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Abstract The 3-ball Newton’s cradle is used as a stepping stone to divulge the structure
of impact laws. A continuous conewise linear impact law that maps the preimpact contact
velocities to the postimpact contact velocities is proposed for the 3-ball Newton’s cradle. The
proposed impact law is kinematically, kinetically, and energetically consistent. It reproduces
the outcomes of experimental observation. Moreover, it is in accordance with the outcome
of the collision of three identical linear-elastic thin rods for which the impact process is
governed by the one-dimensional wave equation. The proposed impact law is shown to be
nonexpansive. Therefore, the relationship between the mean contact velocity and its dual, the
impulsive force, is maximal monotone. A counterexample to maximal cyclical monotonicity
of this relationship allows us to conclude that no dissipation function exists for the proposed
impact law.

Keywords Newton’s cradle · Unilateral constraints · Impact · Convex analysis · Wave
equation

1 Introduction

In this paper, we present an instantaneous impact law for Newton’s cradle with three balls.
We construct a continuous cone-wise linear impact law which is energy conserving and pro-
vides the classical outcomes of the 3-ball Newton’s cradle [22]. The outcomes of the pro-
posed instantaneous impact law are in accordance with the results of the elastic rod model,
which is governed by the one-dimensional wave equation.

Rigid multibody dynamics has currently two instantaneous impact laws for multicolli-
sions at its disposal, the generalized Newton’s impact law and the generalized Poisson’s
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impact law [2, 4, 6–8, 14]. Both laws agree for inelastic collisions and are in accordance
with experimental results if wave phenomena are absent. The laws give different results for
partially elastic multicollisions. In very particular cases, when also dry friction is included,
Newton’s and Poisson’s impact laws may lead to an energy increase, contradicting the laws
of thermodynamics, even if all restitution coefficients are chosen smaller than unity [7]. In
the current paper, the focus is on frictionless completely elastic multicollisions in which
wave phenomena are dominant. Thereby, the dissipation that is present in a physical system
is neglected in order to focus on the mathematical structure of the impact law.

In order to set the scene of this paper, consider the classical Newton’s cradle problem with
three balls and assume that there is no dissipation (see Fig. 1). The left ball has velocity v

and hits the middle and right balls, which are standing still. Two contacts are closed at the
collision time instant. The problem is therefore an archetype of a multicollision [1]. The
generalized Newton’s and Poisson’s impact laws both forecast for this case the same post-
impact velocities: the left ball is returning with one third of the velocity, and the middle
and right balls are moving with two-third of the velocity to the right. The prediction of the
generalized Newton’s and Poisson’s impact laws respects the balance of linear momentum
and the conservation of energy. However, if one performs a tabletop experiment with iron
balls and neglects small inner vibration, then one observes that the left and middle balls
remain at rest after the impact and the right ball is expelled with velocity v. Currently,
rigid multibody dynamics does not possess an instantaneous impact law that describes the
observations of Newton’s cradle.

The aim of this paper is to find an instantaneous impact law that describes all observa-
tions of the 3-ball Newton’s cradle and to study the mathematical properties of this impact
law, which may divulge a general mathematical structure of a multicollision impact law for
completely elastic collisions. The kinematics and kinetics of the 3-ball Newton’s cradle is
described in Sect. 2, and a number of important properties of impact laws are introduced. In
Sect. 3, an impact law is proposed that describes all observations. It is shown in Sect. 4 that
a thin elastic rod model agrees with these observations. Section 5 deals with impact mod-
els involving compliant contacts. The contraction properties of the proposed impact law are
studied in Sect. 6. Conclusions on whether the results of the 3-ball Newton’s cradle may be
generalized are drawn in Sect. 7.

2 The 3-ball Newton’s cradle

The 3-ball Newton’s cradle is shown in Fig. 1(a). It consists of three balls of equal mass m

with horizontal positions q = (q1 q2 q3)
T and velocities q̇ = u = (u1 u2 u3)

T. The contact
distances are given by g = (g1 g2)

T = (q2 − q1 − 2R q3 − q2 − 2R)T, where R is the radius
of the balls. The unilateral constraint g ≥ 0 expresses the fact that contacts can open but that
the balls may not penetrate each other. In order to illustrate the concept, consider the contact
between the left and middle balls. The distance between the balls is given by the gap function
g1 of the contact. For g1 = 0, there is no gap, that is, the contact is closed. For g1 > 0, there
is a gap between the balls, which means that the contact is open. Demanding g1 ≥ 0 then
means that the contact between the left ball and the middle ball can be either open or closed,
but that the balls cannot penetrate. The contact velocities are given by the relative velocities
between the balls γ = (γ1 γ2)

T = (u2 − u1 u3 − u2)
T, that is, γ = ġ whenever it exists. The

pre- and postimpact velocities are designated by u− and u+, respectively. Analogously, γ −

and γ + designate the pre- and postimpact contact velocities.



A maximal monotone impact law for the 3-ball Newton’s cradle 81

Fig. 1 Left: Newton’s cradle with three balls of mass m. Right: An example of outcomes by Newton’s and
Poisson’s impact laws

The impact equations of the system can be written in the following matrix form:

M
(
u+ − u−) = WΛ, (1)

γ ± = WTu±, (2)

where Λ = (Λ1 Λ2)
T are the impulsive contact forces during the impact. The impulsive force

Λ1 acts between balls 1 and 2, whereas Λ2 occurs between balls 2 and 3. Note that this paper
deals with the description of instantaneous impacts. By modeling the impact process as an
instantaneous impact the impact process is reduced to a singular instant of time, which is
called the time of impact. The impact equation (1) relates the discontinuity of the velocities
to the impulsive contact forces at the time of impact. The adjective “impulsive” is used to
emphasize the difference to a force. The difference becomes obvious if we compare the units
of a contact force λ [N] and an impulsive contact force Λ [Ns].

The combination of (1) and (2) yields the impact equation in contact velocities

γ + − γ − = GΛ with G := WTM−1W. (3)

The matrix G is referred to as the Delassus operator. The matrix W is the matrix of general-
ized force directions for which WT = ∂g

∂q . For the 3-ball Newton’s cradle, the mass matrix M
and the matrix of generalized force directions W are

M =
⎛

⎝
m 0 0
0 m 0
0 0 m

⎞

⎠ and W =
⎛

⎝
−1 0

1 −1
0 1

⎞

⎠ . (4)

The impact equation (3) needs to be complemented by an impact law, being a constitutive
relationship, which may be expressed by a set-valued relationship between dual variables
[13]

−Λ ∈ H(γ̄ ), (5)

where

γ̄ = 1

2

(
γ + + γ −)

(6)
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is referred to as the mean contact velocity. The operator H : Rn ⇒ R
n is in general a set-

valued operator.
Alternatively to the formulation as a set-valued relationship (5), the impact law can be

expressed by a mapping S from pre- to postimpact contact velocities

γ + = S
(
γ −)

, (7)

or by a mapping Z from pre- to postimpact generalized velocities

u+ = Z
(
u−)

. (8)

The set-valued operator H and the single-valued mappings S and Z are all different
formulations of the same impact law. Specifying one in closed form directly implies an
(implicit) formulation of the other representations.

An impact law should be kinematically, kinetically, and energetically consistent:

– Preimpact contact velocities γ − and postimpact contact velocities γ + are called kinemat-
ically admissible if

γ − ≤ 0 and γ + ≥ 0, (9)

respectively. An impact law is kinematically consistent if it yields kinematically admissi-
ble postimpact velocities for arbitrary preimpact velocities.

– Kinetic consistency is required by the unilateral character of nonadhesive contacts, which
requires the contact forces to be nonnegative:

Λ ≥ 0. (10)

The contact force Λi of contact i vanishes if the contact is open, that is, if gi > 0. If
gi = 0, then contact i is closed and can only transfer nonnegative contact forces.

– Energetic consistency means that there is no increase in energy during the impact. Let
the kinetic energy before and after the impact be designated by T − = 1

2 u−TMu− and
T + = 1

2 u+TMu+, respectively. Energetic consistency then requires that

T + ≤ T − ⇔ T + − T − ≤ 0, (11)

which can be expressed in terms of pre- and postimpact velocities by

u+TMu+ − u−TMu− = (
u+ + u−)T

M
(
u+ − u−) ≤ 0. (12)

The use of (1), (2), and (3) permits to rewrite (12) as

(
γ + + γ −)T

G−1
(
γ + − γ −) = γ +TG−1γ + − γ −TG−1γ − ≤ 0. (13)

Conditions (12) and (13) for energetic consistency can be expressed using the norms with
metrics induced by M and G−1, respectively, by

∥∥u+∥∥2

M ≤ ∥∥u−∥∥2

M and
∥∥γ +∥∥2

G−1 ≤ ∥∥γ −∥∥2

G−1 . (14)

From [13, 19] it is known that the maximal monotonicity of the operator H in (5) is equiva-
lent to nonexpansivity properties of the impact mappings (7) and (8).
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Fig. 2 Interrelations of a maximal monotone impact law [13]

Definition 1 (Maximal monotonicity [19]) A mapping T : Rn ⇒ R
n is called monotone if

it has the property that

(yA − yB)T(xA − xB) ≥ 0 (15)

whenever yA ∈ T (xA), yB ∈ T (xB). Moreover, T is called maximal monotone if it is mono-
tone and its graph cannot be enlarged without destroying this property.

Definition 2 (Nonexpansivity [13, 19]) A mapping F : Rn ⇒ R
n is called nonexpansive in

the metric induced by P if it has the property that

‖yA − yB‖P ≤ ‖xA − xB‖P (16)

whenever yA ∈ F(xA), yB ∈ F(xB).

Furthermore, the set-valued operator H can be written as the subdifferential to a convex
proper lower semicontinuous (l.s.c.) dissipation function Φ such that

−Λ ∈ H(γ̄ ) = ∂Φ(γ̄ ) (17)

if and only if H is maximal cyclically monotone.

Definition 3 (Cyclical monotonicity [19]) A mapping T : Rn ⇒R
n is cyclically monotone

if for any cycle of m points xA, xB , . . . , xZ (for arbitrary m ≥ 2) and elements yi ∈ T (xi ),
we have

yT
A(xB − xA) + yT

B(xC − xB) + · · · + yT
Z(xA − xZ) ≤ 0. (18)

It is maximal cyclically monotone if it is cyclically monotone and its graph cannot be en-
larged without destroying this property.

Note that cyclical monotonicity is a stronger condition than monotonicity. Definition 3 re-
duces to Definition 1 when m = 2. The relations between the nonexpansivity and mono-
tonicity properties are shown in Fig. 2.
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Fig. 3 Construction steps of the
impact mapping S

3 The sequential impact law

We propose a continuous conewise linear impact mapping S : R2 → R
2, γ − �→ γ + for the

3-ball Newton’s cradle. The impact mapping S takes the form

γ + = S
(
γ −) = Qiγ

− for γ − ∈ Ci, (19)

where the 2-by-2 matrices Qi ∈ R
2×2 apply in a corresponding cone Ci in the (γ −

1 , γ −
2 )-

plane. We construct the matrices Qi together with their respective cones Ci by demanding
the following properties of the impact law:

P1 The mapping is continuous, that is, Qivi = Qi+1vi with vi being the direction of the
boundary half-line between the adjacent cones Ci and Ci+1.

P2 Conservation of energy holds, that is, ‖γ +‖G−1 = ‖Qiγ
−‖G−1 = ‖γ −‖G−1 for all matri-

ces Qi . This implies energetic consistency.
P3 Each cone Ci is mapped by its matrix Qi to the entire first quadrant, that is, the cone Ci

is spanned by the columns of Q−1
i . This implies kinematic consistency.

We start with the first quadrant (see Fig. 3(a)). Preimpact contact velocities from the first
quadrant are positive, which means that no impact occurs. Therefore, we set

QI =
(

1 0
0 1

)
, (20)

which means that γ + = γ − for all γ − ∈ CI . The cone CI is spanned by the columns of Q−1
I .

Next, we proceed to the cone CIIa on the left of CI as shown in Fig. 3(b). The boundary
between the two cones is given by the positive γ −

2 -axis. Continuity and conservation of
energy (P1 and P2) lead us to the matrix

QIIa =
(−1 0

1 1

)
. (21)

The direction of the boundary to the next cone can be read from Q−1
IIa (P3) as it is shown in

Fig. 3(b), so that

vIIa =
(−1

1

)
. (22)
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Fig. 4 Left: The different cones
in the (γ −

1 , γ −
2 )-plane. The

dot-dashed line marks the
symmetry line. Right: Idealized
observations

We can proceed analogously to find all six cones Ci with i ∈ {I, IIa, IIb, III, IVa, IVb} to-
gether with their corresponding matrices

QI =
(

1 0
0 1

)
, QIIa =

(−1 0
1 1

)
, QIIb =

(
0 1

−1 −1

)
,

QIII =
(

0 −1
−1 0

)
, QIVa =

(
1 1
0 −1

)
, QIVb

=
(−1 −1

1 0

)
.

(23)

The repartition of the (γ −
1 , γ −

2 )-plane into the six cones Ci with i ∈ {I, IIa, IIb, III, IVa, IVb}
is depicted in Fig. 4(a). The symmetry of the problem appears in the symmetry between the
matrices QIIa and QIVa and between QIIb and QIVb

.
In the following, we will call the impact law (19) the sequential impact law because

it is equivalent to a sequence of impacts between only two balls. This can be seen by the
following properties:

QIIb = QIVa QIIa ,

QIVb
= QIIa QIVa ,

QIII = QIVa QIIa QIVa = QIIa QIVa QIIa ,

(24)

where QIIa and QIVa describe the impact between only two of the three balls as will be
shown below.

After having derived the sequential impact law, we want to argue why it is a reasonable
choice. In the following, the implications of the sequential impact law are discussed for the
four quadrants of the (γ −

1 , γ −
2 )-plane.

The first quadrant is equal to the cone CI and corresponds to two positive preimpact
contact velocities such that no impact happens. The identity map is the only reasonable
choice for the first quadrant.

The third quadrant is equal to the cone CIII and corresponds to both preimpact contact
velocities being negative and therefore kinematically admissible. Hence, the third quadrant
contains all the classical experimental outcomes that can be realized with a 3-ball New-
ton’s cradle. Figure 4(b) gives three examples of idealized observations from cone CIII . The
sequential impact law provides these idealized experimental outcomes.

The second and fourth quadrants correspond to one preimpact contact velocity being pos-
itive and the other being negative. Each one of these quadrants contains two different cones
because the magnitude of the positive preimpact contact velocity determines whether the
corresponding outer ball participates in the impact process or not. The cones CIIa and CIVa ,
which are adjacent to the first quadrant, correspond to a single impact between only two
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Fig. 5 Collision of three
identical thin rods. The lower
part shows the stresses acting on
a differential element of the rod

of the three balls. In the cone CIIa , the right ball does not participate in the impact process
because it has a positive preimpact contact velocity that prevents it from colliding with the
middle ball. This can be seen by considering the impact equation in the contact velocities (3)
and the sequential impact law (19) for preimpact velocities γ − ∈ CIIa ,

γ + − γ − = (QIIa − I)γ − = GΛ, (25)

where I denotes the identity matrix. Equation (25) yields the impulsive force

Λ =
(−mγ −

1
0

)
, (26)

from which it becomes apparent that the right ball does not participate in the impact process.
In CIVa , it is the left ball that is not subjected to any impact. For preimpact velocities be-
longing to the cones CIIa and CIVa , the sequential impact law provides the same result as it
is given by the generalized Newton’s and generalized Poisson’s impact laws for the nondis-
sipative impact of two balls [7, 8]. The positive preimpact contact velocity in the cones CIIb

and CIVb
does not prevent the interaction between the three balls through wave effects.

The third quadrant basically completely describes the physics of Newton’s cradle as it
covers all physically realizable experiments with Newton’s cradle. Nevertheless, the first,
the second, and the fourth quadrants are needed to deal with kinematically inadmissible pre-
impact contact velocities, which is important in view of numerical simulation. Small numer-
ical errors may lead to positive preimpact contact velocities, and an impact law should map
these preimpact contact velocities to physically reasonable postimpact contact velocities.

In the next section, we provide a further argument for the validity of the sequential impact
law by showing that it provides the same outcomes as the one-dimensional wave equation
does for the collision of three identical thin rods.

4 Thin rod model of the 3-ball Newton’s cradle

Wave effects play a crucial role in the impact process of the 3-ball Newton’s cradle. We
model the system with three identical thin rods (see Fig. 5). This leads us to a description of
the impact process that is governed by the one-dimensional wave equation.

The rods have cross-section A and density ρ. We consider the stresses acting on a differ-
ential element of the rod as it is shown in Fig. 5. The position of the differential element is
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denoted by x. The displacement field is referred to as u(x, t). The balance of linear momen-
tum in x direction for the differential element is then given by

dmutt (x, t) = A
(
σ(x + dx, t) − σ(x, t)

)
. (27)

The mass element dm can be expressed in terms of dx as

dm = ρAdx. (28)

Further, we assume that the rods behave linear-elastically and thus obey Hooke’s law

σ = Eε = Eux, (29)

where E and ε designate the Young’s modulus and the strain, respectively. Using (28)
and (29), we can rewrite (27) as

ρAdx utt (x, t) = AE
(
ux(x + dx, t) − ux(x, t)

)
. (30)

Dividing (30) by ρAdx and letting dx → 0 yield the classical one-dimensional wave equa-
tion

utt (x, t) = c2uxx(x, t) with c2 = E

ρ
, (31)

where c denotes the propagation velocity of longitudinal waves in the rod.
Our aim is to investigate the impact effects in Newton’s cradle by considering colliding

rods. An impact between two colliding rods leads to discontinuities in the velocity and in
the strain, which expand through the colliding rods with velocity c. These discontinuities
can only propagate along characteristics of the solution of the wave equation (31). The
construction of a characteristics diagram provides a way to investigate the wave propagation
process. Detailed information about waves in elastic solids can be found in [10, 23]. In
order to be able to construct characteristics diagrams, we first summarize some transition
conditions of the longitudinal waves in Table 1.

4.1 Collision of two identical thin rods

We consider the collision of two identical thin rods. Before the impact, both rods are un-
deformed. Initially, the left rod has a uniform velocity v, and the right rod is at rest. We
assume that the colliding ends of the rods have the same velocity as soon as they touch. The
preimpact configuration can be seen in Fig. 6(a). The initial conditions can be stated as

ux(x,0) = 0 if x ∈ [0,2l],

ut (x,0) =
{

v if x ∈ [0, l],
0 if x ∈ (l,2l].

(32)

Discontinuities in the velocity and in the strain can only propagate along their character-
istics. These characteristics of the wave equation (31) delimit regions of constant strain
and velocity. Therefore, we state the strain and velocity for each region in the characteris-
tics diagram in Fig. 6(a). The transition properties from Table 1 allow the construction of
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Table 1 Transition properties of longitudinal waves in thin rods

Type Diagram Transition conditions

Free end u1,x = 0

u3,x = 0

u1,t + u3,t = 2u2,t

Impact between ends u3,x = 1
2c

(u2,t − u1,t )

u3,t = 1
2 (u2,t + u1,t )

Crossing waves u1,x + u4,x = u2,x + u3,x

u1,t + u4,t = u2,t + u3,t

Fig. 6 Characteristics diagrams
for colliding identical thin rods

the characteristics diagram and the calculation of the corresponding strains and velocities,
which are prevalent in the different regions in the characteristics diagram

Region 1©: u1,x = 0, u1,t = v,

Region 2©: u2,x = 0, u2,t = 0,

Region 3©: u3,x = − v

2c
, u3,t = v

2
,

Region 4©: u4,x = 0, u4,t = 0,

Region 5©: u5,x = 0, u5,t = v.

(33)

In A, the contact opens, the left rod is at rest, and the right rod has the uniform velocity v.
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We can conclude that the collision of two identical thin rods leads to the same result as
Newton’s and Poisson’s impact laws do for two balls in the nondissipative case. Moreover,
the sequential impact law also provides this outcome in the cones CIIa and CIVa , which
correspond to the present situation of a single impact between two balls.

4.2 Collision of three identical thin rods

We now consider three identical thin rods. Initially, the middle rod is at rest. It is approached
by the left and by the right rod, which have velocities 2v and −v, respectively. Again, the
rods are undeformed before the collision. The initial conditions can be written as

ux(x,0) = 0 if x ∈ [0,3l],

ut (x,0) =

⎧
⎪⎨

⎪⎩

2v if x ∈ [0, l],
0 if x ∈ (l,2l],

−v if x ∈ (2l,3l].

(34)

As in the previous case, we assume that the colliding ends of the rods have the same velocity
as soon as they touch. Again, a characteristics diagram is constructed (see Fig. 6(b)) using
the transition properties from Table 1. The following velocities and strains are obtained for
the different regions 1© to 13© in the characteristics diagram

Reg. 1©: u1,x = 0, u1,t = 2v, Reg. 8©: u8,x = 0, u8,t = 0,

Reg. 2©: u2,x = 0, u2,t = 0, Reg. 9©: u9,x = − v

2c
, u9,t = −v

2
,

Reg. 3©: u3,x = 0, u3,t = −v, Reg. 10©: u10,x = −v

c
, u10,t = v,

Reg. 4©: u4,x = −v

c
, u4,t = v, Reg. 11©: u11,x = 0, u11,t = 0,

Reg. 5©: u5,x = − v

2c
, u5,t = −v

2
, Reg. 12©: u12,x = 0, u12,t = −v,

Reg. 6©: u6,x = −3v

2c
, u6,t = v

2
, Reg. 13©: u13,x = 0, u13,t = 2v.

Reg. 7©: u7,x = 0, u7,t = 0,

(35)

In B and C, both contacts open simultaneously. The left rod has a postimpact velocity of −v.
The middle rod is at rest, and the right rod has a postimpact velocity of 2v. This corresponds
exactly to the outcome that is provided by the sequential impact law as can be seen by
calculating the pre- and postimpact relative velocities of the rods

γ − =
(−2v

−v

)
and γ + =

(
v

2v

)
, (36)

for which indeed γ + = S(γ −) = QIIIγ
−. Note that Newton’s and Poisson’s instantaneous

impact laws would give a different outcome.

5 Compliant impact models

Considering compliant contacts is an alternative to instantaneous impact laws when model-
ing impacts between rigid bodies. In contrast to instantaneous impacts, the impact process
is not reduced to a single time instant any more, but it extends to a finite time interval.
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For colliding balls, the Hertz stiffness model [11] is often chosen to model the relation-
ship between the contact force and the small contact penetration. The usually high contact
stiffness results in stiff differential equations. The resulting numerical difficulties of the Hetz
stiffness model or, more generally, a penalty approach, can be avoided by using the normal
impulse as a time-like variable. Due to the nonnegativity of the contact force, the normal
impulse increases monotonically with time. Therefore, the normal impulse can be used as
an integration variable instead of time. Because of the high contact stiffnesses, the duration
of the impact process is short compared to the characteristic time of the impact-free dy-
namics. Therefore, the position can be assumed to remain constant over the duration of the
impact. Moreover, all forces other than the contact forces are neglected during the collision.
This yields the Darboux–Keller approach [5, 12]. An extended Darboux–Keller approach,
which can model multiple impacts, is presented in [15]. Energy losses at the contacts are
considered by relating the work a respective normal contact force does during the expansion
phase to the work it has done during the compression phase by using Stronge’s energetic
coefficient of restitution [21].

For the example of a dissipation-free chain of three equal balls considered in this paper,
the extended Darboux–Keller approach from [15, 17] is equivalent to a compliant contact
model [16]. With this modeling approach, the ratio between the contact stiffnesses influences
the wave transmission behavior. For the 3-ball Newton’s cradle, one would choose identical
contact stiffnesses because of the symmetry of the system consisting of a chain of three
identical steel balls. The 3-ball Newton’s cradle should provide symmetric outcomes for
symmetric initial conditions. If, for example, the initial condition u−

1 = (v 0 0)T with v > 0
results in the generalized postimpact velocity u+

1 = (0 0 v)T, then the symmetric initial
condition u−

2 = (0 0 −v)T should yield the generalized postimpact velocity u+
2 = (−v 0 0)T.

This symmetry is only preserved if equal contact stiffnesses are chosen.
Nevertheless, it is interesting to consider contacts with unequal linear stiffnesses as it has

been done in [1, 4, 16, Appendix C]. Again, we consider the situation where the left ball
has velocity v and hits the middle and right balls that are standing still. If the stiffness of the
left contact is much higher than the stiffness of the right one, then the outcome approaches
the one prescribed by the sequential impact law (19). In the opposite situation where the
stiffness of the left contact is much lower than the stiffness of the right one, the outcome
of the compliant model approaches the solution provided by the generalized Newton’s and
Poisson’s laws. The ratio of the contact stiffnesses determines how the kinetic energy is
distributed among the three balls. The limiting cases of minimal and of maximal wave effects
are given by Newton’s/Poisson’s law and by the sequential impact law, respectively. The
mathematical properties of the sequential impact law for the 3-ball Newton’s cradle are of
interest because the Newton’s cradle can be seen as a device in which the collision of three
bodies of equal mass is associated with maximal wave effects compared to all imaginable
experiments with three arbitrary bodies of equal mass [9].

We want to emphasize that the aim of this work is to investigate the mathematical struc-
ture of instantaneous impact laws. The question which modeling approach shows the best
accordance with a certain set of experimental data remains untreated here. The readers in-
terested in impact experiments are referred to [18, 20] and references therein.

6 Contraction properties of the sequential impact law

Since we are interested in the mathematical structure of impact laws, we investigate which
properties from Fig. 2 hold for the sequential impact law.
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6.1 Nonexpansivity of the sequential impact law

In the following, we show that the impact mapping (19) of the sequential impact law is
nonexpansive in the metric induced by G−1. This means that the set-valued relationship (5)
between the dual variables γ̄ and Λ is maximal monotone.

Theorem 1 The impact mapping (19) is nonexpansive in the metric induced by G−1, that is,

∥∥γ +
A − γ +

B

∥∥
G−1 ≤ ∥∥γ −

A − γ −
B

∥∥
G−1 ∀γ −

A,γ −
B ∈R

2. (37)

Proof Condition (37) needs to hold for arbitrary pairs of preimpact contact velocities γ −
A

and γ −
B . The idea behind the proof is to decompose the line segment that connects the points

γ −
A and γ −

B into a series of line segments that lie in a single cone. This decomposition can
be done using a telescopic expansion

∥∥γ +
A − γ +

B

∥∥
G−1 = ∥∥γ +

A − γ +
∗1 + γ +

∗1 − γ +
∗2 + · · · + γ +

∗k − γ +
B

∥∥
G−1 , (38)

where the γ +
∗i are the images of γ −

∗i that lie on the boundaries between the cones. Figure 7(a)
shows an example of this decomposition. At the boundary between the cones Ci and Ci+1,
we have that γ +

∗i = Qiγ
−
∗i = Qi+1γ

−
∗i due to continuity (P1). Therefore, Eq. (38) can be

written as

∥
∥γ +

A − γ +
B

∥
∥

G−1 = ∥
∥QA

(
γ −

A − γ −
∗1

) + Q1

(
γ −

∗1 − γ −
∗2

) + · · · + QB

(
γ −

∗k − γ −
B

)∥∥
G−1 . (39)

From the triangle inequality it follows that

∥∥γ +
A − γ +

B

∥∥
G−1 = ∥∥QA

(
γ −

A − γ −
∗1

) + Q1

(
γ −

∗1 − γ −
∗2

) + · · · + QB

(
γ −

∗k − γ −
B

)∥∥
G−1

≤ ∥∥QA

(
γ −

A − γ −
∗1

)∥∥
G−1 + ∥∥Q1

(
γ −

∗1 − γ −
∗2

)∥∥
G−1

+ · · · + ∥
∥QB

(
γ −

∗k − γ −
B

)∥∥
G−1 . (40)

Due to the energy conservation property P2, we have ‖Qiγ
−‖G−1 = ‖γ −‖G−1 . This leads to

∥
∥γ +

A − γ +
B

∥
∥

G−1 ≤ ∥
∥γ −

A − γ −
∗1

∥
∥

G−1 + ∥
∥γ −

∗1 − γ −
∗2

∥
∥

G−1 + · · · + ∥
∥γ −

∗k − γ −
B

∥
∥

G−1 . (41)

Each γ −
∗i can be expressed in terms of γ −

A and γ −
B as the convex combination

γ −
∗i = αiγ

−
A + (1 − αi)γ

−
B with αi ∈ [0,1]. (42)

Equation (42) allows us to rewrite the terms of the right-hand side of (41) in the following
way:

∥∥γ −
A − γ −

∗1

∥∥
G−1 = (1 − α1)

∥∥γ −
A − γ −

B

∥∥
G−1 ,

∥
∥γ −

∗1 − γ −
∗2

∥
∥

G−1 = (α1 − α2)
∥
∥γ −

A − γ −
B

∥
∥

G−1 ,

...
∥∥γ −

∗k − γ −
B

∥∥
G−1 = αk

∥∥γ −
∗k − γ −

B

∥∥
G−1 .

(43)
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Fig. 7 Left: Exemplary
decomposition of the path
between γ −

A
and γ −

B
. Right:

ABC-cycle that provides
a counterexample to the maximal
cyclical monotonicity of the
impact mapping S

Finally, we use the expressions from (43) to rewrite (41) as

∥∥γ +
A − γ +

B

∥∥
G−1 ≤ (1 − α1)

∥∥γ −
A − γ −

B

∥∥
G−1 + (α1 − α2)

∥∥γ −
A − γ −

B

∥∥
G−1 + · · ·

+ αk

∥∥γ −
∗k − γ −

B

∥∥
G−1

= ∥
∥γ −

A − γ −
B

∥
∥

G−1 , (44)

which completes the proof. �

6.2 A counterexample to maximal cyclical monotonicity

In order to give a counterexample to the maximal cyclical monotonicity of (5) for the se-
quential impact law, we propose to consider an ABC-cycle that leads to a contradiction to
inequality (18) in Definition 3. We consider the following ABC-cycle of preimpact contact
velocities:

γ −
A = (−2v v)T, γ −

B = (−v 0)T, γ −
C = (0 0)T. (45)

The cycle of preimpact contact velocities (45) is shown in Fig. 7(b). The sequential impact
law (19) leads to the following postimpact contact velocities:

γ +
A = (v v)T, γ +

B = (0 v)T, γ +
C = (0 0)T. (46)

Using (6), (45), and (46), we obtain

γ̄ A = (− v
2 v

)T
, γ̄ B = (− v

2
v
2

)T
, γ̄ C = (0 0)T, (47)

and from (3) the computation of the impulsive forces for the three impact cases follows:

ΛA = (2mv mv)T, ΛB = (mv mv)T, ΛC = (0 0)T. (48)

Equations (47) and (48) allow the evaluation of inequality (18) from Definition 3 for the
ABC-cycle

ΛT
A(γ̄ B − γ̄ A) + ΛT

B(γ̄ C − γ̄ B) + ΛT
C(γ̄ A − γ̄ C) = −mv2

2
≤ 0. (49)
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Bearing in mind the minus sign from (5), we recognize that (49) is a contradiction to con-
dition (18) from Definition 3. Thus, we can conclude that the set-valued operator H in (5)
is not maximal cyclically monotone for the sequential impact law. Therefore, the sequen-
tial impact law cannot be expressed by a convex proper lower semicontinuous dissipation
function Φ(γ̄ ).

7 Conclusions

With the sequential impact law, an instantaneous impact law for completely elastic multi-
collisions of the 3-ball Newton’s cradle has been formulated, which describes all idealized
observations caused by wave-like phenomena. Moreover, the sequential impact law is in
accordance with the postimpact velocities provided by the one-dimensional wave equation
for the collision of three identical thin rods. The sequential impact law is kinematically, ki-
netically, and energetically consistent and has an impact mapping, which is continuous and
conewise linear. It is shown in this paper that the impact mapping S of the sequential im-
pact law is nonexpansive in the metric induced by the inverse Delassus matrix. Accordingly,
the corresponding set-valued operator H between the impulsive force Λ and γ̄ is maximal
monotone. Maximal monotonicity is a useful property to construct synchronization-based
state observers for impacting systems [3]. The provided counterexample to maximal cycli-
cal monotonicity allows us to conclude that no dissipation function exists for the sequential
impact law.

The long-term goal is to develop an instantaneous impact law for completely elastic mul-
ticollisions of general multibody systems. The results on the 3-ball Newton’s cradle may
serve as a stepping stone to such a general impact law for completely elastic multicollisions
and, finally, to also include dissipation. However, the question remains how the sequential
impact law can be generalized to higher dimensions. A dissipation function would have pro-
vided such a generalization, but the current paper shows that a corresponding dissipation
function does not exist. Future research will investigate other ways to arrive at a generaliza-
tion.
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