

Methode der Finiten Elemente

Übungsblatt 4

Aufgabe 1

Gegeben sei die Differentialgleichung der stationären Wärmeleitung

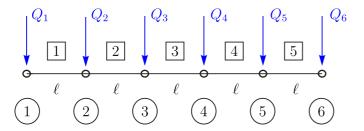
$$\kappa T_{.xx} + \rho r = 0$$

mit

$$\kappa: \text{W\"{a}rmeleitf\"{a}higkeit}, \quad [\kappa] = \frac{W}{mK}$$

$$r$$
: externe Wärmequelle, $[r] = \frac{W}{kg}$.

Das Gebiet wird mit Ω und der Rand mit Γ bezeichnet, wobei im 1D-Fall Ω einer Linie und Γ zwei Punkten entspricht. Die Randbedingungen (RB) lauten:


 Γ_T : Dirichlet RB (Temperaturen gegeben)

 Γ_q : Neumann RB (Wärmestrom gegeben)

mit

$$\Gamma_T \cup \Gamma_q = \Gamma$$
$$\Gamma_T \cap \Gamma_q = \emptyset$$

Leiten Sie für das eindimensionale Wärmeleitungsproblem mithilfe der Methode der gewichteten Residuen eine Finite Elemente Formulierung her.

 $Q_i = \text{W\"{a}rmest\"{o}me}$

 ℓ = Elementlänge

(i) = Knotenummer

 $\lceil i \rceil$ = Elementnummer