
SEMINAR REPORT

Numerical quadrature based on

interpolating functions: A MATLAB

implementation

by

Venkata Ayyalasomayajula

A seminar report submitted in partial fulfillment for the

degree of Master of Science (M.Sc)

in Computational Mechanics of Materials and Structures

to the

Institute for Non-Linear Mechanics

University of Stuttgart

December 2016

University Web Site URL Here (include http://)
koundinya.avs@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


Contents

1 Introduction 1

2 Description 3

2.1 Composite-Trapezoidal method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Composite-Simpson method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Generalized Closed Newton-Cotes quadrature method . . . . . . . . . . . . . . . 5

2.4 Gaussian Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Gauss-Chebyshev quadrature . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.2 Gauss-Hermite quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.3 Gauss-Laguerre quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.4 Gauss-Legendre quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.5 Gauss-Lobatto quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

i



Chapter 1

Introduction

Computation of closed-form antiderivatives that are encountered in many engineering phenom-

ena, is not always possible. The lack of an analytical solution motivates a numerical approxima-

tion of the integral. Numerical integration or quadrature is the computation of an approximate

solution to the definite integral
∫ b
a f(x)dx to a considerable degree of accuracy. Depending on

the behaviour of f(x) in the range of integration, various methods may be applied. In this work,

methods pertaining to one-dimensional integrals are described.

The function f(x) is known as the integrand. Numerical quadrature methods can be defined

in general as the weighted sum of evaluations of the integrand at a finite set of points called

integration points or nodes. ∫ b

a
f(x)dx ≈

k∑
i=1

wif(xi)

The nodes(xi) and weights(wi) vary according to the method and desired accuracy.

The present work focuses on quadrature rules that are built on interpolating functions that are

computationally efficient to integrate. Polynomials are a suitable choice for the interpolating

function. The methods that are described in this document are:

• Composite-Trapezoidal method

• Composite-Simpson method

• Generalized Closed Newton-Cotes method

• Gauss-Chebyshev method

• Gauss-Hermite method

• Gauss-Legendre method

1



Introduction 2

• Gauss-Laguerre method

• Gauss-Lobatto method

The corresponding methods have been implemented in MATLAB in an intuitive manner. The

aim of this implementation is to compute the nodes and weights according to the user input at

run-time. This document explains the underlying theory of the above mentioned methods.



Chapter 2

Description

In this chapter, the description of methods mentioned in Chapter 1, along with the underlying

theory and necessary mathematical preliminaries are presented.

2.1 Composite-Trapezoidal method

The Composite-Trapezoidal method, an extension of the 2-point Trapezoidal rule, approximates

the area under the graph of the function f(x) as a series of trapezoids and computes the area

(Fig 2.1). This is achieved by dividing the given interval into n sub-intervals, apply the 2-point

trapezoidal rule for each sub-interval and perform a summation over the results.

a b

f(x)

Figure 2.1: Illustration of Composite-trapezoidal rule

This enhances the accuracy of the result considerably. Also, this rule converges faster when the

integrand is a periodic function. The interpolating function is a polynomial of degree 1.

3



Description 4

To compute the numerical integral of a function f(x) from a to b using the Composite-Trapezoidal

method, the following procedure can be adopted:

• Divide the range of integration into n sub-intervals, that gives a step size h = (b− a)/n

• The integration points or nodes (excluding the limits) can be written as xk = a + kh

(k = 1, 2, 3, ..., n− 1)

• The integral can now be evaluated as

∫ b

a
f(x)dx ≈ (b− a)

n

(
f(a)

2
+

n−1∑
k=1

f(xk) +
f(b)

2

)
(2.1)

This method is implemented in the MATLAB function CTrap.

2.2 Composite-Simpson method

This is an extension of the 3-point Simpson method. If the integrand is a non-smooth function

(oscillatory, discontinuous at a few points) over the given range, the accuracy of the result

greatly reduces. A solution for such problems is dividing the given range into an even number

of sub-intervals, apply the 3-point rule on each sub-interval and perform a summation over the

results.

To compute the numerical integral of a function f(x) from a to b using the Composite-Simpson’s

method, the following procedure can be adopted:

• Divide the range of integration into n sub-intervals, giving a step size h = (b−a)/n. Make

sure that n is even.

• The integral can be now evaluated as

∫ b

a
f(x)dx ≈ h

3

f(a) + 2

(n−2)/2∑
k=1

f(x2k) + 4

n/2∑
l=1

f(x2l−1) + f(b)

 (2.2)

• The interpolating function is a polynomial of degree 2 which is essentially a parabola. This

in fact motivates n to be even.

The above method is implemented in the MATLAB function CSimp.



Description 5

2.3 Generalized Closed Newton-Cotes quadrature method

This is a generalized formula that encompasses a lot of other methods like Trapezoidal, Simp-

son’s, Boole’s rule etc for evaluating the approximate value of definite integrals. To compute the

numerical integral of a function f(x) from a to b using a Newton-Cotes quadrature rule where

the interpolating function is a polynomial of degree m, the following procedure can be adopted:

• The Closed Newton-Cotes rule of degree m can be written as

∫ b

a
f(x)dx ≈

m∑
i=0

Aif(xi) (2.3)

where xi are the nodes and Ai are the corresponding coefficients.

• Without loss of generality, polynomials x0, x1, x2, ... ,xm can be chosen as f(x) which

will lead to linear system of equations in Ai

A0 +A1 + · · ·+Am = b− a
A0x0 +A1x1 + · · ·+Amxm = (b2 − a2)/2

...

A0x
m
0 +A1x

m
1 + · · ·+Amx

m
m = (bm+1 − am+1)/(m+ 1)

• The coefficients when divided by the step size h = (b − a)/m provide the corresponding

weights of the quadrature.

• Substituting b = a+mh and xi = a+ih into the above system of equations and simplifying

further gives a linear system of equations in wi

w0 + w1 + · · ·+ wm = m

w1 + 2w2 + · · ·+mwm = m2/2
...

w1 + 2mw2 + · · ·+mmwm = mm+1/(m+ 1)

• This system can be written in matrix form VW = M.

Here V is the transpose of the Vandermonde matrix, W is the vector of unknowns wi and

M is the vector of constant terms. This system can be solved for wi

• With the nodes and weights in hand, the quadrature values can be calculated analogous

to the above methods.

This method has been implemented as a composite rule in the MATLAB function NC.



Description 6

The limitation of this generalized formula is, however, that the integration points are to be

equally spaced for any degree. This is because polynomial interpolation using a high degree

causes oscillation at the ends of the interval (Runge’s phenomenon). Also, the vandermonde

matrix is ill-conditioned. Though, for a degree m ≤ 10 the system is fairly stable.

2.4 Gaussian Quadrature

Until now, procedures contained equally spaced abscissas at which function evaluations take

place. However, in Gaussian quadrature, this is not true. There is a freedom in the choice

of nodes as well, consequently allowing to perform a higher order quadrature with the same

number of function evaluations (compared to Newton-Cotes method).

Regardless of the type of method, the integrand is desired to be smooth over the interval which

allows a well-approximated polynomial as well. But, in practice the integrand is seldom smooth.

This issue is addressed in Gaussian quadrature using a so-called weighing function using which

integrable singularities are removed. Conventionally, the domain of integration is taken as [-1,1].

The Gaussian quadrature can be represented as,

∫ 1

−1
f(x)dx =

∫ 1

−1
W (x)g(x)dx ≈

n−1∑
i=0

wig(xi) (2.4)

Also, it has been well established that the nodes xi can be evaluated from the roots of an

orthogonal polynomial.

In this context, the inner product of two functions p(x) and q(x) over a weight function W (x)

is defined as

〈p, q〉 =

∫ b

a
W (x)p(x)q(x)dx (2.5)

With this definition in mind, using the Gram-Schmidt process, a set of orthogonal polynomials

pj(x) can be generated as,

pn(x) := xn −
n−1∑
k=0

〈xn, pk〉
〈pk, pk〉

pk(x) (2.6)

However, (2.6) is numerically unstable. Hence, to construct the orthogonal polynomials for our

purpose, the following theorem is used.

Theorem 2.1. Monic orthogonal polynomials are given by the three term recurrence relation,

p−1(x) ≡ 0

p0(x) ≡ 1

pn+1(x) = (x− an)pn(x)− bnpn−1(x)



Description 7

where (for,n ≥ 1)

an :=
〈pn, xpn〉
〈pn, pn〉

(2.7)

bn :=
〈pn, pn〉
〈pn−1, pn−1〉

(2.8)

Based on above definitions, the nodes xi and weights wi can be computed from eigenvalue

analysis of the tridiagonal Jacobi matrix given by,

Jn =



a0
√
b1

√
b1 a1

√
b2

√
b2

. . .
. . .

. . . an−2
√
bn−1√

bn−1 an−1


(2.9)

The nodes xi are nothing but the eigenvalues of the above matrix. Let V = Vij be the matrix

of eigen vectors. The weights are given by

wi = V 2
1j

∫
S
W (x)dx (2.10)

where S ⊂ R is the domain of integration.

In the present work, Gaussian quadrature based on the classical orthogonal polynomials have

been implemented.

2.4.1 Gauss-Chebyshev quadrature

This method uses the Chebyshev polynomials of the first kind. Using the recurrence relation,

they can be written as,

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

(2.11)

This method is used for evaluating the approximate value of the integral of the kind:∫ 1

−1

f(x)√
1− x2

(2.12)

where, the weighing function is 1/
√

1− x2



Description 8

The chebyshev nodes in the interval (-1,1) are given by

xj = cos

(
2j − 1

2n
π

)
, j = 1, 2, ..., n (2.13)

and the weights are all the same and equal to π/n

The implementation of this method can be found in the MATLAB function GCheby

2.4.2 Gauss-Hermite quadrature

The Gauss-Hermite quadrature is used to evaluate the approximate value of the integral of the

kind ∫ ∞
−∞

e−x
2
f(x)dx (2.14)

where the weighing function is W (x) = e−x
2

This method uses the physicist’s Hermite polynomials that are given by,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
(2.15)

The recurrence relation can be written as,

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (2.16)

Note that, the leading coefficient of Hn is 2n. In order to make the polynomial monic, it has to

be divided by the same amount

Hn+1(x)

2n+1
= x

Hn(x)

2n
− n

2

Hn−1(x)

2n−1
(2.17)

writing it in the form similar to Theorem 2.1,

pn+1(x) = (x− 0)pn(x)− n

2
pn−1(x) (2.18)

Hence, an = 0 and bn = n/2. With these values, the tridiagonal Jacobi matrix can be generated

and the nodes and weights can be computed as shown in (2.7) and (2.8).

The implementation of this procedure can be seen in the MATLAB function GHerm.



Description 9

2.4.3 Gauss-Laguerre quadrature

The Gauss-Laguerre quadrature is used to evaluate the approximate value of the integral of the

kind ∫ ∞
0

e−xf(x)dx (2.19)

where the weighing function is W (x) = e−x

This method uses the Laguerre polynomials defined by the formula,

Ln(x) =
ex

n!

dn

dxn
(e−xxn) (2.20)

The recurrence relation can be written as

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x) (2.21)

The leading coefficient is again not 1. Making the relevant changes and rewriting it in the form

of Theorem 2.1, we get an = 2n + 1 and bn = n2. The corresponding Jacobi matrix can be

constructed and the nodes and weights can be computed from (2.7) and (2.8).

This method has been implemented in the MATLAB function GLagu

2.4.4 Gauss-Legendre quadrature

The Gauss-Legendre quadrature is the simplest form where the weighing function, W (x) =

1. The related polynomials are called Legendre polynomials. They may be written using the

formula,

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
(2.22)

The recurrence relation can be written as,

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (2.23)

From (2.18) it is clear that the leading coefficient is not 1. After rewriting the polynomials in

monic form we get an = 0 and bn = n2/(4n2 − 1). The corresponding Jacobi matrix can be

constructed and the nodes and weights can be computed from (2.7) and (2.8).

This method has been implemented in the MATLAB function GLege



Description 10

2.4.5 Gauss-Lobatto quadrature

This procedure is similar to Gauss-Legendre with the key difference being, the interval end

points are also considered as nodes. This leads to a slight modification in the tridiagonal Jacobi

matrix as shown below.

Jn =



a0
√
b1

√
b1 a1

√
b2

√
b2

. . .
. . .

. . . an−2
√
bn−1√

bn−1 an−1
√
bn

√
bn an

√
bn+1√

bn+1 an+1


(2.24)

Compared to (2.7), a few extra terms can be observed. Also, bn+1 = (n + 1)/(2n + 1) can be

obtained. The rest of the procedure is as explained above.

This method has been implemented in the MATLAB function GLoba


	1 Introduction
	2 Description
	2.1 Composite-Trapezoidal method
	2.2 Composite-Simpson method
	2.3 Generalized Closed Newton-Cotes quadrature method
	2.4 Gaussian Quadrature
	2.4.1 Gauss-Chebyshev quadrature
	2.4.2 Gauss-Hermite quadrature
	2.4.3 Gauss-Laguerre quadrature
	2.4.4 Gauss-Legendre quadrature
	2.4.5 Gauss-Lobatto quadrature



