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Abstract Running turbines are exposed to high mechanical load. Dgad@&xcitations the structure can vibrate with high
oscillation amplitudes which can damage the turbine blaléstuning can additionally lead to high local stressesaluhi
must be taken into account in the turbine design procesedating damping due to friction in the interface of shradide
turbines can be used to decrease this oscillation amp$tutiee computation of full turbine finite-element modelshwit
nonlinear coupling forces causes high computational césts consequence, Component Mode Synthesis methods are
used to reduce the number of DOFs of each blade substrubtisteining of the blades can now be applied in modal space.
Coupling of the mistuned substructures is done by nonlimtarface forces which have to be included in the substrigiu
formulation. The resulting reduced and mistuned systedm monlinear coupling forces is solved with a Harmonic Ba&anc
Method such that the effect of mistuning and interface dagnpan be studied very efficiently.
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1 Introduction

Calculating the steady state response of turbine bladesimportant task during the design process of turbines. & an
lyze the oscillation of randomly mistuned turbine bladexkastic analysis must be done. In general, this requirey ma
calculations and therefore a very fast numeric routine greble. If nonlinear contacts are considered, the caicmas
very time expensive. In this contribution a fast approxiorafor the nonlinear contact on shrouded blades is predente
using the Harmonic Balance Method (HBM). Additionally, arf@monent Mode Synthesis (CMS) to reduce the linear sub-
structures is used to decrease the calculation time to amaimi

A small benchmark model is considered in order to show thecgmh and illustrate numeric results. In Fig. 1 the compo-
nents as well as the assembly of the used FE-model are shown.
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Fig. 1 Blade-, disk-components and assembly of the finite-element model.
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This paper is organized as follows. In Chapter 2 the redoaial adjacent assembly of the substructures are described
in detail. Chapter 3 is addressed to the used mistuning flation. The coupling method applied to the shroud intedace
is demonstrated in Chapter 4. Subsequently, the HarmonanBa Method is shortly reviewed in Chapter 5 and Chapter 6
is dedicated to the obtained results. The paper closes witiebconclusion.

2 Component Mode Synthesis of the turbine

Finite-element models of turbine blades have a large numbéegrees of freedom (DOFs). By using a model reduction
method the order of the system can be reduced to save coiopalatosts. Following the approach presented in [1, 2, 3],
a CMS is used to reduce the disk and blade segments sepaaaiglyssemble to the full system hereafter.

2.1 Reduction of the blade

The DOFs of the blade are reduced using the Craig-Bamptohadetnterface DOFs are kept in the physical domain,
while free DOFs are replaced by a combination of fixed interfenodes and constraint modes. Therefore, the mass and
stiffness matrixM® andK® must be partitioned into freef] and interfaceij DOFs. The upper index denotes the blade
(b). Note, that here the interfacg €onsists of the shroud interfadg.{) and the segment interface of the digR (
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Consequently, to determine the fixed interface modes, tfenealue problem
(K — M} g =0 )

must be solved. The dynamics of the reduced system is definggblirstn eigenvectorsbb = {cptl’, . (pﬁ} . The number

of required eigenvectors to achieve accurate solutionsriipon the analyzed frequency range. Additionally, theagoin
base@ is enriched by the constraint modes so that it can be written a
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The reduced matrices are obtained by multiplying the rédndiase to the system matrices
ME,=0'MPO, KB, ,=0O'K’e. 4)

In order to expand the blade to a complete systeilsdegments, the single blade matrices , Eq. (4) can be arramged
block diagonal form. If the system matrices are represeintéte Cartesian system the coordinates of n-th blade must be
transformed by a rotation matrit, containing a multiple of the sector angle,

b . —~b .
Myeq = blkdiag(TiMPq Tn)  Kreg= blkdiag(T | Kpg, Th). (5)
n=1(1)Ns n=1(1)Ns

The bar symbol constitutes global coordinates of all n ldade



2.2 Reduction and cyclic transformation of the disk

For the reduction of the disk cyclic symmetry can be used.cheic symmetric boundary condition can be applied by the

matrix transformation
Xf | 0 X
Xigor | = [0 1 {X_f } (6)
xicyc-,l 0 Te—lah lcyc,l

which forces the left boundary;.,.| to oscillate phase shifted with respect to the right eng ;. This phase shift is
defined by the harmonic indéx the sector angle. The matrixT describes the geometrical rotation from the left to the
right boundary. To capture the global disk dynamics, alldagh = 0(1)Ns — 1 must be taken into account. The dynamic
behavior of the disk can, thus, be expressed in a block dadorm
M = blkdiag (M{), K®= blkdiag (KJ), @)
h=0(1)Ns—1 h=0(1)Ns—1

where each submatrix represents one harmonic index. Theoér indices are decoupled by definition [1], and therefore
the Craig-Bampton reduction can be performed for each haicriodex separately. Consequently, after the reductien th
disk is described by modal and cyclic coordinates whichlteso a much smaller number of DOFs,

ML, = blkdiag (B[ M@}), K&y= blkdiag (O] KiO). 8)
n=0(1)Ns—1 n=0(1)Ns—1

2.3 Assembly and I nterface Reduction

After the modal reduction of the single segment componemtistaeir adjacent expansion to full systems\afsectors,
the coupling of the substructure interface can be performiked interface DOFs of the blades are still in physical domai
while the interface DOFs of the disk are expressed in cydimrdinates. Therefore, to couple the interface DOFs of the
blades are transformed using the Fourier mérix

T _
X = [ K| = FX ©
which is defined as

F=I®F with F(kk,ll):Nie‘(kk‘l)(”‘l)“‘ (10)
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The blades and disk can now be assembled by the assemblx Mati, which transforms and couples the substructure
interface DOFs,
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Note, that in this case only conforming meshes of the sutisire interfaces are considered, [10]. The mass mMeixs
of the assembly, can be written as
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The assembly stiffness matii.msis defined accordingly. The size of the system is still don@ddy the large number of
cyclic interface DOFs, which can be further reduced by a@rfate reduction. The modal reduction basis of the interfac
is obtained by solving the eigenvalue problem of the intafaartitions from Eq. (12).

(Kredii — WiMyeqii) @i = 0 (13)

The eigenvectors of the interfad®; span the same subspace as the constraint modes of the gl@vtde between disk
and blades, which can be truncated by keeping only the eégéors associated with the lowdseigenfrequencieay ;.
The transformation for the new set coordinates can be fatedlas
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and the assembled system matrices can be rewritten as
Mcmsred = @iT Mcmsei, Kcmsred = eiT Kcmseia (15)

where®; represents the interface reduction matrix. The assemiitdra can be further reduced by a final Craig-Bampton
reduction of the system matrices, substituting the indigldblade and disk modes by a set of global modes. The shroud-
coupling DOFs are kept in the physical domain.

3 Mistuning

The perfect cyclic symmetry of a bladed disk is destroyedemmistuning is present. Especially blades are highly tdtec

by variations of the manufacturing process as well as ojp@atwear which leads to significant disturbance in the agre

of vibrational energy in the system. Assuming only a var@ao€ the Young’s modulus, a nondimensional mistuning

parameter can be defined as

wﬁ,mist - O‘4"2|om
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The nominal eigenfrequency of the tuned blade is denotegtfy andw? ; describes the mistuned eigenfrequency of

the n-th blade. Furthermore, proportional mistuning isiessd, that means the percentage deviation of natural fneigee

is the same for all modes, [5]. The mistuning deviations amalscompared to nominal properties in the modal domain,

i.e., |0 << 1, and itis hypothesized that the mode shapes are the samerfistuned blade as for the tuned one.

Note, that for a validation the mistuning parameters aréepably obtained from measured cantilevered modes. Haweve

when sliding condition is applied, the shroud constraintdesalso need to be mistuned to describe the motion of the blad

more accurately, [5]. Therefore, the mistuning projectiequires two sets of modes. On the one htdr?qr, including the

fixed interface mode@” in combination with the shroud constraint modes, which vedready obtained in Eg. (3). On the

other hand the fixed-interface normal modk%m, which in contrast tap® are obtained by neglecting the shroud coupling.

The @, are associated with the mistuning parametirand therefore are used to transfer the mistuned stiffnesixma

into physical domain. The modal stiffness deviation matri&® ..., is obtained by adjacent projecting b, which leads

to

on= (16)
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Note, that here mistuning is applied to the partitions offtee DOFs as well as the shroud DOFs. The modal mistuned
stiffness matrix of each blade is then given by

KPnist,n = AKPnism + KPedn- (19)



4 Coupling of the shrouds

Due to the reduction method described above the interfacEsDdd the shroud remain in physical coordinates. Node-
to-node contact model can be applied there directly. Inrotechieve fast calculations a simple Jenkins model with
the assumption of a constant normal force is used [6]. Tbezethe normal directions of the contact faces are rigidly
connected to each other and the tangential relative displants are used to calculate the friction forces [7]. It fhou
be noted that any kind of contact could be considered hererggsons of clarity the procedure is explained by taking a
general mechanical system representation. For the reggekented in Chapter 6 the described procedure is applidteon
reduced matrices derived in the previous sections. Thef ssisembled system equations can be written as

M+ DX+ Kx = f +g (20)

wheref is the vector of external forces agdahe vector of contact forces between the substructurestdtiie matching
meshes of the shroud interfaces the relative displacenmemiomu of the contact nodes can be expressed with a signed
boolean matripB. In order to apply different types of coupling to the normadlaangential directiorB can be partitioned
into By, for the "perfect’ coupling in normal anB; for the tangential 'flexible’ coupling [8]

UN Bp
= X. 21
-] &
Note that in general a coordinate transformation is needlettain the normal and tangential directions of the inta$a

Considering the rigid coupling, the forces are eliminatsduaknowns using the interface equilibrium. According to
Eq. (21) the compatibility condition can be expressed by

Bpx=0 (22)

and the force equilibrium condition is given by
Lyg=0. (23)

The matrixL locates the unique set of DOEsn the whole DOFs vector. Due to the fact that the compatybdondition
must be fulfilled for allg it can be shown thdt, must be the null space &, and vice versa,

Consequently, a rigid coupling between the normal displessgs of the shroud interfaces can be achieved by transform-
ing the equation of motion with the matrlx,. When nonlinear coupling forces in tangential direction aresent, the
compatibility condition no longer equals zero. Followir@] fhe tangential interface forces can be defined using lagra
multipliers

g=-B{A, (25)

whereA denotes the force intensities. Due to the characteristiceoBoolean matridB; the equilibrium condition always
is satisfied. Additionally, the Boolean matrix defines thatiee displacements as

ur = Brx. (26)
These relative displacements are then used to calculatecdthimear force vectoA by considering the Jenkins model
properties [7]. With Eq. (20) and Eq. (25) all nonlinear fscan be built into the FE-system.

The described method can be used to couple the shrouds &mewlifinterface conditions can be applied:

free shrouds: no coupling is applied

fixed shrouds: all DOFs are fixed

linear sliding contact: only normal directions of nodesr@gelly coupled, all the others are free.

nonlinear friction contact: normal direction is rigidly @woled and nonlinear forces are present in tangential plane



The final equation of the reduced and coupled system, whichlie solved can now be expressed as
MQ+DQ+KQ+ Fnl(q, Q) = fexo (27)

where

M=L MLy, D=L]DL, K=LJKL,,

|:nl,l.,x
|:nl,l,y (28)

Fo=LyBf and fe=Lf.

I:nI,Ns,x
Fn|~,Ns7y

5 Harmonic Balance M ethod

To reach higher accuracy, the solution of the nonlinear E8). ¢an also be approximated by the Higher Harmonic Balance
method. The mandatory transformation of the system equatido the frequency domain may introduce complex valued
amplitudes in the displacement and force vectors [7], waretdenoted by the hat symbol. The mathematical represmantat
of the system equations in frequency domain is given by

Hjin 0 o ... 0 go fexc,O EnLO(qo, .. ,th)
0 Hlin,l 0 ql B fequ B Fnl,l(QOa s 7th) (29)
C 0 .0 || - N
0 ... 0 H"n’mh th fex(;mh Fnl,mh (q07 ERRE) th)

whereHjin m = K+i(mw)D — (mw)zM is the dynamic stiffness matrix, and the considered highembnics are indexed
by m= 0(1)my,. Each row of Eq. (29) represents an independent set of eqstr an individual harmonic. However, the
equations become coupled because of the nonlinear forbésh are dependent on all harmonics.

Naturally, if only the first harmoni¢ém= 1) is considered, Eq. (29) reduces to the conventional Haror®aliance method
formulation.



6 Results

The performance of the reduction code is investigated vetipect to the described shroud conditions as well as differe
mistuning cases. Note, that all figures are normalized byg¢bpective eigenfreugency and amplitude of the linear and
tuned setup.

The full FE-model features 5908 DOFs. Linear frequency response functions (FRF) piagusgid shroud coupling and
300 considered modal DOFs is shown in Fig. 2 on the left. Tretuming pattern, given by the frequency deviation factors
of the blades with respect to the tuned blade, is presentélgeaght. Refering to the tuned peak at 1, which is excited by
the engine order 9 [9], strong mistuning effects in the cderEd frequency range can be observed. Due to the mistuning
other nodal diameters are excited as well and frequencifisglbccurs.
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Fig. 2 Linear FRF of mistuned turbine with engine order 9 (left) anelded mistuning pattern (right).

The nonlinear analysis is usually preceded by the detetimomaf a frequency range of interest. For this purpose aline
calculation, using the linear sliding condition, is perfead to obtain a nodal diameter diagram (Fig. 3 (left)). Ddfe
normal forces are used to calculate FRFs using the HBM. Ibeanbserved in Fig. 3 (right) that for small normal forces
the nonlinear response remains very similar to the respasiag linear sliding. However, the behavior drasticallgiches,
when normal forces increase. Generally, a frequency shifieoFRFs, caused by the stiffening effects in the system, ca
be observed. A decline of the amplitudes is apparenEfox 5N, because relative motion of the shrouds is still present
and friction occurs. For higher normal forcds (> 5N) the amplitudes increase again, because stick becomesaomi
and less energy can be dissipated by friction. Fig. 4 (lef@gya detailed representation of the nonlinear FRFs with th
normal force ofy = 3N. Nonlinear damping effects as well as mistuning effectshmseen. Compared to the linear case,
in this particular setup both peak amplitudes in the comediérequency range are reduced by a factor.df Blowever,
compared to the tuned case, the amplitude amplification@oedtuning effects reaches a factor a2 at the second peak.
The global mistuned displacements at the first eigenfrezjuare visualized on the right.
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Fig. 3 Nodal diameter plot of system with sliding condition (left), Nioear FRF of tuned turbine with engine order 9 and diffenemtmal
forces (right).
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Fig. 4 Nonlinear FRF of mistuned turbine with engine order 9 and a Nbforae Fy = 2N (left) amplitude of the displacement at 889
(right).

7 Conclusion

In this work, a procedure to calculate nonlinear frequeragponse functions of mistuned turbine blades is presented.
Considering constant normal forces, an approximationefiimlinear frequency response function can be calculaed v
fast using the Harmonic Balance Method. Higher harmonicstmtaken into account. With the presented Component
Mode Synthesis the size of the system can be significantlycestiwithout considerable loss of accuracy.

In order to extend the contact formulation, e.g. including possibility of varying normal forces, further frictionoaels

are to be investigated in the future.
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