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SUMMARY: A generalized rheological element for viscoelasticity, called a ’spring-pot‘, is deduced by
making use of fractional time derivatives. With this new element, fractional differential constitutive
equations arise which result in improved curve-fitting properties, especially when experimental data from
long time intervals or spanning several frequency decades need to be fitted. Due to the non-locality of
fractional derivatives, the computational effort and the storage requirements increase significantly com-
pared to integer-order concepts, when solving the constitutive equations numerically.
In the present work, two spring-pots are used to set up a rheological model for a polymer. The imple-
mentation of the resulting fractional constitutive equation into an FE code is demonstrated. Then, a
parameter identification in the time domain and in the frequency domain is carried out simultaneously.
Finally, FE calcualtions of a viscoelastic member are presented and three different concepts for the re-
duction of the computational effort and the storage requirements are compared and discussed.
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INTRODUCTION

It is well-known that all materials show material damping to some extent. When subjected to time pe-
riodic loads, a hysteresis can be observed and as a response to a Heaviside step in stress or strain, creep
or stress relaxation occurs. The damping properties of some materials, such as rubbers or polymers, are
quite pronounced and cannot be neglected when a structure containing these materials is modeled.
Material damping may be modeled by differential operators or hereditary integral viscoelastic constitutive
equations. In many applications it is sufficient to use linear viscoelastic stress-strain relations. Usually,
linear viscoelasticity is visualized by rheological models, consisting of linear springs and viscous dashpots,
which results in constitutive equations of integer-order differential operator type. However, it is known
that these models have deficiencies when being applied to large time or frequency intervals.
Improved adaptivity with respect to measured constitutive behavior is obtained by introducing frac-
tional derivatives. The application of fractional derivatives to viscoelasticity was studied substancially
by Caputo and Mainardi5 and is physically founded.3 This concept results in fractional-order differential
stress-strain relations, that provide good curve-fitting properties, require only few parameters and lead
to causal behavior.1,2 Bagley and Torvik4 derived constraints for the material parameters of the ’frac-
tional 3-parameter model‘ in order to ensure a non-negative internal work and rate of energy dissipation.
Koeller9 suggested to replace the viscous dashpots in rheological models by generalized elements which he
called ’spring-pots‘. The resulting constitutive relations then are consistent with thermodynamical princi-
ples. An implementation of fractional constitutive equations into FE formulations is given by Padovan.11

Parameter identifications in the time domain and in the frequency domain for the fractional 3-parameter
model in conjunction with 3D FE calculations were presented by Schmidt and Gaul.13 Enelund and



Josefson? studied formulations of hereditary integral type in the FEM. Implementations of fractional
constitutive equations in the BEM were investigated by Gaul and Schanz7 for the time domain and by
Gaul6 for the frequency domain.

GRÜNWALD DEFINITION OF FRACTIONAL DERIVATIVES

Starting point is the definition of the first (integer order) time derivative in terms of a backward difference
quotient

d1f(t)

dt1
= lim

∆t→0

1

∆t
[f(t) − f(t − ∆t)] . (1)

Repeated application leads to

d2f(t)

dt2
= lim

∆t→0

1

(∆t)2
[f(t) − 2f(t − ∆t) + f(t − 2∆t)] , (2)
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dt3
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(∆t)3
[f(t) − 3f(t − ∆t) + 3f(t − 2∆t) − f(t − 3∆t)] , (3)

etc. Thus, any integer-order derivative is given by
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where the binomial coefficient
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is used. If we replace the time step ∆t by the fraction t
N
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that N = 1, 2, 3, ..., Eqn 4 can be written as
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noting that
(

n

j

)

= 0 for j > n . (6)

The upper limit of the sum N − 1 seems to be somewhat arbitrary. However, it derives from defining
the lower limit of an integral, when Eqn 5 is used to define integrals as a limit of a Riemann sum, see
Oldham and Spanier10 or Podlubny.12

In order to deduce a formulation that is valid for any real order derivative, we use the extended definition
of the binomial coefficient

(
a

j

)

=

{
a(a−1)(a−2)···(a−j+1)

j
for j > 0

1 for j = 0
(7)

wherein a is real and j is a natural number. For j > 0 the expression (−1)j
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such that Γ is the gamma function. For j = 0 Eqn 8 of course holds as well. Inserting Eqn 8 into Eqn 5,
we obtain
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which is valid for all integer-order derivatives (n > 0 ). If we now reinterpret n to be any real number
ν , the Grünwald definition of fractional derivatives and integrals8 is derived

dνf(t)

dtν
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where

Aj+1 ≡
Γ(j − ν)

Γ(−ν)Γ(j + 1)
(11)

are the so-called Grünwald coefficients Aj+1 .

Note in this context, that all Grünwald coefficients Aj+1 are different from zero as long as the order
of derivative ν is not a positive integer. If, e.g. ν = −1 , then Aj+1 = 1 for all j , according to the
Riemann sum for integer-order integration.
For ν being a natural number n , only the first n+1 Grünwald coefficients Aj+1 are non-zero, indicating
a local operator. On the other hand, since for any positive non-integer number all coefficients Aj+1 are
non-zero, fractional derivatives are non-local operators (except for integer-order derivatives). Analogous
to the integer-order integral, the lower limit (also called ‘terminal’) of the fractional derivative in Eqn 10
is zero. This is indicated by the function values taken into account in the sum in Eqn 10, i.e. the first
addend (j = 0) is A1f(t) and the last (j = N − 1) is ANf(t − N−1

N
t) = ANf( t

N
). Thus, the interval

(0, t] is divided into N sections of equal size for the calculation of the fractional derivative or integral.
In this paper the lower terminal is assumed to be zero. This may be indicated using the differential
operator representation
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ν
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such that the lower indices 0 and t indicate the lower and upper terminal of the fractional differential
operator, respectively. In what follows, the lower indices are skipped, hence Dν = 0D

ν
t .

NUMERICAL CALCULATION OF FRACTIONAL DERIVATIVES

Analogous to the numerical evaluation of integrals, fractional derivatives can be calculated by approxi-
mating the infinite sum in Eqn 10 by a finite sum, such that N < ∞ ,

Dν f(t) ≈

(
t

N

)
−ν N−1∑

j=0

Aj+1 f(t − j t
N

) . (13)

When calculating the Grünwald coefficients Aj+1 by Eqn 11, numerical problems can arise if ν is close
to an integer or if large values of j occur. Therefore, the calculation of the Grünwald coefficients Aj+1

should be realized by the recursive relationship

Aj+1 =
Γ(j − ν)

Γ(−ν)Γ(j + 1)
=

j − 1 − ν

j

Γ(j − 1 − ν)

Γ(−ν)Γ(j)
=
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j
Aj . (14)

One can show that the series given by |Aj+1| is strictly decreasing for all j > ν and that it tends to zero

lim
j→∞

|Aj+1| = 0 , (15)

see Schmidt and Gaul.13 With growing j the Grünwald coefficients are weighting function values that
are situated further in the past. This is why the influence of the past is faded out as time elapses, which
is attributed to the ’fading memory‘ property.

In the section ’Finite Element Formulation and Implementation‘, fractional derivatives will be used in
conjunction with a time integration algorithm, where fractional derivatives have to be computed at each
increment. The time-discrete function values f(t − j t

N
) that are needed to evaluate the fractional



derivative are then computed from the history of the time integration. Usually, the time step size for
the evaluation of the fractional derivative t

N
is taken equal to the time step size for time integration

∆t . Thus, at the beginning of time integration t = 0 there is no history (N = 1 ), but the more time
increments are calculated, the more history has to be taken into consideration and the computation of
the fractional derivative slows down. In addition, the storage requirements increase, as the whole history
must be saved. In the following, three different concepts are presented in order to speed up the calculation
and to reduce the storage requirements.

Concept A

The property of the ’fading memory‘ in Eqn 15 motivates the truncation of the history in Eqn 13:

Dν f(t) ≈

(
t

N

)
−ν N`∑

j=0

Aj+1 f(t − j t
N

) , N` > N − 1 (16)

such that only up to N` sample points of the past f(t − j t
N

) are under consideration. Hence, during
time integration the numerical effort is the same as with Eqn 13, until all N` sample points are needed.
Then, for each new sample point, the oldest one drops out and the numerical effort as well as the storage
requirements stay constant for the rest of time integration.

Concept B

Another possibility to reduce the numerical effort is to choose the step size t
N

for the evaluation of the
fractional derivative as a multiple of the time step size ∆t for time integration

t

N
= c ∆t , c > 1 . (17)

If, e.g. c = 2 , the number of sample points f(t − j t
N

) to be considered when calculating the fractional
derivative in each time increment is reduced by a factor of 2. In addition, only in every second time
increment the fractional derivative has to be calculated and the storage requirements bisect.
As with growing c the level of accuracy of the fractional derivative in Eqn 13 is decreasing, there is a
limit for selecting c . On the other hand, investigations have shown that the requirements for the time
step size ∆t are higher than those for the time step size t

N
in order to ensure some desired degree of

accuracy, see eg. Padovan.11 Therefore, a moderate factor, e.g. c = 2 seems to be justified.

Concept C

The idea behind this concept is to take the ’newer‘ history into consideration with a high resolution
and the older one with a low resolution, instead of truncating it as in concept A. Starting point is the
approximation in Eqn 13. Using the recursive relation in Eqn 14, we obtain at time t0

Dν f(t) ≈

(
t0

N

)
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where fj is an abbreviation for f(t0 − j t0
N

) . Now, we consider the expression Ti+1 which represents a
whole interval as one contribution to the fractional derivative, see Fig. 1. The upper limit t0 − (i + 1) t0

N

and lower limit shall be constant during time integration, i.e. i =const. Thus, n time increments later
at time t0 + n∆t the fractional derivative is given by
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)
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When applying the concept of fractional derivatives to viscoelasticity, the orders of fractional derivatives
ν are positive. Thus, for i > ν − 1 we see from Eqns 18 and 19 that the value of all weighting factors in
T ranges between zero and unity. In addition, as time elapses, all weighting factors are strictly increasing
and tend to unity. Simultaneously, the weighting factor of T tends to zero, such that the influence of
the interval under consideration is fading out.

Knowing the ’starting value‘ Ti+1 at the time t0 and the value T∞ for t → ∞ , we can approximate
the time dependent value Ti+n+1 , using the unity function f1 = 1 :

Ti+n+1 = Ti+1 +
T 1

i+n+1 − T 1

i+1

T 1
∞

− T 1

i+1

(T∞ − Ti+1)
!
= Ti+1 + wi+n+1(T∞ − Ti+1) , (20)

where the upper-right index in bold face indicates that the variable is evaluated with the unity function.

The advantage of this concept comes into operation when it is applied to spatially discretized structures
like in the FEM. As we will see in the next section, fractional derivatives of stresses and strains have
to be evaluated. Thus, the fractional derivatives are needed for all nodal displacements and the stresses
at all integration points. Since the weighting factor wi+n+1 only depends on time, it can be calculated
once at the beginning of each increment. Then it can be used for the calculation of all needed fractional
derivatives. For each nodal displacement and stress state at each integration point, only the values of
Ti+1 and T∞ have to be calculated and stored in order to approximate the influence of the time interval
under consideration on the fractional derivative. Note, concept C is not restricted to only one interval.
For calculations whith a high number of time increments, many intervals can be established sucessively.

The quality of approximation Eqn 20 is demonstrated by applying it to three different functions

f1(t) = 1 , f2(t) = a t , f3(t) = sin(π a t) where a =
1

s
(21)

and comparing it to Eqn 13. The time interval under consideration ranges from 0 s to 1 s and the time
step sizes are chosen to be t0

N
= ∆t = 0.05 s . The number i of time increments is i = 20 such that

t0 = 2 s . The order of derivative is set to ν = 0.5 , which is a typical value for viscoelastic material. The
value of T is then computed for the next 500 time increments. In Fig. 2, at the top the functions fi are
displayed in the interval [0 s, 1 s] . At the bottom, the time depending value of Ti+n+1 is displayed as a
solid line for Eqn 19 and as a dashed line for the approximation in Eqn 20.

As expected, for the constant function f1 the approximations in Eqns 19 and 20 yield the same results.
The second and third example show that approximation 20 provides the same results as Eqn 19 for t = t0
and for t → ∞ . For any time t ∈ (t0, ∞) , there is some moderate deviation which does not exceed
1, 1% in our examples.

FRACTIONAL-ORDER CONSTITUTIVE EQUATION

Usually, rheological models of linear viscoelasticity consist of springs and dashpots. The constitutive
equations of these elements may be generalized (see Fig. 3) using fractional derivatives. The resulting
fractional constitutive equation

σ = pDν ε (22)

includes p as a proportionality factor and ν as the order of derivative which is commonly taken to range
between 0 and 1 . If ν = 0 , Eqn (22) describes the behavior of a spring where p specifies the springs’
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Fig. 2: Approximation of fractional derivatives, concept C

stiffness. For ν = 1 , Eqn 22 defines the constitutive equation of a dashpot, in which p defines the
viscosity. Thus, the fractional constitutive equation 22 ’interpolates‘ between the material behavior of a
spring and that of a dashpot. The rheological element which refers to Eqn 22 was therefore introduced
by Koeller9 as a ’spring-pot’ and is denoted by a rhomb, see Fig. 3.

By replacing the dashpots in rheological models by spring-pots, fractional rheological models are derived.
Application to the 5-parameter model (two Maxwell elements and a spring in parallel) results in the
’fractional 5-parameter model‘, see Fig. 4. Its constitutive equation is given by

σ +
p1

E1
Dν1σ +

p2

E2
Dν2σ +

p1p2

E1E2
Dν1+ν2σ

= E0ε + p1
E0 + E1

E1
Dν1ε + p2

E0 + E2

E2
Dν2ε + p1p2

E0 + E1 + E2

E1E2
Dν1+ν2ε .

(23)

For the solution of this fractional differential equation, pertinent fractional-order initial conditions have
to be defined. In this paper, all initial conditions are assumed to be zero, refering to a material that is
completely relaxed at t = 0 .

An extension of Eqn 23 to three dimensions, differentiating between the hydrostatic and the deviatoric
states is demonstrated by Schmidt and Gaul13 for isotropic materials. In this work, we restrict ourselves
to the one-dimensional case.
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FINITE ELEMENT FORMULATION AND IMPLEMENTATION

The displacement type formulation for the Finite Element Method is based on

u = H û , (24)

where u denotes the displacement field of an element, û is the vector of the nodal displacements and
H specifies the shape functions. The strain field ε and the nodal displacements are linked by

ε = B û , (25)

such that B defines the appropriate spatial derivatives of H . The principle of virtual work yields the
equation of motion ∫

R

B
T
σ dR + M ¨̂u = r (26)

where R is the region in which the element is defined and r defines the external and the body forces.
The consistent mass matrix M is given by

M =

∫

R

H
T ρH dR , (27)

ρ denoting the mass density of the material. To simplify matters, in the following the accent ·̂ is skipped.
At time t , indexed on the upper-left of the variable, the equation of motion results in

∫

V

B
T t

σ dR + M
t
ü = t

r . (28)

The stress vector t
σ is derived from the viscoelastic constitutive equation (23). If we apply the time

discrete Grünwaldian formulation of fractional derivatives (16) to Eqn (23) and solve for t
σ , we obtain
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where the upper-right indices in brackets indicate the dependance of the Grünwald coefficients on the
order of respective fractional derivative. Note, Eqn 29 depends on the actual strain, the strain history
and the stress history. If we insert Eqn 29 into Eqn 28 and replace the strains ε by relation 25, the
resulting equation of motion can be transformed into

M
t
ü + K

∗

u = t
r
∗ , (30)



such that K
∗ is a modified stiffness matrix and r

∗ is a modified force vector which contains the effects
of the strain and the stress history, see Schmidt and Gaul.13 Regarding the form of Eqn 30, it can be
solved with any elastic FE solver in conjunction with either implicit and explicit integration schemes.

PARAMETER IDENTIFICATION

A parameter identification for the polymer DelrinTM is carried out in the time domain and in the fre-
quency domain simultaneously. The time-dependant behavior is given in terms of the creep modulus Ec

in the range from 10 s up to 10 000 h . Besides the measurements of the manufacturer, own measurements
have been carried out to cover the short-time period smaller than 360 s . In addition, free decay tests of a
cantilever made of DelrinTM have been carried out at 12 different frequencies in the range from 50Hz up
to 500Hz . The oscillations were measured by a laser vibrometer and the frequency-dependant complex
modulus was calculated.
The 7 material parameters of the fractional 5-parameter model (see Fig. 4) are identified in terms of an
optimization using the least-square fit method. While the complex modulus of the fractional rheological
models can be calculated analytically (see Schmidt and Gaul13), the time-dependant behavior is evalu-
ated by numerical time integration in each iteration step. The material parameters are given in Table 1
while the time and frequency dependent material behavior is compared to the measurements in Fig. 5.

Table 1: Identified parameters in the time and frequency domain

E0 E1 E2 p1 p2 ν1 ν2

58.534 N
mm2 2760.8 N

mm2 2967.7 N
mm2 24.797 N

mm2 sν1 62 510 N
mm2 sν2 0.19911 0.24991

FE CALCULATION AND COMPARISON OF THE DIFFERENT CONCEPTS

An implementation into the FE code MARC is realized according to the section ’Finite Element Formu-
lation and Implementation‘ for isoparametric 8-noded brick elements. In addition, the concepts A, B and
C are available in order to decrease the numerical costs.
As an example, the free decay of a cantilever made of DelrinTM is calculated, where the identified frac-
tional 5-parameter model (see section above) is used. The FE model is shown in Fig. 6. At the left
side, fixed displacement typ of boundary conditions are applied to the first 2 rows of nodes in order to
model the fixed support. The free length of the cantilever is 100mm , while its cross-section measures
2.2mm × 10mm . The model is initially at rest and in the first increment, a steady force in y-direction
is applied to the last row of nodes at the right-hand side. Thus, an oscillation about the position of
equilibrium is excited, while the position of equilibrium moves with time due to material creep. Since the
height of the model has no influence on either the vibration and the creep, only one row of elements is
modeled. The calculation is continued for 2000 time increments of 0.001 s using the Newmark integra-
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tion scheme without numerical damping. Calculations are performed with the ’original‘ approximation
of fractional derivatives (Eqn 13) as the ’reference calculation‘ and with the conceps A, B and C. The
results of the decaying oscillation can be compared to the respective measurements, while the superposed
creep behavior can be compared to the theoretical curve from numerical integration (see section above).

The tip deflection of the cantilever is given exemplarily for the reference calculation in Fig. 6. The
reference calculation and the concepts A and C fit the measured frequency and the decaying behavior of
the cantilever quite well. With concept B, numerical instabilities occur such that only during the first
few hundred increments the results are fairly accurat. The needed cpu-time and the storage requirements
are given in Table 2 together with a specification of the parameters of the different concepts.

Table 2: Comparison of the computational requirements for the different concepts

ref. calculation concept A concept B concept C
parameters — N` = 250 c = 2 i = 50, length of intervals: 200 t

N

relative cpu-time 100 % 24.43 % 26.60 % 24.70 %
relative memory 100 % 18.56 % 53.88 % 26.25 %

Further deviations of the different concepts can be seen from the creep behavior. Since the state of
equilibrium can not be extracted directly from the calculation, the mean values of each two consecutive
maxima are calculated and a polynomial is fitted. The resulting creep curves are displayed in Fig. 7.
While the creep curves of the reference calculation and the concepts B and C are indistinguishable,
concept A shows significant deviation. The reason for this inaccuracy is the fact that the creep properties
are affected by the whole deformation history. Thus, as with concept A only the newest part of the
history is under consideration, after N` time increments the errors accumulate during time integration.
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Fig. 7: creep behavior of the cantilever



CONCLUSIONS

In this work, fractional time derivatives were used to deduce a new, generalized rheological element, called
a ’spring-pot‘. If one replaces the dash-pots in traditional rheological models by spring-pots, gereralized
models of linear viscoelasticity are obtained. The constitutive equations of these models were shown
to be differential equations of fractional order which can be used in conjunction with FE formulations,
using the time discrete Grünwald definition of fractional derivatives. A parameter identification for a
polymer in the time and in the frequency domain simultaneously pointed out the excellent adaptivity of
this concept to measured data over broad ranges of both time and frequency. The main disadvantage
of this method is the increasing numerical effort and the storage requirements due to the non-locality
of fractional operators. Thus, three different concepts A, B and C were presented in order to reduce
the computational requirements. As long as pure oscillations are under consideration, concepts A and
C result in an substancial decrease of the numerical costs, retaining a high level of accuracy. With
concept B, numerical instabilities arise, resulting in significant inaccuracies to after some hundred time
increments. If creep processes are examined, the whole history has to be taken under consideration.
Thus, with concept A obvious deviations occur which can be prevented by using concept B or C instead.
Hence, only with concept C substantial reduction of the numerical effort can be achieved without losing
accuracy for both, the oscillation behavior and the creep properties.
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