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ABSTRACT

The damping properties of materials, joints, and assenditedtures can be modeled efficiently using fractionalvaities
in the respective constitutive equations. The respectivdals describe the damping behavior accurately over biarages of
time or frequency where only few material parameters areeaeThey assure causality and pure dissipative behaviee. D
to the non-local character of fractional derivatives theolehdeformation history of the structure under consideratias to
be considered in time-domain computations. This leadsdeasing storage requirements and high computationad.cést
new concept for an effective numerical evaluation makesofisee equivalence between the Riemann-Liouville definitib
fractional derivatives and the solution of a partial diffietial equation (PDE). The solution of the PDE is found bylgpg the
method of weighted residuals where the domain is split imtibefielements using appropriate shape functions. Thisoagpr
leads to accurate results for the calculation of fractidiesivatives where the numerical effort is significantlyweed compared
with alternative approaches. Finally, this method is useddnjunction with a spatial discretization method and apsm
structure is calculated. The results are compared to thatséned from alternative formulations by means of accursiorage
requirements, and computational costs.
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1. INTRODUCTION

It is known that all structural materials show damping to sa@xtent. When subjected to time periodic loads, a hystecasis
be observed and as a response to a Heaviside step in stréissmgreeep or stress relaxation occurs. The damping pliepe
of some materials, such as rubbers or polymers, are quit®pneed and cannot be neglected when a structure contalizisg
materials is modeled.

Damping models which show good adaptivity to measured nahtdata can be obtained by introducing fractional denixesti
in the respective constitutive equations. The applicatibfractional derivatives to viscoelasticity was studiedbstantially
by Caputo and Mainardi [5] and is physically founded [3]. Skbncept results in fractional-order differential strsain
relations, that provide good curve-fitting properties uiegonly few parameters, and lead to causal behavior [B&jley and
Torvik [4] derived constraints for the material parametdithe 'fractional 3-parameter model‘ in order to ensure a-negative
internal work and rate of energy dissipation. Koeller [7§gasted to replace the viscous dashpots in rheological Isbgle
fractionally generalized elements which he called 'spypogs’. The resulting constitutive relations then are ¢stest with
thermodynamical principles [8]. An implementation of fimoal constitutive equations into FE formulations is giviey
Padovan [10]. Parameter identifications in the time domaghia the frequency domain for the fractional 3-parametedehon
conjunction with 3D FE calculations were presented by Sdhamd Gaul [11]. Enelund and Josefson [6] studied formuonesti
of hereditary integral type in the FEM.

Since fractional derivatives are non-local operatorsatiiaal behavior of 'fractional models’ depends on the emteformation
history. Thus, in contrast to classical models, the nurakgffort and the storage requirements increase with sitonldime
if the response of a system is computed in the time-domains€guently, different researchers [6, 12, 13, 14] madenate
to overcome this drawback. Two of these concepts will beudised and compared in the following Sections.



2. NUMERICAL EVALUATION OF FRACTIONAL DERIVATIVES

In this Section, the approach made by Schmidt an Gaul [12igept A) will be introduced.

Using the Griinwald definition of fractional derivativese$6]
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where f; = f(t, — jt/n) and the Grunwald coefficients are given by
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A time-discrete approximation is obtained for a finite numbéor which the expressiotyn = At (G1-algorithm, see [9])
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can easily be obtained. As can be seen from Eq. (3), the ncahexdsts explode with the numberof time steps under
consideration.

One basic idea for the reduction of the numerical effort iethice the computational costs by adapting the tempoalLitesn.
Due to the fact that the Griinwald coefficients are convergimgrds zero for any order of derivative > 0 [12], events are
faded out and possess a decreasing influence on the evaloétize fractional derivative as time elapses. Using Eq.t8
fractional derivative of a functiorf(¢) evaluated at the actual timig can be written as

D7, f(t) = oDf (ta) f () + . DF, (ta) (1), (4)

where the notation, D, (t,) shall denote the evaluation of the fractional derivativehattime ¢, which may be different from
the upper terminab . By application of the G1 algorithm one obtains
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From Eq. (5) it is obvious that+ k& = n is the total number of time steps up to the actual timeThe first termyDg! (¢.) f(t)
represents the contribution of the older part of the fumisidistory to the fractional derivative. According to thasic idea,
this interval, consisting ok time steps, will be kept fixed during further time integratiand its influence on the fractional
derivative will be treated separately. Afteradditional time steps one obtains
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Using the recursive relationship (2) yields
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where T, will be called the 'transfer function’. From Eq. (7) it can been that all weighting factors in the square brackets
are positive but smaller or equal to unity. In addition, &setielapses#{ increases), they are monotonically increasing and
tend to unity. In order to reduce the numerical costs, thfd€,, , which includes the contribution @f function values, will
be approximated asnecontribution to the fractional derivative. This is done kafaulating the starting valu&, according to
Eq. (7) at the timef, and the value

T = fi+ fix1+ fixa + -+ fixn—1 (8)



for t — oo . The time-dependent transfer frofy to 7., is then approximated by a test functigift) = 1 such that

T — T}
Tn ~ TO —+ 1—’7117—7—3(7700 — TQ) = To —+ wn(Too — To) 5 W, S [0, 1] (9)

in which the upper right bold-face indek denotes that the respective transfer function is caladilaging the test function
f(t) = 1. The quality of the approximated transfer function is dssmd in detail in [12].

For longer calculation times several intervals, each ajtlei At, are introduced as the number of time steps increases.

2.1 Implementation of fractional constitutive equations nto the finite element method
Any general 3d fractional constitutive equation relatihg stresses and straing can be written in the form

Z a; oD?i’O' = Z bj ODtﬁjé‘ . (10)
i=1 j=1

Using the Granwald approximation (3) for all fractional @atives, Eq. (10) can explicitly be solved for the actuaésses
o (t) which then depends on the actual strafis), the stress history and the strain history (cf [10, 11]). rridiAlemberts
principle, the equation of motion can be written in the form

/BTadV+Mﬁ:f (11)
V
whereB contains the respective derivatives of the finite elemeapsHunctionsM is the mass matrixa is the vector of the

displacements, anflis the vector of the external forces. If one inserts the adinasses from Eq. (10) into (11), the system
can be solved by an explicit time integration scheme, su¢heasentral difference method

u(t + At) — 2u(t) +u(t — At
s = -+ A0) =200+ e = A

(12)

For further details see e.g. [10].

3. CALCULATING A FRACTIONAL DERIVATE BY SOLVING A PARTIAL DIFFE RENTIAL EQUATION

In the following, the approach published by Singh and Chige[13] (concept B) is briefly summarized and extended for a
fractional 3-parameter model. Then, an adaption for firléenent calculations is presented.

A special partial differential equation (PDE)

Sule,t) + Ehu(E, 1) = 5(0), u(§,07) =0 (13

with the solution

u(é,t) =e " (14)
can be used to derive a method to calculate a fractionalatemv[13]. Integration ovet yields the transfer functiop(¢) of
the system

g(t) = / —€itge = L+ a) (15)

In general, the output(t) of a linear time invariant dynamical system is obtained byvodution of the transfer function(t)
and the system input. By replacing the inpat) in (13) by (), one obtains

1+gq) .,
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wherex denotes the convolution operator. Comparison of (16) wighwell-known Riemann-Liouville definition of fractional
derivatives [9] with vanishing initial conditions
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yields an alternative description of a fractional derivati

oo

a? 1
" " gra g Y T Tarara g / e e
which can be specified after solving the underlying PDE
0 1
(6D +Eu(E ) = (D), u(&,07)=0. (19)

3.1 Solving the PDE using the method of weighted residuals
The PDE (19) cannot be solved exactly for genegrahdz(t), therefore an approximation ef &, ¢)

~ > ai(t)ei(8), (20)
i=1

consisting of weighting functions;(¢) and shape functions; (&), is used. Inserting (20) into (19) yields a residual

n
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which is minimized using the weak form and the shape funabgii¢)

/ (Z (as(t)8i(€) + € ait)en(©)) - ab(t)) Om(€)dE = 0. (22)
0 =1
In order to get rid of the improper integral in (22), a tramsiation of¢ on the unit interval0, 1] is performed by
_ £
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which yields
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As we are interested to solve (24), we need to specify shapetifins used to approximaign,t). Choosing for example
constant shape functions (see Figure 1), one obtains

1424
I pici<n<pi ( Lo )  pai <n<pn
¢i(n) = and ¢, (n) =

0 elsewhere 0

i=1,2,...,n—1. (25)

elsewhere

In order to allow analytical integration of the matrix eegipresented in the next part, we use an adaptive shapesfuagii).
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Figure 1: Constant shape functions on unit interyal [0, 1]

3.2 Formulation in matrix notation

Later on, we want to solve a fractional derivative in confimt with a structural finite element discretization. THere, we
switch to matrix notation noting that (24) can be expressea system of first order differential equations

Aa + Ba = ci(t) (26)
whereas )
1
A = 0/ S )s1) 27)
1 1 1

Boi = (”) "o ()6i(n)——dy and (28)
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e = / on (1) . (29)

Using this notation, one can finally express a fractionaivdéve as

@ - 1 .
&0~ T 1fq/2‘” 10 = T =g )

keeping in mind from the Riemann-Liouville definition (1Rgt (30) is only valid ifg € [0, 1).

4. A SYSTEM BASED ON FRACTIONAL 3-PARAMETER MATERIAL MODEL

Damped structures can be modeled efficiently by the use @fctidnal 3-parameter material model [11] (see Figure 2)sgho
constitutive equation is given by

R d? . Ey+ E, d?
o(t) + 13- ga@(®) = Boclt) + R St (31)

The appropriate equation of motion has the form
_ d¢ - _ _ d? _ -
By i+ Ci+Di+ B wt Fe=Gf(t)+ dtqf() (32)
Since (30) can only be appliedgfe [0, 1), the fractional derivative of in (32) cannot be evaluated directly by setting
e get?
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Figure 2: Fractional 3-parameter model

Instead, by introducing an additional dashpbt< 1 in parallel to the fractional dashpot (see Figure 3), one gatextended
fractional 3-parameter model which finally leads to a thirdes equation of motion of the form

q q d?

dta

Ai+ BS i+ G+ D+ B at Fo— Gf()+ H

dta ata F)+I£() (34)

which can easily be transformed to a set of first order difféadequations.

Figure 3: Extended fractional 3-parameter model

4.1 Solving a 1-DOF system
After transforming (34) into a set of first order differeth#guations using

r1=x, wzo2=2 and xz3=4%, (3%)

on can replace each fractional derivative by (30). In thifahg, this process is illustrated for a 1-DOF system asxshim
Figure 4. Introducing the abbreviatio”%, = E, + E1, the ratio of damping constants= R/R and

. B d :
S — ¢
F= 2O + g £+ F0). (36)
one finally getsi; = x5, #2 = x3 and
. dq E1 E01 E01 dq EOEl 1 -
B = g T BT ™ T ™ T e 37

If the external forcef (t) is known in advance, thefican be calculated after evaluating
a) = —A'Bah) + A7 cf(t) (38)

whereas the indexf) in a'/) denotes the application of (38) for the calculation of theemal forcef(t). The remaining
fractional derivatives in (37) can be replaced by

a? - . Ey d? E
Vgt —~AT 'cTa®)  and — =2 =g~ =2

n—1_.T (z1)
o - I''c'a (39)

whereas the abbreviatidh= I'(1 + ¢)I'(1 — ¢) is used. (39) can be evaluated calculating two systemsfefeittial equations

a®) = — A Ba™®) + A7 cis(t) and a®) = —A"'Ba™) + A7 eiy (1) (40)



Figure 4: Mass attached to extended 3-parameter materiimo
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Since (37) and (40) have to be calculated together, one tadirce an extended system of differential equations @unta
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4.2 Finite element spatial discretization

In order to use the presented algorithm in conjunction wifmie element spatial discretization, it is possible totesthe
matricesA to I in (34) for a 2-node finite element of a rod. In this case one get

5 1 9 (42)

for the 'mass matrixC, whereag denotes the material density,describes the rod’s cross section area &istthe element’s
length. All other matrices can be determined respectively.
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Figure 5: Decaying oscillation of the tip’s free end; refere calculation (upper left), concept A (upper right) andaapt B
(lower)

5. EXAMPLE

As an example, a viscoelastic rod (lendtk- 2m, cross section ared = (7,5 mm)? ), that is initially at rest is considered.
Its left end is clamped whereas on the free end an exterrad for= 1000 N is acting in form of a step function in time. Thus,
a free vibration is excited, overlayed by a creep process.

The rod is discretized b§0 finite elements. In order to compare the concepts A and Bngivéhe previous sections, the cal-
culation is carried out using both approaches and compaitedaweference calculation which is obtained using therdiszed
Grunwald approximation in conjunction with the completenporal resolution as described in Section 2. The paramesed
in concept A areé = 100, k = 400 whereas in concept B = 11 finite elements were chosen.

The material under consideration is a thermoplastic pohydelrin, DuPont) and its material constants given in Tabkre
found by frequency-domain measurements [11]. The dispiace of the rod’s trip and its neutral position are calcudditar

Ey = 2989.53N/mm? | E; = 192.92 N/mm?
R = 5.276 Ns?/mm? qg=05

Table 1: Material parameters

a total simulation time of 1s, using a time step sixe= 25 - 10~%s which leads te0 000 time steps. The results are shown
in Figure 5. A comparison in terms of the computational casis accuracy is shown in Table 2 where the acquired time and
memory resources of the reference calculation are takea 1®0%. The neutral positian,,, is calculated from 3 subsequent
extremau,, Of the free vibration by
p 2
Uex,1Uex,3 uex,Q

Uex,1 — 2uex,2 + Uex,3

(43)

Unp =

which gives a second-order approximation. The results laoesis in Figure 6. The asymptote of the neutral position can be
determined analytically by
‘ Er
tliglo Upp = Bod 3.786 mm (44)



The scattering that can be observed in the beginning of tleeletion is due to the higher harmonics which are excitedhisy
force step function. Due to the damping they die out quitekjyi For the concept B there also seem to be some numerical
reasons for the pronounced distribution.

concept reference calculation concept A| concept B
frequency 184.19 Hz 184.17 Hz| 184.30 Hz
logarithmic decrement 4.05% 4.02% 4.22%
cpu-time 100% 3.51% 1.25%
storage 100% 52% 779%

Table 2: Comparison of accuracy, cpu-time and storage meapeints of the different concepts
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Figure 6: Calculated creep of the neutral position; refeeeralculation (solid), concept A (crosses), concept RIg#)

6. CONCLUSIONS

Time-domain calculations of structures whose constitugigiuations include fractional derivatives lead to high potational
costs, especially for large numbers of time steps. In thfgepawo different concepts resulting in a drastical reituncof
the numerical effort were compared with a costly refereradeutation. Therefore, a new algorithm suggested by Singh a
Chatterjee was extended to a fractional three-parametdehand included into a structural finite element discréitira Both
concepts show very good performance concerning the rexfuofi calculation time. Also, the results in terms of freqoen
creep process and decaying behavior are in good agreemtbrtheireference calculation, where the algorithm by Singh a
Chatterjee shows an increased scattering of the creepAtatdvantage of this new algorithm is given by the fact thatttme
integration is unconditionally stable. Therefore, largere steps are possible. On the other hand, the storagereewgrits
increase drastically. In addition, more general fracti@eastitutive equations consisting of more than one foaal element
are not straightforward to implement.
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