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Abstract. Damping properties of assembled structures are largely influenced by frictional
damping between joint interfaces. Therefore, these effects must be considered during the mod-
elling process. Applying thin-layer elements (TLEs) with a linear, orthotropic material model
on mechanical interfaces to incorporate joint damping has shown good agreement with ex-
perimental modal analysis in previous work. In the TLE model, constant hysteretic damping
is assumed. The damping and stiffness parameters for the TLEs are experimentally identified
on an isolated lap joint. Imprecisions caused by model simplifications and parameter uncer-
tainty are addressed by model updating or uncertainty analysis. This requires multiple evalu-
ations of systems that are equivalent besides their TLE parametrization. In this work, a model
reduction technique for the thin-layer element modelling approach is presented which signifi-
cantly reduces computational cost for the re-calculation of eigenvalues after joint parameters
are changed. The reduction is based on an eigensensitivity analysis and results in a single,
linear equation for each eigenvalue. The presented approach is applied to a model updating
example. Here, the model reduction allows for a larger number of design variables. Therefore,
experimental results can be reproduced more accurately.
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1 INTRODUCTION

While eigenfrequencies and mode shapes of assembled structures can be predicted reliably
with the Finite Element Method, the incorporation of damping is subject to ongoing research.
The key to valid damping predictions of assembled structures is accurate representation of joint
damping caused by friction on mechanical interfaces. A proposed modelling technique for joint
damping is the thin-layer element (TLE) approach which has shown promising results in previ-
ous work [1, 2]. Thereby, a thin layer of finite elements is placed on the joint interface. These
TLEs contain a linear, phenomenological model of the joint behaviour, The major advantage
of this approach is that the main contributions to energy dissipation in assembled structures are
incorporated spatially correct while efficient evaluation of the model through eigenvalue anal-
ysis is still possible. Additionally, the linear approach facilitates comparison with data from
experimental modal analysis. On the other hand, experimental investigations clearly show the
non-linear behaviour of bolted joints [3]. Thus, the accuracy of the linear TLE approach is
limited. The main source of inaccuracy is parameter and model uncertainty connected to the
Joint loss factor. To mitigate the effects of these inaccuracies, model updating [4] or uncertainty
analysis [5] are employed. That, however, requires a large number of model evaluations with
varying loss factors.

In this work, a model reduction technique for the TLE modelling approach and an application
to model updating are presented. The reduction is based on an eigensensitivity analysis and
takes advantage of the particularly simple formulation of joint damping in the form of constant
hysteretic damping. The result is a single, linear equation for each eigenvalue,

2 THIN-LAYER ELEMENT JOINT MODEL

This section covers the basic approach of joint modelling using TLEs. Further details can be
found in [2, 6]. As mentioned above, the basic idea of the TLE modelling approach is to place
a layer of elements with a linear, orthotropic material model on all joint interfaces (Fig. 1). The

/

i-th TLE containing the parameters K}°™ and 3;

Figure 1: FE model of the test structure with exposed thin-layer elements.

TLEs reproduce the localized occurrence of joint damping in assembled structures in contrast to
e.g. Rayleigh Damping where the energy dissipation is distributed over the entire structure. The
TLEs are implemented as hexahedral elements with a height to width ratio of up to 1:100. As
joints have distinct behaviour in normal and tangential direction with respect to the interface,
an orthotropic material is model employed. Stiffness and damping parameters of the joint are
experimentally identified on a specialized experimental setup [6].

Joint damping shows only weak dependence on frequency. Therefore, the model of con-
stant hysteretic damping is applied [7]. The starting point for the implementation of constant
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hysteretic damping is the discrete equation of motion of a free, undamped system
Mii+ Ku=0. ey

Here, M is the mass matrix, K the real-valued stiffness matrix and u the displacement vector.
Constant hysteretic damping can now be incorporated by replacing the real-valued stiffness
matrix K with a complex-valued stiffness matrix K~ with

K=K +_| Z aiKgMalcrial) +j Z ’BiK-;;Joim) ! (2)

i=1 i=1

where K _gM“'““” are the regular element stiffness matrices, K ”*™ are the TLE stiffness matrices
and j is the complex unit. The material loss factor is represented by «; and the joint loss factor
by ;. While material and joint damping are accounted for by this approach, joint damping is
decisive for accurate damping predictions. Thus, further elaboration is limited to the joint loss
factor ;.

Replacing K in Eq. (1) by K~ from Eq. (2), the eigenvalue problem can be formulated

(AEM + K* )i, = 0, 3)
with eigenvalues A, and eigenvectors 1.

3 THIN-LAYER ELEMENT MODEL REDUCTION
3.1 Derivation

As mentioned above, models with TLEs often require multiple evaluations of Eq. (3) for
systems that are equivalent in all respects but the joint loss factors 3;. In this chapter, a more
efficient way to calculate the resulting eigenvalues in the sense of a model reduction is presented.
For the sake of brevity, all derivations will be shown for A2. Modal damping is presented in
terms of Im()\}). Expansion to ), is possible at each step.

First, two systems are introduced. The base system with the system matrices M and K,
and an augmented system represented by M and K (henceforth & denotes affiliation to the
augmented system). The two systems differ only in joint damping which means

M = M and 4)

K" +j)  ABK!™. )

i=1

K

AS; denotes the difference of the loss factor between the augmented system and the base system
AB;=B; - Bi. (6)

Eigensensitivity analysis is now employed to find a relation between the change of the ¢-th loss
factor A3; and the k-th squared eigenvalue A} of the augmented system.
Rearranging Eq. (3) into its Rayleigh Quotient [8] form and scaling /. such that

Y My =1, (7
one obtains

M=~ K . (8)
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Using the definition of the complex-valued stiffness matrix K~ in Eq. (2), the partial derivative
of Eq. (8) with respect to 3; yields

N _ T ¢+ go-(Joint) _
a5 = Wk UK ) = Ji. )
i

A more detailed derivation of this result can be found in [9, 10, 11]. Equation (9) reveals that
the derivative of A} with respect to a joint loss factor f3; only depends on the corresponding
(constant) stiffness matrix K™ and eigenvector 4. In typical applications, the TLEs have
negligible influence on the mode shape since they constitute only a small fraction of the overall
structure. Hence it is feasible to assume

oy
75 =0 (10)

Therefore, J;; is independent of 3; and Eq. (9) can be used to formulate a reduced model:

M=+ Jxds:. (11
i=1
With Eq. (11), eigenvalues of the augmented system can be calculated from a single, linear
equation. One evaluation of the full base model is necessary to calculate A? and 1p,. During
this evaluation, all TLE stiffness matrices K[*™ are assembled as well and can be stored for the
calculation of .J;;,.

As long as Eq. (10) is a sufficiently exact approximation, Eq. (11) is valid for all reasonable
values of Aj3,. One can further assume that the eigenvectors, though in reality complex, are
approximately real-valued. Therefore, J; is purely imaginary and Eq. (11) reveals that a change
of the loss factor f3; only affects the imaginary part of )"\i. This is equivalent with the intuitive
assumption, that a variation of the loss factor mainly affects modal damping ratios without
significantly altering eigenfrequencies.

3.2 Validation

The reduced model is validated by examining the first eight eigenvalues of the test structure
depicted in Fig. 1. To that end, the eigenvalues of the system are calculated for different loss
factors by evaluating the full model (Eq. (3)) and by using the reduced model (Eq. (11)). It is
important to note that here, in contrast to the model updating example in Section 4, all TLEs
have identical loss factors 5;. Figure 2 shows the modal damping (in terms of Im()2)) for the
first eight modes for loss factors ranging between 0 and 1. The solid line depicts the simulation
with the reduced model and the dots represent values from full model evaluations. The base
system used for the model reduction has a loss factor of 3; = 0.05 which is close to the lower
limit of the parameter range. Nonetheless, all deviations from values calculated with the full
model are smaller than 0.15 %.

4 MODEL UPDATING WITH REDUCED MODEL

The TLE modelling approach was introduced as an efficient way to predict damping in as-
sembled structures before a physical prototype exists. The original approach [2] employs an
uniform loss factor parametrization across the joint surface. While this approach is effective
for damping predictions, it is not well suited for model updating because only a single design
parameter exists.
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Figure 2: Validation of the reduced model by comparison of Im(A?) calculated by full model evaluations (dots)
and reduced model evaluations (solid line).

With the reduced model, a more numerically compliant TLE approach can be devised. In-
stead of a single parameter for the entire joint interface, each element can be allocated an inde-
pendent loss factor parameter. This increases the number of design variables for the optimiza-
tion from one in the original approach, to several hundred (880 in the presented example). An
optimization with such a high number of variables requires a large number of iterations which
is only feasible under the utilization of the reduced model.

In the presented example, parameters for 880 TLEs are to be found such that the experimen-
tally determined modal damping ratios for the first eight modes are reproduced in an optimal
way. Due to the large number of design variables, this problem has various solutions with most
of them being physically not feasible. Therefore, a set of boundary conditions has to be defined
which reduces the set of solutions to physically reasonable ones.

As first boundary condition, the maximum difference of the loss factor of neighbouring ele-
ments A S is limited. The loss factor depends on normal and tangential loads [12]. As these
loads change gradually, the loss factor must follow accordingly. This is implemented as an in-
equality boundary condition. For two elements, 7 and j, which have at least one common node,
the following inequalities are enforced:

Iﬁ:& - ﬂj! < Aﬁmax (12)

With the second boundary condition, symmetry is enforced. As stated before, the loss factor
is determined by tangential and normal loads. Therefore, a geometrically symmetric assembly
under symmetric loads must also have a symmetric joint parameter distribution. The exam-
ple structure has two planes of symmetry. Figure 3 shows four elements, k, [, m,n which are
assigned identical parameters.

As a final condition, the mean loss factor Sy, is kept constant. This condition is imple-

mented as an equality constraint
n .
Z & = ﬁmcan . (13)
P n
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Figure 3: Joint interface of the example structure with four elements k, {, m, n that must be allocated identical loss
factors.

It ensures that the optimization is not achieved by uniformly adapting the loss factor. Compa-
rability of different models is maintained this way, too.

With these boundary conditions, the loss factor parameters are optimized such that the first
eight experimentally determined modal damping ratios of the test structure are reproduced op-
timally in a least-squares sense. The algorithm converges after 1330 iterations in 58 seconds.
At approximately 20 seconds per full model evaluation and numerous model evaluations per
iteration, the cost advantage of the reduced model is significant. As base line, model updating
with uniform parametrization is performed. This optimization with a single degree of freedom
is representative of the performance of the original TLE modelling approach. In Figure 5, the
relative error

Im(A?) — Im(X\2,,)
2 k k,exp
m — 14
JI (Ak) I (Aﬁ'cxp) ( )

of the resulting modal damping values with respect to experimentally determined reference
values Im(/\i'exp) is depicted. While it is evident that the original approach already yields
good results, especially for lower order modes, the new approach improves the performance.
Higher order modes have geometrically more complex mode shapes. The original, uniform
parametrization approach cannot depict these conditions as accurately as the element-wise in-

dependent parametrization employed in the new approach. Comparing the loss factor parameter
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Figure 4: Comparison of the loss factor parametrization after model updating and the average relative displacement
for the first eight modes.

distribution resulting from the new model updating approach with the average relative displace-
ment over all relevant modes, a strong similarity is evident (Fig. 4). High relative displacement
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in the joint causes high energy dissipation [12]. Thus, Fig. 4 indicates that the optimization
under the derived boundary conditions arrives at a physically meaningful solution.
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Figure 5: Relative error of the modal damping after model updating with the new and original approach.

5 CONCLUSIONS

The existing thin-layer element modelling approach is extended by a model reduction. The
reduced model is derived through an eigensensitivity analysis and provides a single, linear equa-
tion for each eigenvalue. A prerequisite for the applicability of the presented technique is a
negligible influence of the TLE parametrization on the eigenvectors.

Through the model reduction, the TLE modelling approach can be augmented for better
performance in model updating applications. This approach reproduces experimental data more
accurately by providing a very large number of design variables to the optimization algorithm.
Several boundary conditions are defined in order to generate physically meaningful results.
While the original TLE approach localizes joint damping at mechanical interfaces but does not
consider variations over the area of the interface, the new model updating approach identifies
areas of high and low energy dissipation on the interface.
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