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Abstract Running turbines are exposed to high mechanical load. Due togas excitations the structure can vibrate with high
oscillation amplitudes which can damage the turbine blades. Mistuning can additionally lead to high local stresses which
must be taken into account in the turbine design process. Introducing damping due to friction in the interface of shrouded
turbines can be used to decrease this oscillation amplitudes. The computation of full turbine finite-element models with
nonlinear coupling forces causes high computational costs. As a consequence, Component Mode Synthesis methods are
used to reduce the number of DOFs of each blade substructure.Mistuning of the blades can now be applied in modal space.
Coupling of the mistuned substructures is done by nonlinearinterface forces which have to be included in the substructuring
formulation. The resulting reduced and mistuned system with nonlinear coupling forces is solved with a Harmonic Balance
Method such that the effect of mistuning and interface damping can be studied very efficiently.
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1 Introduction

Calculating the steady state response of turbine blades is an important task during the design process of turbines. To ana-
lyze the oscillation of randomly mistuned turbine blades stochastic analysis must be done. In general, this requires many
calculations and therefore a very fast numeric routine is desirable. If nonlinear contacts are considered, the calculation is
very time expensive. In this contribution a fast approximation for the nonlinear contact on shrouded blades is presented
using the Harmonic Balance Method (HBM). Additionally, a Component Mode Synthesis (CMS) to reduce the linear sub-
structures is used to decrease the calculation time to a minimum.
A small benchmark model is considered in order to show the approach and illustrate numeric results. In Fig. 1 the compo-
nents as well as the assembly of the used FE-model are shown.
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Fig. 1 Blade-, disk-components and assembly of the finite-element model.
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This paper is organized as follows. In Chapter 2 the reduction and adjacent assembly of the substructures are described
in detail. Chapter 3 is addressed to the used mistuning formulation. The coupling method applied to the shroud interfaces
is demonstrated in Chapter 4. Subsequently, the Harmonic Balance Method is shortly reviewed in Chapter 5 and Chapter 6
is dedicated to the obtained results. The paper closes with abrief conclusion.

2 Component Mode Synthesis of the turbine

Finite-element models of turbine blades have a large numberof degrees of freedom (DOFs). By using a model reduction
method the order of the system can be reduced to save computational costs. Following the approach presented in [1, 2, 3],
a CMS is used to reduce the disk and blade segments separately, and assemble to the full system hereafter.

2.1 Reduction of the blade

The DOFs of the blade are reduced using the Craig-Bampton method. Interface DOFs are kept in the physical domain,
while free DOFs are replaced by a combination of fixed interface modes and constraint modes. Therefore, the mass and
stiffness matrix,MMMb andKKKb must be partitioned into free (f ) and interface (i) DOFs. The upper index denotes the blade
(b). Note, that here the interface (i) consists of the shroud interface (ishr) and the segment interface of the disk (id).
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Consequently, to determine the fixed interface modes, the eigenvalue problem
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must be solved. The dynamics of the reduced system is defined by the firstn eigenvectorsΦΦΦb =
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of required eigenvectors to achieve accurate solutions depends on the analyzed frequency range. Additionally, the reduction
baseΘΘΘ is enriched by the constraint modes so that it can be written as
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The reduced matrices are obtained by multiplying the reduction base to the system matrices

MMMb
red=ΘΘΘTMMMbΘΘΘ , KKKb

red=ΘΘΘTKKKbΘΘΘ . (4)

In order to expand the blade to a complete system ofNs segments, the single blade matrices , Eq. (4) can be arrangedin a
block diagonal form. If the system matrices are representedin the Cartesian system the coordinates of n-th blade must be
transformed by a rotation matrixTn, containing a multiple of the sector angle,
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The bar symbol constitutes global coordinates of all n blades.



2.2 Reduction and cyclic transformation of the disk

For the reduction of the disk cyclic symmetry can be used. Thecyclic symmetric boundary condition can be applied by the
matrix transformation 
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which forces the left boundaryxxxicyc,l to oscillate phase shifted with respect to the right onexxxicyc,r. This phase shift is
defined by the harmonic indexh, the sector angleα. The matrixTTT describes the geometrical rotation from the left to the
right boundary. To capture the global disk dynamics, all indicesh = 0(1)Ns −1 must be taken into account. The dynamic
behavior of the disk can, thus, be expressed in a block diagonal form
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where each submatrix represents one harmonic index. The harmonic indices are decoupled by definition [1], and therefore
the Craig-Bampton reduction can be performed for each harmonic index separately. Consequently, after the reduction the
disk is described by modal and cyclic coordinates which results to a much smaller number of DOFs,
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2.3 Assembly and Interface Reduction

After the modal reduction of the single segment components and their adjacent expansion to full systems ofNs sectors,
the coupling of the substructure interface can be performed. The interface DOFs of the blades are still in physical domain,
while the interface DOFs of the disk are expressed in cyclic coordinates. Therefore, to couple the interface DOFs of the
blades are transformed using the Fourier matrixF̄FF
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The blades and disk can now be assembled by the assembly matrix TTT cms, which transforms and couples the substructure
interface DOFs,
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Note, that in this case only conforming meshes of the substructure interfaces are considered, [10]. The mass matrixMMMcms

of the assembly, can be written as
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The assembly stiffness matrixKKKcms is defined accordingly. The size of the system is still dominated by the large number of
cyclic interface DOFs, which can be further reduced by an interface reduction. The modal reduction basis of the interface
is obtained by solving the eigenvalue problem of the interface partitions from Eq. (12).
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)

Φ̃ΦΦ ii = 000 (13)

The eigenvectors of the interfacẽΦΦΦ ii span the same subspace as the constraint modes of the global interface between disk
and blades, which can be truncated by keeping only the eigenvectors associated with the lowestk eigenfrequenciesωωωk,ii .
The transformation for the new set coordinates can be formulated as
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and the assembled system matrices can be rewritten as

MMMcms,red=ΘΘΘ T
i MMMcmsΘΘΘ i , KKKcms,red=ΘΘΘ T
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whereΘΘΘ i represents the interface reduction matrix.The assembled system can be further reduced by a final Craig-Bampton
reduction of the system matrices, substituting the individual blade and disk modes by a set of global modes. The shroud-
coupling DOFs are kept in the physical domain.

3 Mistuning

The perfect cyclic symmetry of a bladed disk is destroyed, when mistuning is present. Especially blades are highly affected
by variations of the manufacturing process as well as operational wear which leads to significant disturbance in the spread
of vibrational energy in the system. Assuming only a variance of the Young’s modulus, a nondimensional mistuning
parameter can be defined as
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The nominal eigenfrequency of the tuned blade is denoted byω2
nom, andω2

n,mist describes the mistuned eigenfrequency of
the n-th blade. Furthermore, proportional mistuning is assumed, that means the percentage deviation of natural frequencies
is the same for all modes, [5]. The mistuning deviations are small compared to nominal properties in the modal domain,
i.e., |δ |<< 1, and it is hypothesized that the mode shapes are the same fora mistuned blade as for the tuned one.
Note, that for a validation the mistuning parameters are preferably obtained from measured cantilevered modes. However,
when sliding condition is applied, the shroud constraint modes also need to be mistuned to describe the motion of the blade
more accurately, [5]. Therefore, the mistuning projectionrequires two sets of modes. On the one handUUUb

shr, including the
fixed interface modesΦΦΦb in combination with the shroud constraint modes, which werealready obtained in Eq. (3). On the
other hand the fixed-interface normal modesΦΦΦb

cnt, which in contrast toΦΦΦb are obtained by neglecting the shroud coupling.
TheΦΦΦb

cnt are associated with the mistuning parametersδn and therefore are used to transfer the mistuned stiffness matrix
into physical domain. The modal stiffness deviation matrix∆KKKb
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Note, that here mistuning is applied to the partitions of thefree DOFs as well as the shroud DOFs. The modal mistuned
stiffness matrix of each blade is then given by

KKKb
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mist,n+KKKb
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4 Coupling of the shrouds

Due to the reduction method described above the interface DOFs of the shroud remain in physical coordinates. Node-
to-node contact model can be applied there directly. In order to achieve fast calculations a simple Jenkins model with
the assumption of a constant normal force is used [6]. Therefore, the normal directions of the contact faces are rigidly
connected to each other and the tangential relative displacements are used to calculate the friction forces [7]. It should
be noted that any kind of contact could be considered here. For reasons of clarity the procedure is explained by taking a
general mechanical system representation. For the resultspresented in Chapter 6 the described procedure is applied onthe
reduced matrices derived in the previous sections. The set of assembled system equations can be written as

MMMẍxx+DDDẋxx+KKKxxx = fff +ggg (20)

where fff is the vector of external forces andggg the vector of contact forces between the substructures. Dueto the matching
meshes of the shroud interfaces the relative displacement vectoruuu of the contact nodes can be expressed with a signed
boolean matrixBBB. In order to apply different types of coupling to the normal and tangential direction,BBB can be partitioned
into BBBp for the ’perfect’ coupling in normal andBBBf for the tangential ’flexible’ coupling [8]
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Note that in general a coordinate transformation is needed to obtain the normal and tangential directions of the interfaces.
Considering the rigid coupling, the forces are eliminated as unknowns using the interface equilibrium. According to
Eq. (21) the compatibility condition can be expressed by

BBBpxxx = 000 (22)

and the force equilibrium condition is given by
LLLT

p ggg = 000. (23)

The matrixLLLp locates the unique set of DOFsqqq in the whole DOFs vector. Due to the fact that the compatibility condition
must be fulfilled for allqqq it can be shown thatLLLp must be the null space ofBBBp and vice versa,

BBBpxxx = BBBpLLLpqqq = 000 ∀qqq =⇒ LLLp = null(BBBp). (24)

Consequently, a rigid coupling between the normal displacements of the shroud interfaces can be achieved by transform-
ing the equation of motion with the matrixLLLp. When nonlinear coupling forces in tangential direction arepresent, the
compatibility condition no longer equals zero. Following [8] the tangential interface forces can be defined using Lagrange
multipliers

ggg =−BBBT
f λλλ , (25)

whereλλλ denotes the force intensities. Due to the characteristic ofthe Boolean matrixBBBf the equilibrium condition always
is satisfied. Additionally, the Boolean matrix defines the relative displacements as

uuuT = BBBfxxx. (26)

These relative displacements are then used to calculate thenonlinear force vectorλλλ by considering the Jenkins model
properties [7]. With Eq. (20) and Eq. (25) all nonlinear forces can be built into the FE-system.

The described method can be used to couple the shrouds and different interface conditions can be applied:

• free shrouds: no coupling is applied
• fixed shrouds: all DOFs are fixed
• linear sliding contact: only normal directions of nodes arerigidly coupled, all the others are free.
• nonlinear friction contact: normal direction is rigidly coupled and nonlinear forces are present in tangential plane



The final equation of the reduced and coupled system, which isto be solved can now be expressed as

Mq̈qq+Dq̇qq+Kqqq+FFFnl(q̇qq,qqq) = fff exc, (27)

where

M= LLLT
p MMMLLLp, D= LLLT

p DDDLLLp, K= LLLT
p KKKLLLp,

FFFnl = LLLT
p BBBT

f










FFFnl,1,x

FFFnl,1,y
...

FFFnl,Ns,x

FFFnl,Ns,y










and fff exc= LLLT
p fff .

(28)

5 Harmonic Balance Method

To reach higher accuracy, the solution of the nonlinear Eq. (28) can also be approximated by the Higher Harmonic Balance
method. The mandatory transformation of the system equations into the frequency domain may introduce complex valued
amplitudes in the displacement and force vectors [7], whichare denoted by the hat symbol. The mathematical representation
of the system equations in frequency domain is given by
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whereHlin,m =K+ i(mω)D− (mω)2
M is the dynamic stiffness matrix, and the considered higher harmonics are indexed

by m = 0(1)mh. Each row of Eq. (29) represents an independent set of equations for an individual harmonic. However, the
equations become coupled because of the nonlinear forces, which are dependent on all harmonics.
Naturally, if only the first harmonic(m = 1) is considered, Eq. (29) reduces to the conventional Harmonic Balance method
formulation.



6 Results

The performance of the reduction code is investigated with respect to the described shroud conditions as well as different
mistuning cases. Note, that all figures are normalized by therespective eigenfreuqency and amplitude of the linear and
tuned setup.
The full FE-model features 59,508 DOFs. Linear frequency response functions (FRF) plot using rigid shroud coupling and
300 considered modal DOFs is shown in Fig. 2 on the left. The mistuning pattern, given by the frequency deviation factors
of the blades with respect to the tuned blade, is presented onthe right. Refering to the tuned peak at 1, which is excited by
the engine order 9 [9], strong mistuning effects in the considered frequency range can be observed. Due to the mistuning
other nodal diameters are excited as well and frequency splitting occurs.
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Fig. 2 Linear FRF of mistuned turbine with engine order 9 (left) and the used mistuning pattern (right).

The nonlinear analysis is usually preceded by the determination of a frequency range of interest. For this purpose a linear
calculation, using the linear sliding condition, is performed to obtain a nodal diameter diagram (Fig. 3 (left)). Different
normal forces are used to calculate FRFs using the HBM. It canbe observed in Fig. 3 (right) that for small normal forces
the nonlinear response remains very similar to the responseusing linear sliding. However, the behavior drastically changes,
when normal forces increase. Generally, a frequency shift of the FRFs, caused by the stiffening effects in the system, can
be observed. A decline of the amplitudes is apparent forFN ≤ 5N, because relative motion of the shrouds is still present
and friction occurs. For higher normal forces (FN > 5N) the amplitudes increase again, because stick becomes dominant
and less energy can be dissipated by friction. Fig. 4 (left) gives a detailed representation of the nonlinear FRFs with the
normal force ofFN = 3N. Nonlinear damping effects as well as mistuning effects canbe seen. Compared to the linear case,
in this particular setup both peak amplitudes in the considered frequency range are reduced by a factor of 0.4. However,
compared to the tuned case, the amplitude amplification due to mistuning effects reaches a factor of 1.2 at the second peak.
The global mistuned displacements at the first eigenfrequency are visualized on the right.
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Fig. 3 Nodal diameter plot of system with sliding condition (left), Nonlinear FRF of tuned turbine with engine order 9 and differentnormal
forces (right).
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Fig. 4 Nonlinear FRF of mistuned turbine with engine order 9 and a Normal force FN = 2N (left) amplitude of the displacement at 880Hz
(right).

7 Conclusion

In this work, a procedure to calculate nonlinear frequency response functions of mistuned turbine blades is presented.
Considering constant normal forces, an approximation of the nonlinear frequency response function can be calculated very
fast using the Harmonic Balance Method. Higher harmonics can be taken into account. With the presented Component
Mode Synthesis the size of the system can be significantly reduced without considerable loss of accuracy.
In order to extend the contact formulation, e.g. including the possibility of varying normal forces, further friction models
are to be investigated in the future.
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