
ENOC 2017, June 25-30, 2017, Budapest, Hungary

Anisotropic dry friction with non-convex force reservoirs: modeling and experiments
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Summary. In this paper an anisotropic dry friction force law allowing for non-convex force reservoirs is formulated using tools from
convex analysis and the frictional behavior of an anisotropic surface is studied experimentally. While conventional set-valued force
laws have the capability to describe the non-smooth behavior of stick and slip, they are limited to convex friction force reservoirs. Since
theoretical considerations and experimental results indicate the existence of non-convex force reservoirs, we present a normal cone
inclusion force law with two independent sets which enables the use of non-convex star-shaped force reservoirs. A stability analysis
proves that the force law is capable of causing anisotropic friction induced instability. The described force law with the experimentally
determined data results in an accurate representation of anisotropic frictional behavior.

Introduction

The frictional properties of many biological and technical surfaces significantly vary along different directions of a sur-
face. This anisotropic frictional behavior may be induced by the crystal structure of a material, occurs on the surface of
biological, composite or textile materials or may result from machining or finishing of a surface. If a body is sliding on a
surface having anisotropic frictional properties, the magnitude of the friction force is dependent on the direction of sliding.
In addition, it can be observed that without the presence of external forces, the sliding body is deflected. This phenomenon
indicates that the friction force is not acting parallel to the sliding direction. Figure 1(a) shows an example of a sliding
path of a polymer disc sliding on a horizontal steel plate, of which the surface has been ground in a fixed direction. For
different initial sliding directions, the sliding disc is found to be deflected into the direction of the grooves caused by the
grinding. Force laws describing anisotropic friction can be expressed using concepts of convex analysis. The constitutive
behavior of stick and slip is thereby taken into account by formulating normal cone inclusion force laws [1, 2]. The shape
of the friction force reservoir and the relationship between the sliding direction and the direction of the friction force is
usually based on assumptions. In order to find accurate anisotropic friction force laws, the frictional behavior has to be
examined experimentally. In this work, we define a force law which enables the description of a large class of anisotropic
dry friction models and present experimental results of anisotropic friction measurements. In addition, the dissipativity
and stability properties of the force law are examined. It is found, that the force law under certain conditions may lead
to a type of frictional instability that until now has been ignored by the research community but is capable of causing
anisotropic friction induced vibrations.

Anisotropic friction force laws

For an accurate description of the set-valued behavior of stick and slip, concepts of convex analysis can be used. We make
use of the normal cone NC to a closed convex set C defined by NC(x) = {y | yT(x∗ − x) ≤ 0,x ∈ C,∀x∗ ∈ C} [3].
The classical spatial Coulomb friction force law can be written as the normal cone inclusion

γT ∈ NC(−λT ), (1)

where γT is the relative sliding velocity and λT is the friction force. In the isotropic case, the force reservoir C is a disc.
This set-valued force law accounts for stiction, since the normal cone to a convex set is zero for any argument inside the
set. The force law can be extended to anisotropic friction by using a force reservoir of elliptical or rectangular shape (see
Fig. 1(b)) and assuming the principle of maximal dissipation to hold. But since the normal cone inclusion is only defined
for convex sets C, non-convex sets are not allowed. In [4] frictional anisotropy is modeled by uniformly distributed wedge-
shaped asperities, where the faces of the asperities have isotropic friction properties. This model motivates the study of
non-convex friction force reservoirs. For non-convex force reservoirs, the sliding direction can no longer be defined by
normality to the force reservoir. Instead, a convex set D is introduced which specifies the sliding direction by normality.

Figure 1: (a) Sliding path of a polymer disc on surface ground steel. (b) Graphical representation of the standard anisotropic friction
force law and (c) the extended anisotropic friction force law.
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A graphical representation of the force law is given in Fig. 1(c). Here, a generic non-convex force reservoir C and an
elliptical set D are depicted. The symmetries with respect to the axes indicate an orthotropic force law. The friction
coefficients along the semi-axes are µ1 and µ2, the normal force is called λN . The described force law can be expressed
by a normal cone inclusion on the convex set D as

γT ∈ ND(−αλT ). (2)

The scaling parameter α is introduced to scale the friction force to the boundary ofD during slip. This formulation allows
for non-convex sets C, as long as they are star-shaped with respect to the origin, and convex setsD. Star-shaped sets fulfill
the condition

if x ∈ C then bx ∈ C ∀b ∈ [0, 1] . (3)

The sets C and D can be described as the level sets of nonnegative, lower semicontinuous and positively homoge-
neous gauge functions kC and kD defined by kC(x) = inf {q > 0 |x ∈ qC}. The force reservoir is then given by
C = {−λT | kC(−λT ) ≤ 1}, i. e., the unit level set of the gauge function. Using the gauge functions, the scaling pa-
rameter α is specified by

α =
1

kD(−λT )− kC(−λT ) + 1
(4)

such that
−λT ∈ bdry C ⇒ −αλT ∈ bdryD. (5)

In order to use a force law given as a normal cone inclusion for numerical simulations, the inclusion is rewritten as an
implicit equation using a proximal point function. The contact problem is solved iteratively, where the parameter α is
adapted in each iteration. For time integration, time-stepping methods can be used.

Dissipativity of friction force laws
The standard normal cone inclusion force law, with C being a closed conex set, can be rewritten using the subdifferential
of the indicator function ΨC(−λT ) as γT ∈ ∂ΨC(−λT ). The Fenchel equality [3] yields

−λT
TγT = ΨC(−λT ) + Ψ∗C (γT ). (6)

The indicator function vanishes for all admissible friction forces. Therefore, only the support function Ψ∗C (γT ) remains
on the right hand side of Eq. (6). Since 0 ∈ C it follows for the support function Ψ∗C (γT ) ≥ 0 for all relative sliding
velocities. The dissipation rate for the normal cone inclusion force law defined as D = −λT

TγT is thus positive.
The case of the extended normal cone inclusion force law Eq. (2) can be treated in an analogous fashion after analyzing
the range of the scaling parameter α. For the gauge functions kC and kD the two conditions

−λT ∈ C ⇒ kC(−λT ) ≤ 1, (7)
kD(−λT ) ≥ 0 (8)

hold. During numerical simulations the case −λT /∈ C might occur. Without loss of generality of the force law we scale
the set D such that D ⊆ C. It follows that kD(−λT ) ≥ kC(−λT ) which, using Eq. (4) leads to

0 < α ≤ 1. (9)

Rewriting the normal cone inclusion Eq. (2) with the subdifferential of the indicator function and again using the Fenchel
equality results in

γT ∈ ∂ΨD(−αλT ) ⇔ −αλT ∈ ∂Ψ∗D(γT ) ⇔ −αλT
TγT = ΨD(−αλT )︸ ︷︷ ︸

=0

+Ψ∗D(γT ). (10)

As before, since the set D contains the zero element, it holds for the support function that Ψ∗D(γT ) ≥ 0. Therefore, the
dissipation rate for the extended friction force law is given by

D = −λT
TγT =

1

α
Ψ∗D(γT ) ≥ 0. (11)

The non-negative dissipation rate confirms that the presented friction force law is dissipative which is a necessary condi-
tion for a physically meaningful friction force law. Note that the dissipativity of the standard normal cone inclusion force
law also directly follows from the maximal monotonicity of the force law. In the case of the extended force law, however,
for C 6= cD ∀c, two pairs of λT and γT can be chosen such that

(−λTI
− (−λTII

))T(γTI
− γTII

) < 0. (12)

Thus, the monotonicity and the stronger maximal monotonicity condition is not fulfilled for the extended friction law.
Note that the extended friction law reduces to the standard friction law if C = cD for some c.
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Figure 2: (a) Mass on belt with anisotropic friction properties. (b) Two degree of freedom model of the mass on belt. (c) Ellipsoidal
sets defining the force law.

Anisotropic friction induced instability
Friction induced vibrations occur in many technical applications and are extensively studied in the literature. Many
effects such as a dependency of the friction force on the magnitude of the sliding velocity or on the normal force in the
contact point are identified to have an influence on the stability properties of dynamical systems with friction. In this
work, we investigate the effects of anisotropic friction force laws on the stability of a sliding motion. The two degree of
freedom system shown in Fig. 2(a) consists of a mass constrained by two linear springs, sliding on a horizontal belt having
anisotropic friction properties. Figure 2(b) shows the top view of the model. The sliding body is modeled as a point mass
on a surface moving constantly with velocity χ. The generalized coordinates are x and y along the axes eIx and eIy . The
equation of motion is given as

Mq̈ +Kq =WλT , (13)

where the generalized coordinates q and the diagonal mass matrixM and stiffness matrixK are

q =

(
x
y

)
, M =

(
m 0
0 m

)
, K =

(
k 0
0 k

)
. (14)

The relative sliding velocity γT is given by the motion of the mass and the motion of the belt as γT = WTq̇ − χ. The
matrix of the generalized force direction W defined by W = (∂γT /∂q̇)T in this case is simply the identity matrix. For
q̇ = q̈ = 0 an equilibrium q∗ is found. Since the belt is moving continuously (χ 6= 0) and with that the sliding velocity
γT is nonzero, stick does not occur at the equilibrium. In the following, the stability of the equilibrium is analyzed for
different force laws.
First, the standard normal cone inclusion force law γT ∈ NC(−λT ) is considered. As mentioned above, the force law is
maximal monotone, meaning that for all pairs (γT , λT ) and (γ∗T , λ∗T ) the condition

(γ∗T − γT )
T (−λ∗T − (−λT )) ≥ 0 (15)

holds. We choose two solutions of Eq. (13) qI(t) and qII(t). The stability of the equilibrium can be determined by
analyzing the distance between the two solutions. Introducing the incremental Lyapunov candidate function gives

V =
1

2
(q̇I − q̇II)TM (q̇I − q̇II) +

1

2
(qI − qII)TK (qI − qII) . (16)

SinceM andK are positive definit, the Lyapunov candidate function V is PDF. Taking the time derivative and substituting
Eq. (13) leads to

V̇ = (q̇I − q̇II)T
(
M (q̈I − q̈II) +K (qI − qII)

)
= (q̇I − q̇II)T (WλTI −WλTII)

=
(
WT (q̇I − q̇II)

)T
(λTI − λTII)

= (γTI − γTII)
T (λTI − λTII) ,

(17)

where in the last step by subtracting the two solutions the velocity of the belt χ cancels out. From the monotonicity
condition of the force law Eq. (15) it follows that V̇ ≤ 0. Therefore, V is a Lyapunov function which proves that the
distance between two solutions is never increasing, i. e., the system is incrementally stable, implying that the equilibrium
q∗ is stable. Attractivity of the equilibrium is not shown and depends on additional damping in the system.
In the next step, instead of the standard normal cone inclusion force law, the extended force law Eq. (2) is applied. Since
this force law is not maximal monotone the argumentation above is not valid. Instead, we study the particular case shown
in Fig. 2(c). Here, the sets C and D are both ellipses with rotated semi-axes. The gauge functions of the sets are given by

kC(−λT ) =

√(
λT1

n1

)2

+

(
λT2

n2

)2

+ νλT1
λT2

, kD(−λT ) =

√(
λT1

p1

)2

+

(
λT2

p2

)2

. (18)
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The force reservoir is an ellipse if the condition

ν2 <
4

n21n
2
2

(19)

holds. The support function of the ellipsoidal set D is Ψ∗D(γT ) =
√
(p1γT1)

2 + (p1γT1)
2. As before, an equilibrium can

only occur during sliding. Therefore, for a smooth set D the friction force can be obtained from Eq. (10) as

−λT =
1

α

(
∂Ψ∗D(γT )

∂γT

)T

, (20)

where the set-valued subdifferential is replaced by the gradient. During sliding the friction force is at the boundary of
the force reservoir C and kC(−λT ) = 1. Evaluating the gauge function with Eq. (20) and making use of the fact that the
gauge function is positively homogeneous, the friction force during slip is found as a function of γT

−λT =
1

β(γT )

(
p21γT1

p22γT2

)
, (21)

with the scalar function

β(γT ) = Ψ∗D(γT )kC

((
∂Ψ∗D(γT )

∂γT

)T
)

=

√(
p21
n1
γT1

)2

+

(
p22
n2
γT2

)2

+ ν (p21p
2
2γT1

γT2
). (22)

The equilibrium of the system is found at q∗ = K−1WλT . We study the stability of the equilibrium by an eigenvalue
analysis of the linearized system

Mq̈ +Bq̇ +K(q − q∗) = 0. (23)

The damping matrixB is thereby obtained by

B = −W ∂λT
∂γT

WT =
p21p

2
2

β(γT )3

 p22
n2
2
γ2T2

+ 1
2νp

2
1γT1

γT2
− p22
n2
2
γT1

γT2
− 1

2νp
2
1γ

2
T1

− p21
n2
1
γT1

γT2
− 1

2νp
2
2γ

2
T2

p21
n2
2
γ2T1

+ 1
2νp

2
2γT1

γT2

 (24)

at q̇ = 0 with W being the identity matrix. The damping matrix is singular, det(B) = 0 and in general nonsymmetric.
The eigenvector of the zero eigenvalue ε1 is collinear to the sliding direction. The second eigenvalue ε2 is determined by
the trace ofB,

ε2 =
p21p

2
2

β(γT )

(
p21
n21
γ2T1

+
p22
n22
γ2T2

+
1

2
ν
(
p21 + p22

)
γT1γT2

)
. (25)

The corresponding eigenvector is tangent to the boundary of the force reservoir C at −λT . The sign of the eigenvalue ε2
determines whether the damping matrix is positive or negative semidefinit. For a positive semidefinit damping matrix the
energy in the system can be used as Lyapunov function to show the stability of the equilibrium q∗ of the linear system
Eq. (23). For a negative eigenvalue ε2 the damping matrix B becomes negative semidefinit. The eigenvalue can become
negative if

ν2 >
16p21p

2
2

(p21 + p22)
2(n21n

2
2)
. (26)

For ν fulfilling conditions Eq. (19) and Eq. (26), sliding directions γT exist such that eigenvalue ε2 is negative. The
system can be rewritten in first order form with the system matrix

A =

(
0 I

−M−1K −M−1B

)
. (27)

Choosing the simple case of M and K being identity matrices, it can be shown that a negative eigenvalue of B leads to
an eigenvalue with positive real part of the system matrixA which proves instability of the equilibrium.
As an example we consider the mass on belt system with the force law with two elliptical sets both having the semi-axes
ratio 3/1 where the semi-axes of the force reservoir are rotated by the angle ζ. From condition Eq. (26) it follows that
instability can occur for 17.1◦ < ζ < 72.9◦. If the rotation angle is set to ζ = 30◦, then the range of the directions
of motion of the belt for which the eigenvalue ε2 becomes negative and the equilibrium becomes unstable lies between
44.1◦ < ϕ < 75.9◦. The angle ϕ determines the moving direction of the belt as shown in Fig. 2(b). A graphical
representation of the force law is given in Fig. 3(a). The critical sliding directions for which instability occurs are those
where the vector of the sliding direction points into the set C. At the values of ϕ given above, the sliding velocity is
tangent to the force reservoir. Figure 3(b) shows the bifurcation diagram of the magnitude of the equilibrium position as a
function of the direction of the belt movement. The solid line marks the stable solutions. For angles in the critical interval,
the equilibrium is unstable and the mass on the belt starts to vibrate if a small perturbation is applied. After some time the
solution approaches a stable limit cycle. An example for a limit cycle for ϕ = 50◦ is given in Fig. 3(c). It is calculated
using Moreau’s timestepping scheme [5]. The belt velocity is chosen low. Therefore, the mass sticks to the belt during
each cycle which results in the straight line in the limit cycle. For higher belt velocities limit cycles without stiction are
observed.
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Figure 3: (a) Graphical representation of force law with rotated sets. (b) Bifurcation diagram of the equilibrium. (c) Limit cycle of the
mass on the belt for ϕ = 50◦.

Experimental work

In the literature various experimental studies of anisotropic friction can be found. However, the friction force is often
only measured in the direction of sliding. Movement in the direction orthogonal to the sliding direction is often constraint
without measurement of the force. Since the friction force in the case of anisotropic surfaces is not necessarily collinear
to the sliding direction, the frictional behavior can only be analyzed accurately by measuring the friction forces in two
directions. To describe spatial anisotropic friction, the relationship between the sliding direction and the friction force has
to be determined experimentally for all possible sliding directions.

Experimental setup and data analysis
The experimental setup shown in Fig. 4(a) makes use of a spinning anisotropic surface and a stationary pin (pin-on-disc).
Unlike in many pin-on-disc-tribometers, the friction force is measured in two orthogonal directions and the rotation angle
of the disc is recorded. This setup allows to observe the friction forces for all possible sliding directions during one full
rotation of the disc. The steel disc (diameter 30 cm) is driven with a synchronous servomotor with a harmonic drive gear
unit. The output of the motor is 690W and the disc can be driven in both directions with a maximum speed of 200 rpm.
The normal force is applied using weights that are placed on a linear ball spline shaft. The friction forces in tangential
and radial direction of the disc, as well as the normal force are measured using a 3D force sensor. Various contact partners
can be tested. The pins mounted on the force sensor are made of different materials and have cylindrical or hemispherical
shapes. The contact area between the rotating disc and the pins is small. Thus, the influence of varying sliding velocities
along the radius of the disc which leads to combined sliding and drilling friction is minimized. For each measurement,
the contact partners, normal force and sliding velocity have to be defined. During a measurement, the time signals of the
friction forces in radial and tangential direction, the normal force and the rotation angle of the disc are recorded.
The goal of the measurement is to determine the shapes of the sets C and D. The friction forces λr and λt are measured
in the I-frame of the sensor in radial and tangential direction of the disc. The forces are transformed into the co-rotating
frame K of the disc with the known current rotation angle ϕ of the disc (see Fig. 4(b)). Plotting the transformed forces in
a diagram gives discrete points on the boundary of the force reservoir C. The extended normal cone inclusion force law
Eq. (2) makes use of the force reservoir C and a second set D. The sliding direction is defined by normality to the set D.
In the described experimental setup the relative sliding velocity is known to point in tangential direction of the rotating
disc. Points on the boundary of D are addressed with the vector rD as shown in Fig. 4(c). Since γT is normal to D, the
condition

r′D(θ)⊥γT ⇔ r′D(θ) · γT = 0 (28)

has to be met, where the prime indicates differentiation with respect to θ. After some manipulation the first order homo-
geneous differential equation

r′D(θ)− tan(θ − ϕ)rD(θ) = 0. (29)

for the magnitude of rD is obtained. A solution is found by separation of variables and integration giving

rD(θ) = rD(0)e
∫ θ
0
λr
λt

dθ̃. (30)

Using (30), points on the boundary of the set D can be calculated. To be able to formulate the force law according to
Eq. (2) the sets have to fulfill certain conditions. The normal cone is only defined to convex sets, therefore the set D must
be convex. The scaling of the set, given by rD(0), is arbitrary. For numerical treatment, where the normal cone inclusion
is rewritten as implicit proximal point function, it is advantageous to scale the set D such that it is in the interior of the
force reservoir C. The force reservoir C has to be star-shaped, so that uniqueness is guaranteed, but does not necessarily
need to be convex.

Experimental results
The experiment is performed for different material combinations. First, an isotropic surface is tested. Isotropic frictional
behavior can be achieved by sandblasting a steel surface, thereby creating randomly distributed microscopic asperities.
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Figure 4: (a) Experimental setup for the measurement of the friction forces. (b) Top view of the rotating disc with coordinate frames.
(c) Calculated sets C and D.
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Figure 5: Top row: measured friction forces in tangential and radial direction, bottom row: calculated sets C and D for (a) steel pin on
sandblasted steel disc, (b) rubber pin on surface ground disc, (c) steel pin on surface ground disc.

A hemispherical steel pin is pressed against the disc with a normal force of λN = 14.0N. The relative sliding velocity
determined by the rotation speed of the disc and the pin position is set to ‖γT ‖ = 50 mm

s . Figure 5(a) shows the measured
friction forces in tangential and radial direction for three full rotations of the disc. The tangential force is constant, while
the radial force is approximately zero. Small deviations are caused by irregularities of the surface. As expected for an
isotropic material, the calculated force reservoir C and the set D are circles. Therefore, for isotropic frictional behavior
the standard normal cone inclusion force law Eq. (1) with a circular force reservoir is sufficient. Since the magnitude of
the friction force is independent of the sliding direction, a single value for the friction coefficient can be determined as
µ ≈ 0.14.
Next, an example of an anisotropic surface is studied. A steel disc is surface ground such that all grinding grooves are
parallel. Measurements with two different contact partners are performed. In Fig. 5(b) the results for a cylindrical rubber
pin with a diameter of 7mm, a normal force of λN = 9.3N and a sliding velocity of ‖γT ‖ = 50 mm

s are shown. The
friction forces show a periodicity with two maximums per full rotation of the disc. This behavior is expected for an
orthotropic surface due to symmetry. The tangential force component oscillates around a constant offset, while the radial
force component shows a sawtooth oscillation around zero. A similar behavior is found in [6]. Maximum and minimum
values of the tangential force occur at zero crossings of the radial force. For ϕ = kπ the pin is sliding orthogonal
to the grinding grooves and the tangential force is maximal. When the pin is sliding along the grooves, the tangential
force is minimal. The resulting sets significantly differ from the circular shape in the isotropic case. Both sets are rounded
rectangles. A standard ellipse, as is often assumed for the force reservoir in the case of anisotropic friction in the literature,
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does not accurately describe the experimentally determined sets. The friction coefficients for sliding directions orthogonal
and parallel to the grinding grooves are µ1 ≈ 0.55 and µ1 ≈ 0.48, respectively.
In addition, the experimental results obtained using a hemispherical steel pin with a normal force of λN = 18.5N and a
sliding velocity of ‖γT ‖ = 100 mm

s are shown in Fig. 5(c). Again, the tangential component oscillates around a non-zero
mean value, while the radial component shows a sawtooth behavior. However, the maximum values of the tangential
force occur during sliding along the grinding grooves. This leads to the shown calculated sets. The shapes of C and D
substantially differ from each other. This behavior can not be represented by the standard normal cone inclusion force law
Eq. (1). The extended normal cone inclusion force law Eq. (2), where C and D are independent of one another, however,
gives an accurate description of the frictional behavior.

Conclusions

The proposed extended normal cone inclusion force law for anisotropic friction allows for non-convex star-shaped force
reservoirs. While force laws based on maximal dissipation do not lead to anisotropic friction induced vibration, the
extended force law is capable of causing instabilities for certain parameters. The presented experimental setup can be used
to analyze the magnitude and direction of the friction force for various contact partners. Using the measurement results
different shapes of the force reservoirs are obtained. The described normal cone inclusion force law in combination with
the experimentally measured sets enables the accurate representation of the complex behavior of anisotropic friction.
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