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Analysis of a Singularly Perturbed Continuous Piecewise Linear System
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Summary. The dynamics of piecewise linear systems can often be reduced to lower dimensional invariant cones using an appropriate
Poincaré map. These invariant cones can be understood as a generalization of the center manifold concept to nonsmooth systems. In
this paper, we show that the singular perturbation technique applied to a slow-fast continuous piecewise linear system can deliver a
good approximation of the invariant cone. The proposed approximation approach is demonstrated on an oscillator with a unilateral
spring as an example of a continuous piecewise linear system in R3.

Introduction
Recently, there has been a greater focus placed upon piecewise linear systems, due to their ability to model many complex
physical phenomena. Typical applications range from mechanical systems involving dry friction [10], to neuron models
[5], electronic circuits [2] and control systems [11]. Furthermore, continuous piecewise linear systems (hereafter, CPWL)
are widely used to reproduce and understand various bifurcation phenomena of smooth nonlinear dynamical systems. The
dynamics of CPWL systems can exhibit very interesting effects, which are impossible to observe in smooth systems [4].
A prominent example of this rich dynamic behavior was reported in [4], where the continuous matching of two stable
subsystems can result in an unstable dynamics. The authors show that this behavior is possible, only if the CPWL
system has an invariant cone, which is characterized by a fixed point of a corresponding Poincaré map and serves as a
reduced system to investigate the stability and bifurcations of the full system. Therefore, the existence and computation of
invariant cones for systems lacking smoothness are of interest. Unfortunately, the generation of invariant cones requires
the numerical solution of a system of nonlinear equations and is therefore not suitable as a constructive reduction method
towards a lower-dimensional dynamical model. However, the invariant cones can be understood as a generalization of
center manifold theory to piecewise linear systems with an equilibrium on the switching manifold. Moreover, the long-
term behavior of the full system can be described by a lower-dimensional model obtained from reducing the system to its
dynamics on the invariant cone, if the latter is attractive. This perspective shows a clear similarity between invariant cones
of piecewise linear systems and smooth invariant manifolds, which are used to obtain reduced order models for general
differentiable systems.
For smooth nonlinear systems, projections to linear subspaces are usually used for model reduction, even though these are
not invariant with respect to the original nonlinear dynamics. A reduced dynamics on an attractive invariant set, however,
constitutes a mathematically more justifiable model reduction, since the trajectories of the reduced system on the invariant
set are actual solutions of the full system. Relying on smoothness properties of the system, the existence and uniqueness of
smooth invariant manifolds, seen as an extension of the underlying linear subspaces, have been addressed in the framework
of spectral submanifolds (SSMs) [6]. The idea of model reduction in the framework of SSMs is based on a specific choice
of slow variables, which determine the steady-state behavior of the system and are used as master coordinates to enslave
the remaining state variables, therefore giving birth to a reduced model containing the long term characteristics of the full
system. This fundamental idea emanated originally from a slow-fast decomposition using singular perturbation theory for
smooth nonlinear systems. Therefore, the investigation of slow-fast CPWL systems using perturbative approximations
could pave the way for the development of novel reduction methods for systems with nonsmooth nonlinearities.
The aim of this paper is to derive an approximation in closed form of the eigenvector defining the invariant half-lines of
the cone for a specific homogeneous CPWL mechanical system using the theory of singular perturbations. This allows to
obtain a reduced order model, for which the switching plane is modified such that the reduced dynamics is also of CPWL
nature.
This paper is organized as follows. A brief overview on invariant cones along with an important result from [4] on their
existence and stability are presented in next section. Then, the theory of singular perturbations is described with a focus on
piecewise linear systems. In the last section, a slow-fast oscillator in R3 with a unilateral spring is analyzed. An explicit
expression for its invariant half-lines is derived using singular perturbation theory, and a reduced model with a modified
switching condition is obtained.

Invariant cones of continuous piecewise linear systems in R3

Without loss of generality, we consider a CPWL system with a single switching plane Σ = {x ∈ R3 : y = 0} written as:

ẋ = F(x) =

{
A+x for y ≥ 0

A−x for y < 0
, (1)

where x =
(
x1 x2 y

)T ∈ R3 and A± are 3 × 3 real constant matrices satisfying the continuity condition
A+ −A− = (A+ −A−)e3eT3 , with e3 being the third vector of the standard basis of R3. Therefore, both matrices
are only different in the third column.
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For the sake of brevity, we will use the compact form

Υ(η) = Υ± =

{
Υ+ if η ≥ 0

Υ− if η < 0
, (2)

where Υ± are either matrices or scalars. Hence, system (1) can be written as ẋ = A(y)x = A±x. The origin is always
an equilibrium point of system (1), and it is the unique equilibrium if A± are both nonsingular. Suppose that an initial
condition x0 lies in one of the domains U± = {x ∈ R3 : y ≷ 0}, and that the corresponding trajectory remains in the
same domain for any given time t ∈ (0,∞) and therefore does never reach the switching plane Σ. In this case, the system
behaves purely in a smooth fashion and the conventional theory for differentiable systems can be applied. The interesting
behavior occurs, however, if the trajectory crosses Σ at a finite time, which can lead to various dynamical behaviors in
general piecewise linear systems, such as direct crossing, sliding, grazing or jumping. In this work, we consider the class
of CPWL systems, for which the dynamics can only include direct crossing behavior and the uniqueness of solutions for
every initial condition is ensured. To understand the composed motion of both subsystems, we consider the following
subsets of Σ:

Σ> := {x ∈ Σ : eT3 A
+x = eT3 A

−x > 0}, Σ< := {x ∈ Σ : eT3 A
+x = eT3 A

−x < 0}

For x∗ ∈ Σ< or x∗ ∈ Σ>, the flow transitions from one domain into the other through x∗. In the following, we will
assume that initial values x0 are chosen from the set x0 ∈ Σ<. A trajectory is then given by φ(x0, t) = eA

−tx0 and
enters U− by means of the flow of the system ẋ = A−x. It reaches the switching plane again for the first time at
x1 ∈ Σ>. Hence, there is a positive finite time t−(x0) = min{t > 0 : eT3 e

A−tx0 = 0, eT3 e
A−tA−x0 > 0}. Similarly

t+(x1) can be defined for x1 ∈ Σ>. Since the flow is piecewise linear, one can see that t− and t+ are constant on
half-lines, i.e. t±(λx) = t±(x) with λ ∈ (0,∞). For initial conditions x0 ∈ Σ, the following half-maps are defined:

P− :Σ< → Σ

x0 7→ eA
−t−(x0)x0 =: P−(x0)

P+ :Σ> → Σ

x1 7→ eA
+t+(x1)x1 =: P+(x1)

Hence, the Poincaré map reads:

P (x0) := P+(P−(x0)) = eA
+t+(P−(x0))eA

−t−(x0)x0 (3)

Since system (1) is positively homogeneous and the vector field satisfies F(µx) = µx,∀x ∈ R3, µ > 0, the Poincaré map
P transforms half-lines contained in Σ and passing through the origin into half-lines contained in the same plane, also
passing through the origin. A more general construction is given by the following theorem stated in [7]:

Theorem 1 Let x ∈ Σ be an eigenvector of the nonlinear eigenvalue problem P (x) = µx, with some real positive
eigenvalue µ. Then there is an invariant cone for system (1). Moreover,

• If µ > 1, then the origin is an unstable equilibrium.

• If µ = 1, then the cone consists of periodic orbits.

• If µ < 1, then the stability of the origin is dependent of the stability of P w.r.t. the complimentary directions.

Therefore, system (1) has an invariant cone if there exists a half-line contained in Σ that is invariant for the Poincaré
map P . The nonlinear eigenvalue problem P (x) = µx determines the invariant cone and involves the six independent
variables x ∈ R3, µ, t−(x) and t+(P (x)), which can be obtained numerically as solution of the nonlinear equation system
given by:

0 = G(x, t−, t+, µ) =


eA

+t+eA
−t−x− µx

eT3 e
A−t−x
eT3 x

xTx− 1

 (4)

This system of equations includes the definition of the Poincaré map, the first return to Σ at the time t−, the location of
the initial condition on Σ and a normalization. The zeros of G can be solved numerically to obtain the 6 independent
unknows characterizing the invariant cone. Although the problem of existence and number of invariant cones in general
piecewise linear systems is still open, it has been proved that there exists at most one invariant cone for some degenerate
CPWL cases in [3] and [4] and at most two invariant cones for observable three dimensional CPWL cases in [1]. For the
sake of completeness, we recall here an important result from [4] (Theorem 2 - Statement (a)) on the number and stability
of invariant cones for a specific case, which is considered in the mechanical system studied in this work.
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Theorem 2 Suppose that system (1) satisfies the observability condition, i.e. the observability matrix

O =

 eT3
eT3 A

−

eT3 (A
−)2


has full rank. Further, assume that the eigenvalues of matrices A± are λ±

1 = λ± and λ±
2,3 = α± ± iβ±, with β± > 0

and introduce the parameters

γ+ =
α+ − λ+

β+
, and γ− =

α− − λ−

β− .

Then the following statement holds: If γ+γ− > 0, then system (1) has only one invariant cone, which is two-zonal (i.e.
lives in the two linear zones) and hyperbolic, asymptotically stable for γ+ + γ− > 0 and unstable for γ+ + γ− < 0.

Note that due to the continuity condition, the observability matrix is independent of the chosen matrix, A+ or A−.
In the next section, a brief introduction to singular perturbation theory with an emphasis on CPWL system is given.

Singular perturbation theory for CPWL systems

For an n-dimensional smooth system having s slow variables and a small perturbation parameter ε, which is responsible
for a time-scale separation, classical geometric perturbation theory can be used to obtain a reduced-order model. The
limiting case ε → 0 gives an f -dimensional critical manifold Mc, where f = n− s. According to Fenichel’s theorem, if
Mc is normally hyperbolic, then there exists an f -dimensional slow invariant manifold Ms, on which the dynamics is a
perturbation of order O(ε) of the dynamics on Mc. This theorem can be applied to slow-fast CPWL systems only on the
subsets of the state space that do not include the switching manifold. This yields two linear locally invariant slow half-
manifolds M±

s , each aligned with the slow eigenspaces of A+ or A−. Furthermore, a forward invariant neighborhood
enveloping the linear critical manifold, which is continuous at the switching manifold, has been shown to exist under
suitable conditions [9]. For this, the critical manifold Mc, which is not normally hyperbolic on Σ, has to be attracting.
Consider a slow-fast ODE system of the form:

ẋ =

{
f+(x,y; ε) for h(x,y) ≥ 0

f−(x,y; ε) for h(x,y) < 0

εẏ =

{
g+(x,y; ε) for h(x,y) ≥ 0

g−(x,y; ε) for h(x,y) < 0,

(5)

where x =
(
x1 · · · xs

)T ∈ Rs are the slow variables, y =
(
y1 · · · yf

)T ∈ Rf are the fast variables, 0 ≤ ε ≪ 1

is the small parameter and ˙(·) := d(·)
dt denotes the derivative with respect to the "slow" time scale t. The switching

manifold is therefore given by the scalar function h(x,y) = 0. We assume that the functions f±,g± and h are linear with
respect to x and y and that the system is continuous at the switching manifold. Furthermore, suppose that h(0,0) = 0.
At the origin, we also assume that the switching manifold is not tangent to all fast directions, which means that ∇h
has at least one non-zero component. Without loss of generality, one can assume ∂h

∂y1
̸= 0. This assumption leads to

a more general configuration, where both the slow and fast dynamics contain a switch. Otherwise, a degenerate system
is obtained, where only the slow dynamics has a switch and the fast dynamics is g± = g. In order to simplify the
switching condition, an invertible transformation (x,y) → (x̃, ỹ) is introduced, with a new set of coordinates x̃ = x and
ỹ =

(
h(x,y) y2 y3 · · · yf

)T. Since ỹ1 is a new fast variable, the slow-fast system has the same form as (5) except
that the switching manifold is determined by ỹ1 = 0. Taking the new coordinates and setting the small parameter ε = 0
in (5) yields the critical system

ẋ = f±(x,y; 0) (6)

0 = g±(x,y; 0) (7)

where the (̃·) is dropped for simplicity, and the ± switch is governed by equation (2) with y1 = η.
The critical manifold is obtained as Mc = {(x,y) ∈ Rs+f : y = h±

c (x)}, where y = h±
c (x) are the solutions of the

two algebraic constraints (7) and describe the behavior of the fast variables as a function of the slow variables. Note that
h±
c are both linear functions of x and that the matching from both linear subsystems is continuous. The dynamics on Mc

is governed by
ẋ = f±(x,h±

c (x); 0). (8)

The Jacobians ∂g±

∂y (x)
∣∣∣
y=h±

0 ,ε=0
along both critical manifolds are assumed to fulfill the stability condition, so that a

relevant reduction to the slow dynamics can be obtained. For CPWL systems, the existence of a forward invariant neigh-
borhood around the critical manifold has been shown in [9], if Mc is globally exponentially stable. Therefore, and for the
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sake of brevity, we assume global exponential stability of the critical manifold, which is naturally given for the specific
example considered in this work. We refer to [9] for more details on the stability properties of Mc and the proof of
the existence of a forward invariant neighborhood. For systems of the form (1), the singular perturbation technique is
performed on each linear subsystem to obtain the linear locally invariant slow half-manifolds. This is described in the
following, where the ± switching is dropped for simplicity and only the linear region defined by y1 ≥ 0 is considered.
Obviously, the approach is analogous for the other linear region. The matching of both linear invariant half-manifolds and
the corresponding switching condition are discussed explicitly for the example in the next section.
The s-dimensional, locally invariant slow manifold is defined as M+

s = {(x,y) ∈ Rs+f : y = h+
s (x)}. Since the state

space is decomposed into two linear parts, the invariance property of M+
s must be understood in a local way. Inserting

y = h+
s and ẏ =

∂h+
s

∂x

∣∣∣
x,ε

ẋ into the fast dynamics εẏ = g+(x,y, ε) yields:

ε
∂h+

s

∂x
f+(x,h+

s ; ε) = g+(x,h+
s ; ε). (9)

In each linear region, the asymptotic expansion given by

h+
s (x) = h+

0 (x) + εh+
1 (x) +O(ε2) (10)

is used in the invariance equation (9). By equating the coefficients of powers of ε one can see that h+
c (x) = h+

0 (x),
which means that the critical manifold is the zero-order approximation of the slow manifold. Moreover, the first order
term h+

1 (x) is obtained as:

h+
1 =

∂g+

∂y

∣∣∣−1

y=h+
0 ;ε=0

[
∂h+

0

∂x
f+(x,h+

0 ; 0)−
∂g+

∂ε

∣∣∣
x,h+

0 ;0

]
. (11)

Three-dimensional oscillator with a unilateral spring

The approximation of the invariant cone by means of singular perturbation theory is demonstrated on the CPWL system
shown in Figure 1. The system consists of a mass m and a massless rod, each coupled to the environment by a spring-
damper element. In addition, the mass is connected to the rod by one linear and one unilateral spring, with stiffnesses k3
and kN3, respectively. The unilateral spring is active only when the relative displacement q1 − q2 is positive, where q1
and q2 are the displacements of the mass and the massless rod, respectively. Let x =

(
x1 x2 y

)T ∈ R3 be the state
vector, where the components are defined as follows:

x1 = q1, x2 = q̇1, y = q1 − q2. (12)

In this set of coordinates, the equations of motion have the form of system (1), where A± are constant matrices given by

A± =


0 1 0

−k1

m − c1
m −k±

3

m

k2

c2
1 −k2+k±

3

c2

 with

{
k+3 = k3 + kN3 for y ≥ 0

k−3 = k3 for y < 0
, (13)

with all damping and stiffness coefficients assumed to be non-negative. The switching manifold is defined as
Σ = {x ∈ R3|y = 0} and the state space consists of two half-spaces U± = {x ∈ R3|y ≷ 0}. By statement (a) of Theo-
rem 2 and after performing simple calculations for fixed sets of parameters which fulfill the assumptions on the matrices
A±, we deduce that this system has only one invariant cone which is hyperbolic and asymptotically stable. As the exis-
tence of a stable invariant cone is now established, the next step is to apply singular perturbation theory to approximate
the cone. In order to bring the system to a singularly perturbed form, the damping constant c2 is assumed to be a small
parameter (c2 = ε). Next, we split the state vector x into slow variables xs =

(
x1 x2

)T ∈ R2 and a scalar fast
variable y.

Figure 1: Mechanical system of a slow-fast oscillator in R3.
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Figure 2: Illustration of the attracting invariant cone approximated by two half-planes M±
s with a switch at x1 = 0 for the parameter

set ε = c2 = 0.1, c1 = 0.4, m = 1, k1 = k2 = 1, k3 = 0, kN3 = 2. A general trajectory of the full system (solid line) is attracted
to the half-planes and synchronizes with a trajectory of reduced dynamics (dashed line). The critical manifold gives a conservative
periodic orbit (red line) and is therefore not suitable as an approximation of the full system.

The equations of motion in the slow-fast form read as:

ẋs = f±(xs, y) =

(
x2

−k1

m x1 − c1
mx2 − k±

3

m y

)
(14)

εẏ = g±(xs, y, ε) = k2x1 + εx2 − (k2 + k±3 )y. (15)

The critical manifolds in the half-spaces U± are obtained as isolated solutions h±
0 (xs) of the equations

g±(xs, h
±
0 (xs), 0) = 0 and read as:

h±
0 (xs) =

k2

k2 + k±3
x1 (16)

Herein, h+
0 (xs) is only applicable for h+

0 (xs) ≥ 0, which in view of k2, k+3 ≥ 0 comes down to x1 ≥ 0. Similarly
h−
0 (xs) is only applicable for x1 < 0. Hence, we may define the critical manifold by

h0(xs) =

{
h+
0 (xs) for x1 ≥ 0

h−
0 (xs) for x1 < 0

(17)

The Jacobians ∂g±

∂y (xs)
∣∣∣
y=h±

0 ,ε=0
along the critical manifold are strictly negative and fulfill the stability condition, and

the dynamics on this manifold is given by ẋs = f±(xs, y = h0(xs); 0). For the special choice c1 = 0, this dynamics is
purely conservative and yields a periodic orbit, which does not reflect the dissipative nature of the original system (ε ̸= 0)
and therefore cannot be used to approximate the long time behavior of the full system, as shown in Figure 2. Thus, terms
of O(ε) must be included to obtain a dissipative reduced-order model. Using the equations (10) and (11), the locally
invariant slow half-manifolds of the two linear subsystems read as:

yslow = h±
s (xs) =

k2

k2 + k±3
x1 +

εk±3
(k2 + k±3 )

2
x2 +O(ε2), with k±3 =

{
k3 + kN3 for yslow ≥ 0

k3 for yslow < 0
. (18)

The dynamics of the 2-dimensional system, reduced to the linear locally invariant slow manifolds in both regions, is
governed by ẋs = f±(xs, h

±(xs)). The switching condition in this case is not trivial anymore, since the stiffness k±3
depends on yslow itself. This problem is illustrated in Figure 3. The colored areas and their corresponding limits are
obtained from (18) by solving the inequalities yslow ≥ 0 (yellow region for h+

s ) and yslow < 0 (orange region for h−
s ),

which matches the physical switching condition. In the white area, none of the inequalities are satisfied, whereas the
dark area shows the region where both inequalities are fulfilled. To circumvent this problem of switching between h±

s ,
one could take x1 = 0 as a switching plane, since the x2 terms in (18) are of order ε. At this modified switching plane,
the linear slow manifolds, obtained as two half-planes M±

s = {x ∈ R3|y = h±
s (xs)}, are askew and meet only at the

equilibrium point. This leads to a reduced system containing a jump at x1 = 0. However, the trajectories of the reduced
system are still a good approximation and follow the trajectories of the full system, which converge asymptotically towards
M±

s as shown in Figure 2. In order to obtain a continuous reduced system, M±
s can be continued up to their intersection

line. This leads to the avoidance of jumps in the reduced dynamics at Σ.
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Figure 3: Illustration of the admissibility regions for h+
s (yellow area with the solid black line as limit) and h−

s (or-
ange area with the dash-dotted black line as limit). The white area is the region for which both h±

s are not admissi-
ble. The magenta dashed line shows the intersection of the two linear slow manifolds. Example for the parameter set
ε = c2 = 0.1, c1 = 0,m = 1, k1 = k2 = 1, k3 = 0, kN3 = 2.

Figure 4: Illustration of the invariant cone for ε = c2 = 0.1, c1 = 0.4, m = 1, k1 = k2 = 1, k3 = 0, kN3 = 2. The magenta line
shows the intersection line of the two locally invariant half-planes. The blue line is the intersection line of M+

s with the switching
manifold Σ, which lies exactly on the direction of the eigenvector from the numerical solution of equation (4).

Continued reduced slow dynamics
The main disadvantage of taking x1 = 0 as a switching plane in (18) is that the reconstruction of the fast variable y
contains a jump leading to a Filippov system [8] for the reduced dynamics. For the purpose of obtaining a continuous
matching of the two locally invariant half-planes, the switching plane can be modified and fixed at the intersection line
defined by M+

s ∩M−
s . Setting h+

s = h−
s yields:(

− k2

k2 + k+3
+

k2

k2 + k−3

)
x1 +

(
k−3

(k2 + k−3 )
2
− k+3

(k2 + k+3 )
2

)
x2 = 0. (19)

This condition h+
s = h−

s is then used in (18) as switching condition instead of yslow. Even though this line does not lie on
the physical switching plane Σ, defined by y = 0, the reduced dynamics gives a better approximation of the dynamics of
the full system. This is illustrated in Figure 4, where the reduced dynamics on the slow manifolds (dashed line) contains
only a kink at the switching instead of a jump. The trajectory of the reduced system follows the solution of the full system
more closely than trajectories containing a jump at x1 = 0. Figure 5 compares the time histories of the displacements
q1 and q2 over some periods of decaying oscillations from the full system (black), the reduced system with a jump (blue)
and the reduced model from the continued invariant half-planes (red). The continued reduced dynamics shows a closer
agreement with the full system than the reduced model containing jumps.

Approximation of the invariant half-lines
Since the global stability of the continuous critical manifold Mc is ensured and the two slow manifolds M±

s are locally
invariant and attracting, a typical trajectory in U+ would cross Σ from right to left at a point that can be assumed in
the O(ε) neighborhood of M+

s . For sufficiently small ε, the trajectory would then approach M−
s and follow it closely
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Figure 5: Time histories for ε = c2 = 0.2, c1 = 0, m = 1, k1 = k2 = 1, k3 = 0, kN3 = 2. The black, blue and red lines show the
displacements from the full system, the reduced system with a jump and the continued reduced system, respectively.

until the next crossing with Σ. Hence, we can assume that every transition from right to left through Σ is in a O(ε)
neighborhood of M+

s . Consequently, the intersection line of M+
s and Σ presents a good approximation of an invariant

half-line of the invariant cone and can be obtained by setting y+slow = 0 in (18) as :

rinv = {x1 = −ε
k+3

k2(k2 + k+3 )
x2, y = 0}. (20)

Using the definitions in (12), this half-line is visualized as the blue line in Figure 4 in the original coordinates of the system
(q1, q̇1, q2)T. For ε sufficiently small, this simple closed form approximation matches the invariant half-lines obtained
from the numerical solution of (4). Obviously, this argumentation is analogous if we assume trajectories starting near the
intersection of M−

s and Σ and leads to an approximation of the other invariant half-line, which corresponds to a Poincaré
map defined as P = P−(P+).

Conclusion

This study set out to explore the connection between singular perturbation theory applied to a slow-fast CPWL system
and its invariant cones. The results show that the invariant half-lines of the corresponding invariant cone can directly be
approximated in a closed form from a geometric perspective by computing the intersection of the locally invariant slow
manifolds and the switching plane. Moreover, this work has also highlighted that trajectories of the reduced dynamics
with a modified switching condition, which was obtained from the intersection line of the two slow manifolds, can closely
approximate trajectories of the full system. Further research might explore the applicability of these findings for higher
dimensional CPWL systems.
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