzz εxy εyz εzx � T (30)

using the relationships

σh
� T h σ � σd

� T d σ �
εh

� T h ε � εd
� T d ε �

where

T h
�

�������
�

1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

��������
� �

T d
�

�������
�

2
3 � 1

3 � 1
3 0 0 0� 1

3
2
3 � 1

3 0 0 0� 1
3 � 1

3
2
3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

� ������
� �

In addition, for isotropic materials the matrices A , B
and C become multiples of the identity matrix I and
can be written as

Ah
� ahI � Ad

� adI

Bh
� bhI � Bd

� bdI

Ch
� chI � Cd

� cdI �
Equations (27) and (28) are linked by the stress state
σ � σh


 σd and the strain state ε � εh

 εd . Adding

(27) and (28) leads to

σ 
 
 ahT h
dνh

dtνh



adT d

dνd

dtνd � σ �

C ε 
 
 bhT h
dνh

dtνh



bdT d

dνd

dtνd � ε � (31)

wherein

C � chT h



cdT d (32)

describes the instantaneous relationship between the
stresses and strains. If the material is purely elastic,
i.e. ah

� ad
� bh

� bd
� 0, comparison with Hooke’s

law results in

ch
� 3K � cd

� 2G (33)

with K as the bulk modulus and G as the shear mod-
ulus.

As mentioned earlier, the Kelvin-Voigt model is en-
closed in the 3-parameter model. In contrast to the lat-
ter, the Kelvin-Voigt model only contains derivatives
of the strains. Thus, the generalized Kelvin-Voigt
model using fractional derivatives is obtained by set-
ting the respective factors to zero, i.e. ah

� ad
� 0.

5 FINITE-ELEMENT FORMULATION

In the foregoing chapter, viscoelastic constitutive
equations were deduced that may be integrated into
FE formulations. The resulting equation of motion
can be solved using direct integration methods. The
displacement type formulation is based on

u � H û � (34)

where u denotes the displacement field of an element,
û is the vector of the nodal displacements and H
specifies the shape functions. The strain field ε and
the nodal displacements are linked by

ε � Bû � (35)

such that B defines the appropriate spatial derivatives
of H . The principle of virtual work yields the equa-
tion of motion�
V

BT σ dV



M ¨̂u � r (36)

where V is the region in which the element is defined
and r defines the external and body forces. The con-
sistent mass matrix M is given by

M �
�
V

HT ρH dV � (37)

ρ denoting the mass density of the material. To sim-
plify matters, in the following the accent '̂ is skipped.
At time t , indexed on the upper left of the variable,
the equation of motion results in�
V

BT tσ dV



M t ü � tr � (38)



The stress vector tσ is derived from the viscoelas-
tic constitutive equation (31), using the time dis-
crete Grünwaldian formulation of fractional deriva-
tives (20). This yields

tσ 
 ah

�
t
N � � νh

T h

N�

∑
j � 0

A � νh �
j

�
1

t � j t
N σ 




ad

�
t
N � � νd

T d

N�

∑
j � 0

A � νd �
j

�
1

t � j t
N σ �

C tε 
 bh

�
t
N � � νh

T h

N�

∑
j � 0

A � νh �
j

�
1

t � j t
N ε 




bd

�
t
N � � νd

T d

N�

∑
j � 0

A � νd �
j

�
1

t � j t
N ε (39)

which can be solved explicitly for tσ . Using Equation

(35) and the identity A1
!� 1 one obtains

tσ �
�
I



ah

�
t
N � � νh

T h



ad

�
t
N � � νd

T d � � 1 '
' � 
 C



bh

�
t
N � � νh

T h



bd

�
t
N � � νd

T d � B tu



bh

�
t
N � � νh

T hB
N�

∑
j � 1

A � νh �
j

�
1

t � j t
N u



bd

�
t
N � � νd

T dB
N�

∑
j � 1

A � νd �
j

�
1

t � j t
N u

� ah

�
t
N � � νh

T h

N�

∑
j � 1

A � νh �
j

�
1

t � j t
N σ

� ad

�
t
N � � νd

T d

N�

∑
j � 1

A � νd �
j

�
1

t � j t
N σ � � (40)

equations (40) and (38) yield

M t ü



K � tu � tr � (41)

wherein

K � �
�
V

BT F � 1C � B dV (42)

is the modified stiffness matrix that includes the ab-
breviations

F � 
 I



ah

�
t
N � � νh

T h



ad

�
t
N � � νd

T d � � (43)

C � � 
 C



bh

�
t
N � � νh

T h



bd

�
t
N � � νd

T d � � (44)

The modified force vector tr � results in

tr � � tr � Φhbh

�
t
N � � νh

N�

∑
j � 1

A � νh �
j

�
1

t � j t
N u �

� Φd ∑bd

�
t
N � � νd

N�

∑
j � 1

A � νd �
j

�
1

t � j t
N u




 �

V

BT F � 1 
 ah

�
t
N � � νh

T h

N�

∑
j � 1

A � νh �
j

�
1

t � j t
N σ 




ad

�
t
N � � νd

T d

N�

∑
j � 1

A � νd �
j

�
1

t � j t
N σ � dV � (45)

such that

Φh
�

�
V

BT F � 1T h B dV (46)

and

Φd
�

�
V

BT F � 1T d B dV � (47)

Note, in contrast to the integral over the stresses that
has to be calculated explicitly at each time, the inte-
gral over the strains can be simplified by decompos-
ing the strains ε

�
x � t � � B

�
x � u � t � and carrying out the

integral once for each element, obtaining the matrices
Φh and Φd .

The matrix K � can be considered as a modified
(initial) stiffness matrix. The additional terms on the
right-hand side of Equation (45) depend on the hy-
drostatic and the deviatoric strain and stress history.
If they are interpreted as additional external forces,
Equation (41) is a purely elastic equation of motion.
On the other hand, this means that these additional
external forces describe the time-dependent material
behavior.

As mentioned in chapter 4, the generalized Kelvin-
Voigt model using fractional derivatives is obtained
by setting ah

� ad
� 0. Hence F � I and the in-

tegral in Equation (45) vanishes. From this it fol-
lows that the numerical effort for solving the equation
of motion (41) decreases substantially using the frac-
tional Kelvin-Voigt model instead of the fractional 3-
parameter model. In addition, the memory require-
ments are decreasing, since only the nodal displace-
ments have to be stored at each discrete point of time
while with the fractional 3-parameter model the stress
history has to be stored at each integration point as
well.

Either from Equation (41) and the subsequent defi-
nitions or directly from Equations (38) and (31) it fol-
lows that the equation of motion for the Kelvin-Voigt



model can be written as

M t ü

 Φhbh

dνh

dtνh

tu




 Φdbd
dνd

dtνd

tu



K tu � tr � (48)

where

K �
�
V

BTC B dV (49)

defines the stiffness matrix. Equation (48) can be
considered as a generalization of the equation of mo-
tion using velocity-proportional damping, such as the
Rayleigh damping, which is often used in standard
FE-codes.

6 IMPLEMENTATION

The Implementation of Equation (41) into an FE code
using direct integration procedures is similar to the
implementation of purely elastic equation of motions,
except for the calculation of the modified stiffness
matrix and the modified force vector. While the mod-
ified stiffness matrix is calculated once for each ele-
ment and stays constant with time, the modified force
vector depends on the strain and stress history up to
the time t and thus does not affect the resolution for
the new displacement at time t


 ∆t . Consequently,
the modified force vector may be calculated at the be-
ginning of each time step.
As the equation of motion (41) may also be estab-
lished at time t


 ∆t , there is no restriction in the ap-
plied integration scheme, i.e. equation (41) may be
used in conjunction with either explicit and implicit
integration schemes.

As a consequence of the Grünwaldian formulation
of fractional derivatives, the strain and stress history
is needed at equidistant discrete times. The time step,
separating two successive function values, is defined
as t

N and may be different from the time step ∆t used
for time integration. However, it is expedient taking
the time step of the fractional derivatives to be equal
to or a whole-numbered multiple of the time step ∆t

t
N

� n∆t � n � NN � (50)

particularly if ∆t is constant during the calculation. In
case of a changing time step ∆t , the strain and stress
history has to be calculated at other discrete times.
This might be done using linear or quadratic approxi-
mation.

At the end of each time step the actual displace-
ments and thus the strains are known. The actual
stresses t

� ∆tσ that are needed in the next increment
to specify the new modified force vector tr � have to
be calculated from the constitutive equation (40) as a

function of the actual strains t
� ∆tε and the strain and

stress history. Letting

t
N

� ∆t (51)

this reads

t
� ∆tσ � f

� t � ∆tε � tε � t � ∆tε � t � 2∆tε � '�'�''�'�' � tσ � t � ∆tσ � t � 2∆tσ ��'�'�' � � (52)

6.1 Newmark algorithm

Exemplarily the implementation into the implicit
Newmark algorithm is demonstrated. Starting point
is the definition of the new velocity vector t

� ∆t u̇ and
displacement vector t

� ∆tu

t
� ∆t u̇ � t u̇


 �
1 � δ � ∆t t ü


 δ∆t t
� ∆t ü � (53)

t
� ∆tu � tu


 ∆t t u̇




 
 1
2
� α � �

∆t � 2 t ü

 α

�
∆t � 2 t

� ∆t ü (54)

where α and δ denote the Newmark parameters.
Solving Equation (54) for the new acceleration vec-
tor t

� ∆t ü , one obtains

t
� ∆t ü � a1

� t � ∆tu � tu ��� a2
t u̇ � a3

t ü (55)

using the abbreviations

a1
� 1

α
�
∆t � 2 � a2

� 1
α∆t

�
a3

� 1
2α

� 1 �
If one substitutes (55) into Equation (41) and solves
for the new displacement vector t

� ∆tu yields

t
� ∆tu � �

a1M



K � � � 1

�
t

� ∆tr � 
 M � a1
tu



a2
t u̇



a3
t ü ��� (56)

where all variables on the right-hand side are known
or can be calculated from Equations (37), (42) and
(45).

7 EXAMPLES

7.1 Parameter identification

As mentioned earlier, fractional constitutive equa-
tions provide good curve-fitting properties, especially
when being applied to a broad range of time or fre-
quencies, typically 5 to 7 decades. This characteristic



Figure 3. Parameter identification in the time domain

is demonstrated by performing a parameter identifi-
cation in the time domain. The creep behavior of a
polymer at constant temperature is given for the time
from 10 s up to 10 000 h , i.e. for a time span of
approximately 6.5 decades. The creep curve is dis-
played in terms of the creep modulus Ec

Ec
� σ

ε
�
t � � (57)

wherein σ is the time independent stress (see Figure
3). The fractional constitutive equation is given by the
fractional 3-parameter model (26). Thus, the consti-
tutive equation

σ 

a

dν

dtν σ � cε 
 b
dν

dtν ε � (58)

contains 4 parameters a , b , c and ν that are iden-
tified by applying the least-square fit method. The
results, specified in Table 1, are displayed in Figure 3
and point out the excellent adaptiveness of fractional
constitutive equations. For comparison reasons, the
result of a parameter identification of an ‘ordinary’
3-parameter model, which is known to result in expo-
nential functions, is shown as well. Though the frac-
tional 3-parameter model (58) possesses only one ad-
ditional parameter, its improved adaptive capability to
measured data is significant.

Table 1. Identified parameters in the time domain

Parameter Value Dimension

c 658 � 2 N
mm2

ν 0 � 2845 –

a 32 � 017 sν

b 120593 � 0 N
mm2 sν

A parameter identification in the frequency domain
is carried out for the complex modulus of the poly-
mer DelrinTM at a temperature of 22

�

C in a frequency
range from approximately 50 to 500 Hz. Assuming si-
nusoidal stress and strain in time, one may introduce
the complex modulus

E � � E
� 


iE
� �

(59)

Figure 4. Experimental setup

wherein E
�

is called the storage modulus, E
� �

de-
notes the loss modulus and i is the complex variable.
According to the elastic-viscoelastic correspondence
principle, the complex modulus depends on the fre-
quency and relates the complex amplitudes of stain
σ � and stress ε � by

σ � � ω � � E � � ω � ε � � ω � � (60)

Applying the Fourier transformation to the fractional
constitutive equation (58) results in

E � � ω � � c



b
�
iω � ν

1



a
�
iω � ν � (61)

Equation (61) is equivalent to the well known Cole-
Cole relaxation that was deduced phenomenologi-
cally from measurements (Cole & Cole 1941) and
which is known to provide good curve-fitting prop-
erties. Obviously, this empirical relationship can be
derived from the fractional 3-parameter model.

The material properties were detected by per-
forming free-decay tests with 6 cantilevers made of
DelrinTM. Each of the cantilevers was fixed at differ-
ent lengths in order to excite oscillations at different
frequencies that were measured by a laser vibrome-
ter, see Figure 4. All tests were repeated 5 times. The
storage and the loss modulus were deduced from the
frequency and the decaying behavior of the oscilla-
tion, respectively. The data points in Figures 5 and
6 were then calculated as the average of the multiple
results at each frequency.

In order to minimize initial effects, the first 20 os-
cillations after the initial deflection of the cantilevers
were truncated. Thus, a single frequency signal was
obtained.

The material parameters of the complex modulus
(61) again were identified in terms of a least-square
fit for both, the storage and the loss modulus. The re-
sults are listed in Table 2 and displayed in the Figures
5 and 6, where once more the result of an identified
‘ordinary’ 3-parameter model is given.

The difference between a fractional and an integer-
order model would be much more impressing, if one
would apply the models to a larger frequency range,
see e.g. Cupial (1996).



Figure 5. Storage modulus

Table 2. Identified parameters in the frequency domain

Parameter Value Dimension

c 2981 � 6 N
mm2

ν 0 � 4835 –

a 0 � 02838 sν

b 90 � 31 N
mm2 sν

7.2 Finite-Element calculation

As a benchmark of the three-dimensional implemen-
tation described in the foregoing chapters, one of the
free-decay tests is calculated using the fractional 3-
parameter model in conjunction with the identified

Figure 6. Loss modulus

Figure 7. Finite Element model

parameters, see Table 2. Since the three dimensional
constitutive equation (31) needs more material con-
stants than given in Table 2, the hydrostatic and devi-
atoric functions are taken to be identical, i.e.

ah
� ad

� a � bh
� bd

� b

νh
� νd

� ν �
The discretization is realized using isoparametric 20-
noded hexahedron elements, that approximate the dis-
placements with quadratic functions. The model,
shown in Figure 7, is fixed at the left side, employing
displacement type boundary conditions. At the right
side a point load in z-direction is applied to model
the instantaneous deflection. Then, the system is left
to its own resource and the time integration is per-
formed using the Newmark method for time integra-
tion. In order to prevent numerical damping, the New-
mark parameters are

δ � 1
2

� α � 1
4

� (62)

The measured and the calculated tip deflection of
the cantilever are displayed in Figure 8. In addition,
the calculated free-decay oscillation is used to detect
the complex modulus that is compared to the mea-
sured complex modulus in Table 3. The results of the
FE calculation can be found to be in good agreement
with the experiment. Since a finite element approxi-
mation always leads to a stiffer systems behavior, the
calculation results in a somewhat higher frequency.

Table 3. Complex modulus identified from the measure-
ment and the calculation

f / Hz E
� � N

mm2 E
� ��� N

mm2

measurement 175 � 9 2977 36 � 1

calculation 177 � 6 3037 33 � 4

rel. error / % 1 � 0 2 � 0 7 � 4



Figure 8. Comparison between measured and calculated tip deflection

Due to the numerical effort and the amount of data,
only approximately 20 oscillations were calculated
within 600 time increments. As can be seen from Fig-
ure 8, initial effects are still present in the calculation,
resulting in a frequency spectrum and thus in a pertur-
bation of the decaying behavior. Since for the detec-
tion of the loss mudulus an exponential function is ap-
proximated to the maxima of the signal, its calculated
value differs somewhat from the measured behavior.

8 CONCLUSIONS

Fractional time derivatives were used to deduce a
new generalized rheological element, which ’inter-
polates’ between a spring and a dashpot and thus
was called a ’spring-pot’ (Koeller 1984). By re-
placing the dampers in traditional viscoelastic mod-
els by spring-pots, fractional rheological models are
obtained. The constitutive equations of these models
are represented by fractional differential equations.
These so-called fractional constitutive equations were
expanded for three-dimensional problems, differenti-
ating between the hydrostatic and the deviatoric parts.
We have shown that fractional derivatives result in
non-local operators that provide the property of the
‘fading memory’ as it is known from viscoelastic me-
dia. A time discrete approximation for fractional time
derivatives was deduced using the Grünwaldian for-
mulation. Thus, we obtained a time discrete consti-
tutive equation which can be implemented into FE
formulations. As we demonstrated, the arising equa-
tion of motion can be solved by direct time integra-
tion, using either implicit or explicit time integration
schemes. The implementation for the implicit New-
mark algorithm was exemplarily specified.

Two parameter identifications in the time domain

as well as in the frequency domain demonstrate the
improved curve-fitting properties of fractional consti-
tutive equations compared to integer-order constitu-
tive equations. Finally, a three dimensional FE time-
stepping analysis has been carried out in order to ver-
ify the implementation of the fractional constitutive
equations. The results were found to be in good agree-
ment with experimental data. However, it has to be
mentioned that due to the non-locality of fractional
derivatives, the storage requirements and the numeri-
cal costs increase significantly.
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Lacroix, S., 1819. Traité du calcul differentiel et du calcul
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