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Abstract

A structure’s damping behavior is mainly influenced by the dissipative characteristics of its

joints and the damping properties of its component materials. Part 2 of the VDI 3830 guide-

line damping of materials and members is dedicated to the modeling of linear and non-linear

material damping while part 5 deals with different experimental techniques aiming at the ex-

traction of appropriate material parameters. This paper gives an overview concerning the

phenomena associated with linear viscoelastic material behavior and the respective modeling

using classical derivatives and its generalization by the concept of fractional derivatives.

As an example, experimental investigations conducted on an engineering plastic material yield

its temperature und frequency dependent material properties. Based on the principle of ther-

morheologic simple material behavior, a so-called master curve is identified which maps the

elastic and the dissipative properties of the material over an extensive frequency range. Finally,

the material behavior is efficiently modeled with few material parameters through the use of

fractional derivatives. The resulting constitutive equation is then used for further numerical

calculations.

Kurzfassung

Das Dämpfungsverhalten von Strukturen wird wesentlich beeinflusst von den dissipativen

Eigenschaften seiner Fügestellen sowie dem Dämpfungsvermögen der verwendeten Werkstoffe.

Blatt 2 der VDI-Richtlinie Werkstoff- und Bauteildämpfung VDI 3830 widmet sich der Mo-

dellierung von linearer und nicht-linearer Werkstoffdämpfung, während in Blatt 5 verschiedene

experimentelle Techniken zur Gewinnung geeigneter Kennwerte zusammengestellt sind. Der

vorliegende Beitrag gibt einen Überblick über die Phänomene linear-viskoelastischen Mate-

rialverhaltens und ihre Modellierung mit ganzzahligen Zeitableitungen sowie deren Erweiterung

mit Hilfe von fraktionalen Zeitableitungen.

Am Beispiel eines technischen Kunststoffs wird die Ermittlung von Materialparametern aus

verschiedenen Versuchen dargelegt, die einen größeren Frequenz- und Temperaturbereich ab-

decken. Auf der Basis von thermorheologisch einfachem Materialverhalten lässt sich daraus

eine ’Master-Kurve’ identifizieren, durch die das Werkstoffverhalten über einen extrem großen

Frequenzbereich abgebildet wird. Die Modellierung der so gewonnenen Werkstoffeigenschaften

wird mit dem Konzept der fraktionalen Ableitungen auf elegante Art mit wenigen Materialpa-

rametern gelöst und weitergehenden numerischen Berechnungen zugänglich gemacht.
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1 Introduction

The calculation of the dynamic behavior of any structure requires knowledge about its stiffness

and its mass distribution. In addition, if energy dissipation cannot be neglected, the damping

properties of the structure also have to be modeled. Measurements of the stiffness and the

mass properties of engineering materials and their inclusion into any numerical calculation

method such as the Finite Difference Method (FDM), the Finite Element Method (FEM), or

the Boundary Element Method (BEM) does not present any serious difficulties. In contrast, the

determination of the dissipative properties of materials and assembled structures is a difficult

task, especially if the amount of damping is low compared to the deformation energy and

the kinetic energy of the structure under consideration. Moreover, the current techniques for

modeling damping are in many cases insufficient.

In any experimental setup for the measurement of material damping, some amount of energy

is lost through the mounting or suspension of the material sample or through air friction.

Such losses will be misinterpreted as material damping losses and thus falsify the results,

especially for low-damping materials. Also, the amount of damping depends on the frequency,

the amplitude, or the temperature. Such dependencies are particulary evident in the case

of rubber materials and plastics [17, 19]. The detection of joint damping depends on even

more parameters such as the materials involved, their surface texture and contact pressure,

the amplitude of the exciting force, interface layers, etc.

Hence, the modeling of damping behavior is a demanding task. A simple approach can be

made by an experimental modal analysis of the structure under consideration, which yields its

modal shapes and the corresponding modal damping factors. A numerical model then might

be set up based on the real mode shapes of the undamped system and the measured modal

damping values. However, This approach does not allow numerical prediction of the structure’s

damping properties. In addition, the damping behavior is only valid for the structure under

consideration and cannot be transferred to any other structure. The overall damping behavior

can be interpreted as an integral result of many distinct damping mechanisms, whereby the

individual loss mechanisms are not understood.

Thus, for a systematic approach one has to investigate and to model the different contributions

to the overall damping behavior separately. This will result in local damping models for the

different materials and joint regions. Local modeling of damping leads to complex eigenmodes

which can also be observed in experimental investigations. Due to the complexity of the matter

several research projects have been initiated to address different aspects of the underlying

physics, to perform experimental investigations, and to develop adequate damping models.

As long as a material or a complete structure is operated within its linear range or can be
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linearized about an operation point, linear viscoelastic models are used to describe the struc-

ture’s damping properties [17]. One advantage of this approach is the possibility to carry out

calculations both in the time domain and in the frequency domain. In addition, results from

an (also linear) experimental modal analysis can directly be linked to numerical approaches.

Linear viscoelastic constitutive equations can be written most generally in terms of hereditary

integrals [7, 19]. In this formulation, the so-called material functions — that is, the creep

compliance or the relaxation function — are used to obtain a general stress-strain relation

through use of the principle of superposition. Alternatively, linear viscoelasticity can be defined

by a differential equation in time relating the stresses and strains and their temporal derivatives.

A graphical representation of viscoelastic material behavior is obtained by a composition of

springs and dashpots such as the Maxwell model, the Kelvin-Voigt model, or the Standard

Linear Solid [32]. If one has to distinguish between the hydrostatic and the deviatoric material

behavior, the respective constitutive equations have to be set up and treated separately [7].

Classical models of linear viscoelasticity predict a strong frequency dependence of the damping

properties, whereas measurements on viscoelastic materials and joints reveal a very small

change in their dissipative behavior with varying frequency [17, 19]. Thus, classical models

have to be expanded to better concur with the measured data, which results in a high number

of material parameters that have to be identified. Alternatively, the so-called model of constant

hysteresis might be used in frequency-domain calculations. However, this model leads to non-

causal material behavior in the time domain [10].

A better approximation is obtained by the use of fractional time derivatives [17]. These

’fractional models’ have been verified to fulfill the second law of thermodynamics and show

causal material behavior [20]. Thus, they can be used in time domain and in frequency domain

calculations. The appearance of fractional derivatives in viscoelastic constitutive equations is

physically sound [24, 8, 33] and leads to models that concur well with the measured data

over broad ranges of time or frequency with few material parameters [17]. This concept was

first suggested by Gemant [13, 14] in 1936 and had its revival by the research of Bagley and

Torvik [2, 4, 3, 29] in the beginning of the 1980s. Applications of fractional derivatives in very

different disciplines such as viscoelasticity, control theory, diffusion processes, biophysics, or

thermodynamics are subject matters of recent research projects [16, 21, 23].

2 Classical Models of Linear Viscoelasticity

Classical linear viscoelastic material models can be represented by an arbitrary composition of

springs and dashpots where the stresses σ in the springs are proportional to their strains ε

σ = Eε (1)
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Figure 1: The 3-parameter model: two equivalent representations

and the stresses σ of the dashpots proportional to their strain rates ε

σ = ηε̇ . (2)

The simplest model for solids that is able to show all phenomena related to viscoelasticity is

the 3-parameter model (also called ’standard linear solid’ or ’Zener model’), see Fig. 1. It

consists of a spring (E0) in parallel to a Maxwell element (E1, η1) and degenerates to a Kelvin

element for E1 → ∞ . Its constitutive equation is given by

σ +
η1

E1

σ̇ = E0ε + η1

E0 + E1

E1

ε̇ . (3)

Regarding the definition of viscoelasticity by means of hereditary integrals, the relaxation

function (i.e. the answer of the model to a single step in strain of amplitude ε̂ at t = 0 )

E(t) =
σ(t)

ε̂
= E0 + E1e

−t/τR , t > 0 (4)

can be derived from Eq. (3). In Eq. (5) τR = η1/E1 denotes the relaxation time. Alternatively,

the creep compliance (i.e. the answer of the model to a single step in stress of amplitude σ̂

at t = 0 )

J(t) =
ε(t)

σ̂
=

1

E0

−
E1

E0(E0 + E1)
e−t/τC , t > 0 (5)

is found from Eq. (3), where τC = η1(E0 + E1)/(E0E1) is called the retardation time. Using

the principle of superposition, the answer of the model to an arbitrary load can be found as

[32]

σ(t) = ε(t)E(0) +

t∫
0

ε(τ)Ė(t − τ) dτ (6)
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or

ε(t) = σ(t)J(0) +

t∫
0

σ(τ)J̇(t − τ) dτ . (7)

Transferring Eq. (3) into the frequency domain yields

σ̃ =
E0 + i η1ω

E0+E1

E1

1 + i η1ω
E1

ε̃ = E∗ε̃ (8)

where a tilde denotes the Fourier transformed and the abbreviation

E∗ = E ′ + iE ′′ = (1 + iη)E ′ (9)

is called the complex modulus. The latter consists of the storage modulus E ′ and the loss

modulus E ′′ and can alternatively be written in terms of the loss factor η . For the 3-parameter

model one obtains

E ′ =
E0 + (η1ω)2 E0+E1

E2
1

1 +
(

η1ω
E1

)2
, E ′′ =

ωη1

1 +
(

η1ω
E1

)2
. (10)

The time- and the frequency-dependent properties of the 3-parameter model are displayed

in Fig. 2 on half-logarithmic scales. By adjusting the free parameters one can control the

respective magnitudes and relaxation or retardation times of the curves. But all curves will only

be ’active’ within approximately two decades in time or frequency. Since most materials or joint

patches show a weak frequency dependence that typically covers a range of several decades,

in classical viscoelasticity models are used that consist of many spring/dashpot combinations

as displayed in Fig. 3. The resulting constitutive equations can be written in the form

n∑
k=0

pkD
kσ =

m∑
k=0

qkD
kε , (11)

where the operator Dk denotes the derivative of order k with respect to time and pk, qk

are the material-dependent coefficients. In viscoelastic models according to Fig. 3 the number

m = n equals the number of Maxwell elements (spring-dashpot combinations connected

in series) or the number of Kelvin-Voigt elements (spring-dashpot combinations in parallel),

respectively. The relaxation function and the creep function are deduced by means of a Laplace

transformation [32] and can be written in the form

E(t) = E0 + E1e
−t/τR1 + E2e

−t/τR2 + . . . + Ene−t/τRn (12)

J(t) = J0 + J1e
−t/τC1 + J2e

−t/τC2 + . . . + Jne−t/τCn , (13)
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Figure 2: Time- and frequency-dependent behavior of the 3-parameter model

where τCi
and τRi

are the different creep and relaxation times, respectively. The frequency-

domain representation of Eq. (11) results in

σ̃ =

∑m
k=0 qk(iω)k∑n
k=0 pk(iω)k

ε̃ = E∗ε̃ . (14)

The respective time- and frequency-dependent constitutive behavior is depicted in Fig. 4. The

resulting curves can be interpreted as a superposition of n curves as they are obtained from

the 3-parameter model, see Fig. 2. Thus, the curves still show a strong frequency dependency

that now covers a broader range of time and frequency at the expense of an increasing number

of material parameters. In practice, commonly one Maxwell element is added for each decade

in time or frequency to be covered as a compromise between the objectionable overshooting

behavior and an increasing number of material parameters. An example is given in Section 5.
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Figure 3: The n-parameter model: two equivalent representations

3 Fractional Models of Linear Viscoelasticity

A generalization of classical viscoelastic models is obtained by the use of fractional derivatives

instead of integer-order derivatives. A fractional derivative of order α of a function f(t) with

respect to time is given by (Riemann-Liouville definition, see e.g. [21, 23])

aD
α
t f(t) = Dn

[
aD

α−n
t f(t)

]
=

1

Γ(n − α)
Dn

⎡
⎣ t∫

a

f(τ)

(t − τ)α+1−n
dτ

⎤
⎦ ,

n ∈ N, α ∈ R, n > α ,

(15)

where

Γ(x) =

∞∫
0

yx−1e−y dy (16)

is the Gamma function [1]. Eq. (15) provides the classical derivatives for α ∈ N . Note that

in contrast to integer-order derivatives a fractional derivative is a non-local operator since

the history of the function in the interval [a, t] contributes to its actual value, similar to an

integration. The question of what value has to be taken for the lower boundary a depends

on the physical interpretation of the underlying problem. In general, the lower boundary (also

called ’terminal’) is set to a = −∞ . The Fourier transformation of a fractional derivative of

a function f(t) leads to

F [−∞Dα
t f(t)] = (iω)αf̃ , (17)
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Figure 4: Time- and frequency-dependent behavior of the n-parameter model (for n=7)

where f̃ is the Fourier transformed of the function f . This essential property can also be

used to define a fractional derivative [5].

In order to become more familiar with fractional derivatives, some examples are given in the

following. The fractional derivative of an exponential function (see [21])

−∞Dα
t exp(ct) = cα exp(ct) (18)

also results in an exponential function and for trigonometric functions it can be shown that

[25]

−∞Dα
t sin(ct) = cα sin

(
ct + α

π

2

)
, (19)

−∞Dα
t cos(ct) = cα cos

(
ct + α

π

2

)
. (20)
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Figure 5: Function f(t) and its fractional derivatives of order α = 1/4, 2/4, 3/4, . . . , 8/4

Finally, in Fig. 5 the function

f(x) =

{
x3 for x ≥ 0

0 for x < 0
(21)

and its fractional derivatives in steps of 1/4 including the first-order and the second-order

derivatives are displayed.

So-called ’fractional constitutive equations’ can be derived by replacing the integer-order

derivatives in Eq. (11) by fractional derivatives resulting in

n∑
i=0

pi −∞Dαi

t σ =
m∑

i=0

qi −∞Dβi

t ε . (22)

In Eq. (22) the values of αi and βi are additional free parameters that can be adjusted to

meet the measured data. A drawback of this approach is that additional conditions have to

be fulfilled to guarantee a constitutive behavior of a solid (limited flow) and to ensure the

capability for a jump in strain. Moreover, restrictions on the parameters to ensure purely

dissipative behavior (i.e. to fulfill the second law of thermodynamics) for a general model as

described in Eq. (22) are not available.

An alternative way to deduce fractional constitutive equations makes use of a generalized

damping element that is also called a ’fractional element’ or a ’spring-pot’ [18]

σ = p−∞Dα
t ε . (23)
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Figure 6: Illustration of the generalized ’fractional’ element

A fractional element usually is illustrated as a diamond and possesses two free parameters p

and α , see Fig.6. For α = 1 Eq. (23) switches over to the constitutive equation of a dashpot

(2) where p becomes the meaning of a viscosity η and for α = 0 Eq. (23) is identical to

the constitutive equation of a spring (1) where p is equivalent to Young’s modulus E . The

capabilities of a solid are assured by simply replacing the dashpots of a respective classical

model by fractional elements. In case of the classical 3-parameter model one arrives at the

’fractional 3-parameter model’ and its constitutive equation

σ +
p

E1
−∞Dα

t σ = E0ε + p
E0 + E1

E1
−∞Dα

t ε . (24)

Using relation (17), the constitutive equation (24) can be transformed into the frequency

domain

σ̃ =
E0 + (iω)α p E0+E1

E1

1 + (iω)α p
E1

ε̃ = E∗ε̃ . (25)

From Eqns. (17) and (25) it becomes obvious that the frequency dependence of the model’s

properties is directly linked to the order of derivative α and becomes weaker for decreasing

α .

Regarding the hereditary integral formulation, the relaxation function E(t) or the creep com-

pliance J(t) have to be calculated from the constitutive equation (24). This has been done

by Caputo and Mainardi [6] and leads to

E(t) = E0 + E1 Eα

(
−

E1

p
tα

)
(26)

J(t) =
1

E0

−
E1

E0(E0 + E1)
Eα

(
−

E0E1

p(E0 + E1)
tα

)
(27)
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Figure 7: Time- and frequency-dependent behavior of the n-parameter model (for n=7)

where

Eα(x) =
∞∑

k=0

xk

Γ(αk + 1)
(28)

is the Mittag-Leffler function which can be interpreted as a generalized exponential function.

The influence of the order of derivative α on the material functions is depicted in Fig. 7.

Similar to the frequency dependence, the time dependence is reduced with decreasing α and

leads to a smoother changeover from the initial values to the long-term properties.

Any fractional viscoelastic model made up by an arbitrary composition of springs, dashpots,

and fractional elements is proved to exhibit causal behavior and to fulfill the second law of

thermodynamics [20]. Moreover, the appearance of fractional derivatives in the constitutive

equations of viscoelastic media was already deduced on the basis of molecular theories in the

1950s [24, 8, 33].
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4 Experimental investigations

As an example, the engineering plastic DelrinTM 100 manufactured by DuPont company is

considered. DelrinTM is a thermoplastic polyoxymethylene (POM) that is widely used in

technical applications (e.g. as zippers or gears) due to its relatively high stiffness combined

with a low friction coefficient.

Two different experiments are performed in order to obtain the frequency-dependent complex

modulus. At first, free decay experiments (cf [31]) are carried out with cantilevers made

of Delrin. The samples are fixed at one end and excited to perform free oscillations that are

measured by a laser vibrometer, see Fig. 8. Different frequencies are obtained by a modification

of the free length 
 and the use of samples of different thickness.

For purely elastic materials the first eigenfrequency is given by [15]

ω0 =

(
1, 875




)2
√

EI

ρA
. (29)

Since the material is weakly damped, the measured eigenfrequency ω is nearly identical to

the undamped frequency ω0 and real part of the complex modulus

E ′ ≈ E (30)

is good approximation equal to Young’s modulus E which can be calculated from Eq. (29).

The complex part E ′′ of the complex modulus is found from the decay behavior of the
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Figure 9: Storage modulus and loss modulus detected from free decay experiment

oscillation. The envelope xe(t) of the oscillation can be expressed as

xe(t) = x̂ exp(−ξω0t) , (31)

where the damping ratio ξ is found from a parameter identification. Finally, the loss modulus

can be calculated [31]

E ′′ ≈ 2ξE ′ . (32)

The results of this experiment cover a range from 50 Hz up to 500 Hz and are depicted in

Fig. 9.

The second set of experiment is performed by a testing machine RMS-800/RDSII (Rheomet-

rics) in which a sample is subjected to rotational deformations

φ(t) = φ̂ sin(ωt) (33)

and the resulting torque is measured. Since the sample’s dimensions are known, the shear

stresses τ and the shear strains ε

τ(t) = τ̂ sin(ωt) (34)

ε(t) = ε̂ sin(ωt − Φ0) (35)

can be calculated. Again, for weakly damped materials the imaginary part of the shear modulus

is given by

G′ ≈
ε̂

τ̂
(36)
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and the loss modulus is linked to the phase angle Φ0 [30]

G′′ = tan Φ0 G′ . (37)

The testing machine allows to perform measurements at different temperatures and frequen-

cies. For the material under consideration measurements are accomplished within a tempera-

ture range from −20◦C up to 50◦C in steps of 2◦C each of which including the frequencies

1 Hz, 2 Hz, 5 Hz, 10 Hz, 20 Hz and 50 Hz.

Assuming thermo-rheological simple material behavior, a shift in temperature corresponds to

a shift in frequency and vice versa. Thus, a so-called master curve can be determined, that

covers a broad range of frequencies f at one reference temperature T0 .

The complex modulus at one distinct frequency f1 and reference temperature T0 is equal to

the complex modulus at some other temperature T2 and a frequency f2 , where a function

γ can be found that ’scales’ the frequency f2 to f1 :

G∗(f1, T0) = G∗(f2γ(T2, T0), T0) . (38)

Once the temperature-dependent function γ(T, T0) for a viscoelastic material is identified,

measurements at any temperature can be ’converted’ into a so-called reduced frequency at

the reference temperature T0 [17]. This results in the master curve one is looking for. If

storage and loss modulus are unique functions of the reduced frequency fγ(T, T0) they must

be unique functions of each other. This can be checked by the so-called ’wicket plot’ where

the loss factor η (cf Eq. (9)) of the measured data is plotted against the storage modulus.

As long as all data points lie close to one curve, the requirements for thermo-rheological

simplicity are fulfilled. Considering the measurements made with DelrinTM , the data for 20

Hz and for 50 Hz are skipped since the corresponding loss factors obviously are connected to

some systematic error. The resulting data shows good agreement with the requirement for

thermo-rheological simple material behavior, see Fig. 10.

In practice, since the a pair f2, T2 that exactly matches the reference value G∗(f1, T0) gener-

ally will not be found, the measurements at a different temperature are shifted in frequency to

match the data at some overlapping area. This can be seen from Fig. 11 for the material un-

der consideration. The frequency-shift function γ(T2, T0) can either be defined by identifying

individual shift factors

γ2(T2, T0) , γ3(T3, T0) , γ4(T4, T0) , . . . (39)

of all temperatures at which measurements are made. Alternatively some analytical function

can be set up, where the most common approaches are given by the Williams-Landel-Ferry

(WLF) relationship

log [γ(T2, T0)] = −c
T − T0

b + T − T0

(40)
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Figure 10: Wicket plot for the measured data of DelrinTM

and the Arrhenius shift factor equation

log [γ(T2, T0)] = TA

(
1

T
−

1

T0

)
, (41)

where the free parameters b, c and TA have to be identified, respectively.

For the measured complex modulus of DelrinTM linear interpolation in the half-logarithmic

scale was used to identify the individual shift factors for the 36 different temperatures using

T0 = 0◦C as reference temperature. The result can be seen from Fig 11. Especially for

the storage modulus a unique curve is obtained even though for low frequencies smaller than

10−15 Hz there is no overlapping of the shifted frequencies any more.

Both measurements can now be used to check for consistency and to determine Poisson’s ratio

ν from the relationship

G =
E

2(1 + ν)
. (42)

Since the measurement of the loss modulus always is associated with some uncertainties, either

the storage modulus or the amplitudes of the complex modulus can be used in Eq. (42). For

DelrinTM , the Poisson’s ratio

ν ≈
E

2G
− 1 ≈ 0.39 (43)
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Figure 11: Temperature-dependent complex modulus as measured (top; dashed: lowest temp.

(−20◦C), dash-dotted: highest temp (50◦C)) and resulting master curve at 0◦C (below)

is detected from the measured storage modulus, where both measurements are carried out at a

temperature of T = 22◦C . The resulting data is depicted in Fig. 12. Since both, the storage

modulus and the loss modulus of the measurements are in good agreement with a Poisson’s

ratio 0 < ν = 0.39 < 0.5 , the two measurements are verified.

Generally speaking, Poisson’s ratio ν(f, T ) is a function of the frequency f and the tempera-

ture T . However, since the dependency on f and T has shown to be slight and is difficult to

measure whereas its influence on a structure’s behavior is marginal, a frequency-independent

Poisson’s ratio is often assumed.
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Figure 12: Frequency-dependent complex modulus for DelrinTM at 22◦C . +: measurements

with testing machine o: free decay experiments

5 Parameter identification

The complex modulus obtained from the experiments covers a range of approximately 30

decades in frequency. Following the ’rule’ from practical experience with classical models

which states that one Maxwell element is necessary per decade, a model consisting of 30

Maxwell elements (i.e. 61 free parameters) has to be identified. This is done by means of a

least-squares fit where the residuum R to be minimized is given by

R =
imax∑
i=1

[
(G′

i,measured − G′

i,model)
2 + w2 (G′′

i,measured − G′′

i,model)
2
]

. (44)

For the identification all available data points imax = 36 · 4 = 144 are used. The residuum of

the imaginary parts is weighted by a factor of w2 where

w =
G′

max,measured

G′′

max,measured

(45)

is the proportion of the highest measured storage and loss modulus, respectively. The result

displayed in Fig. 13 shows an extensive overshooting behavior associated with poor extrapola-

tion properties.

In contrast, a fractional model depicted in Fig. 14 is identified using the same method, see

Eq. (44). The model consists of 7 free parameters including the orders of derivatives α1 and

α2 . The identified parameters are given in Table 1. In comparison with the classical approach,

the residuum is reduced by 42.4% whereas the fractional model requires only few parameters,
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Figure 13: Parameter identification with a classical 61-parameter model (top) and a fractional

5-parameter model (bottom) o: measured values —: viscoelastic models.

does not show any overshooting behavior, and holds reasonable extrapolation properties, see

Fig. 13. By a change of the weighting factor w , an improved fit to the storage modulus can

be achieved at the expense of a reduced fit to the loss modulus. Similar properties of fractional

models compared to the classical approach can be found from time-domain considerations of

viscoelastic materials [26].

6 Example

The concept of fractional derivatives in linear viscoelasticity can be implemented into the Finite

Difference Method (FDM) [28], the Boundary Element Method (BEM) [9, 11, 12], and the
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Figure 14: Fractional 5-parameter model

Table 1: Identified material parameters for shear deformation

E0/
N

mm2 E1/
N

mm2 p1/
Nsα

1

mm2 α1 E2/
N

mm2 p2/
Nsα

1

mm2 α2

0.0 514.4 77.2 0.0794 1 324.2 7 198.5 0.0202

Finite Element Method (FEM) [22, 27] in the time domain and in the frequency domain. As

an example, the dynamic response of a viscoelastic rod made of DelrinTM is calculated. For

this purpose, the identified fractional viscoelastic model is converted from shear deformation

to axial deformation according to Eq. (42), see Table 2. The rod is fixed at one end and

subjected to a single step in load

F (t) =

{
0 for t ≤ 0

100 N for t > 0
(46)

at its free end. The time-domain calculation is performed with the FDM where the dis-

cretization in time (Central Difference Method) and in space is of second-order accuracy, see

[28]. The rod and its discretization are depicted in Fig. 15 where the total number of spatial

nodes is n = 30 . Since the length of the rod is 
 = 2 m , the nodal distance is given by

Δx ≈ 68.97 mm . The cross section of the rod is circular (diameter d = 15 mm ) and the

density of DelrinTM is ρ = 1 420 kg

m3 . The whole simulation time is 0.6 s were a time step

size Δt = 40μs is used, resulting in 15 000 time steps.

The resulting deflection of the rod’s free end is displayed in Fig. 16. Since the force f(t) is

acting during the whole simulation time, the decaying oscillation is superimposed by a creep

Table 2: Converted material parameters for axial deformation

E0/
N

mm2 E1/
N

mm2 p1/
Nsα

1

mm2 α1 E2/
N

mm2 p2/
Nsα

1

mm2 α2

0.0 1 430.1 214.6 0.0794 3 681.3 20 011.8 0.0202
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Figure 15: FDM discretization of the rod together with its boundary conditions
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Figure 16: Decaying free oscillation of the rod’s tip (left) and its neutral position (right)

process. The neutral position unp can be calculated from the oscillating displacement signal

using three successive extrema uex,1, uex,2 , and uex,3

unp =
uex,1uex,3 − u2

ex,2

uex,1 − 2uex,2 + uex,3

. (47)

The creep process detected from the calculated oscillation is also shown in Fig. 16.

A verification of the parameter identification and the implementation of the fractional con-

stitutive equation into the FDM scheme can be achieved by detecting the complex modulus

from the simulation’s results. The first eigenfrequency f of a rod that is fixed at one end,

see Fig. 15, is given by

f =
c

4

, (48)

where c =
√

E/ρ is the speed of sound. The frequency f = 194.1 Hz is identified from

the calculated oscillation. Since the storage modulus is in very good approximation equal to
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Young’s modulus E (cf. Section 4) one obtains

E ′ ≈ E = 16ρ
2f 2 = 3 423.4
N

m2
. (49)

The loss modulus is detected from the logarithmic decrement

Λ =
1

k
ln

x̂n

x̂n+k

= 0.03970 , (50)

where the amplitudes x̂n and x̂n+k are the maxima after n = 15 and n+k = 115 oscillations

with respect to the tip’s neutral position. In so doing the first 14 oscillations are skipped to

let the transients die out. This finally leads to (see [31])

E ′′ ≈ 2ξE ′ =
Λ

π
E ′ = 43.26

N

m2
. (51)

In order to compare the results with data from the experiments, see Fig. 17, the respective

shear moduli

G′ =
E ′

2(1 + ν)
= 1 231.4

N

m2
G′′ =

E ′′

2(1 + ν)
= 15.56

N

m2
(52)

are calculated. Since the results are in very good agreement with the measured data, the

parameter identification and the numerical implementation are proven to be correct.

7 Summary

Linear viscoelastic constitutive equations are usually modeled by means of spring-dashpot com-

binations. Such models result in integer-order differential equations and exponential functions
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as kernels in hereditary integral formulations for solid materials. This approach shows sub-

stantial deficiencies when measured material behavior has to be modeled over broad ranges

of time or frequency. An alternative approach makes use of fractional derivatives where the

order of derivative is interpreted as a free parameter that can become any real number. The

curve-fitting properties of such models improve significantly while causal material behavior

and thermo-mechanical consistency is assured. The models need only few parameters and

can be implemented into numerical methods for structural calculations. As an example, an

engineering plastic was investigated experimentally, and a master curve was deduced on the

basis of thermo-rheologically simple material behavior. A classical and a fractional-derivative

model were identified in order to highlight the advantages of the new approach. Finally, a nu-

merical calculation of the dynamic response of a plastic rod was accomplished with the Finite

Difference Method in the time domain. The results of the calculation were used to confirm the

parameter identification and the numerical implementation of the fractional-derivative model.
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