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Abstract. In this work, a novel method to determine the stability of
periodic solutions is demonstrated. Using the Koopman framework, the
linear time-periodic nonautonomous perturbed dynamics around a pe-
riodic solution can be approximated by a linear autonomous system of
higher order, whose system matrix is the well-known Hill matrix. Evalu-
ation of the closed form solution reveals that the monodromy matrix can
be approximated by the Hill matrix, using only a matrix exponential and
a projection instead of solving a large eigenvalue problem or integrating
numerically over one period. There does not exist a unique choice for
the projection of the Hill matrix to the monodromy matrix, and various
ways to obtain a suitable projection are discussed in this paper. The
performance of the novel method is illustrated for the vertically excited
multiple pendulum.
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1 Introduction

The numerical characterization of periodic solutions in nonlinear systems and
their stability is a task of greatest interest in engineering application, e.g. for
nonlinear vibration analysis in structural dynamics. One common approach to
find these periodic solutions is the frequency-based Harmonic Balance method
(HBM) [1]. The HBM by itself does not yield the stability information necessary
to detect bifurcations (e.g. period-doubling and Neimark-Sacker bifurcations).
The Hill method is often employed in combination with the HBM to obtain
stability information. In the Hill method, the Hill matrix is constructed (some-
times as a by-product of an HBM based continuation method). Its eigenvalues
approximate the Floquet exponents, thereby giving stability information [2, 3].

However, two critical problems make this Hill method often unattractive in
practice. On the one hand, from a numerical viewpoint, computing the eigenval-
ues of the large Hill matrix is computationally expensive and potentially inac-
curate [4]. On the other hand, only a nontrivial subset of these eigenvalues must
be considered for correct assertion of stability. This process is known in the lit-
erature as sorting of Floquet exponent candidates. Determination of this subset
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is area of ongoing research, with the approaches being based on the imaginary
parts [2, 5] and potentially in addition the real parts [6] of the eigenvalues, or
alternatively symmetry considerations of the eigenvectors [3].

Recently, the authors proposed a novel approach for obtaining stability in-
formation from the Hill matrix [7], using the Koopman framework to compute
an approximation of the monodromy matrix directly (i.e. without computing
a large number of eigenvalues and subsequent sorting). This method involves
the action of the matrix exponential of the Hill matrix on a smaller sparse ma-
trix, followed by a projection to the n × n monodromy matrix. The stability
of the periodic solution can then be assessed directly from the n eigenvalues
of the monodromy matrix, known to be the Floquet multipliers. The Koopman
basis functions utilized in the considered approach yield multiple independent
estimates of the considered perturbed state, and hence the projection from the
linear autonomous Koopman lift to the monodromy matrix is not unique. In this
paper, multiple approaches to choosing a suitable projection from the family of
applicable candidates are discussed.

2 Classical Floquet theory

We consider linear time-periodic dynamical systems

ẏ(t) = J(t)y(t), J(t) = J(t+ T ), y(0) = y0 ∈ Rn . (1)

This system class results, in particular, if a perturbation of an (autonomous
or non-autonomous) smooth nonlinear dynamical system around a T -periodic
solution is linearized. Floquet’s well-known theorem (see, e.g., [8]) states that
solutions of (1) can be expressed using the fundamental solution matrix by

y(t) = Φ(t)y0 = P(t)eQty0 , (2)

where the matrix Q ∈ Cn×n is constant and describes the long-term behavior,
while the matrix P(t) ∈ Cn×n is T -periodic with P(0) = I and describes the
oscillatory effects within each period. The formulation (2) leads to two equivalent
stability criteria:

– The monodromy matrix ΦT := Φ(T ), whose eigenvalues {λl}nl=1 are called
Floquet multipliers (FM), defines a discrete map yk 7→ ΦTyk = y(tk + T )
that evolves the perturbed state one period at a time. This means that (1)
is asymptotically stable if all FM lie within the unit circle in the complex
plane and unstable if at least one FM lies outside.

– As the matrix P in (2) is periodic and can therefore neither vanish nor
grow unbounded, the longterm behavior of the solution is governed by eQt.
Consequently, if all eigenvalues {αl}nl=1 = eig(Q) of Q, also called Floquet
exponents (FE), have a real part smaller than zero, the system (1) is asymp-
totically stable and if one FE has a real part larger than zero, it is unstable.
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With ΦT = eQT , the Floquet exponents and the Floquet multipliers can be
transformed into each other via λl = eαlT .

The system matrix J has a Fourier series J(t) =
∑∞

k=−∞ Jke
ikωt with ω = 2π

T .
Arranged in a block-Toeplitz structure, these Fourier coefficients make up the
infinite-dimensional Hill matrix, also called the harmonic state operator. Its spec-
trum is constituted by the FE of the system (1) [5]. However, when utilized
numerically, it must be truncated to a finite order Nu by

H =

J0 + iNuωI . . . J−2Nu

...
. . .

...
J2Nu . . . J0 − iNuωI

 , (3)

incurring truncation errors in its eigenvalues. Usually, these errors are dealt with
by selecting a subset of the eigenvalues of H based on one of various sorting cri-
teria [5, 3, 6]. This work, in contrast, uses the Koopman framework to reinterpret
the truncated Hill matrix as the system matrix of an autonomous linear system,
allowing to obtain the FM from a closed form approximation of the monodromy
matrix.

3 Koopman lifting the LTV dynamics

The Koopman framework allows to approximate a time-dependent nonlinear dy-
namical system by a linear and possibly autonomous system of arbitrary degree.
For a deeper insight, the reader is referred to [7, 9] and the references therein.

For a nonlinear dynamical system ẋ = f(x) (where f can also describe a
nonautonomous system in extended state-space form) and a function space F of
observables, the Koopman infinitesimal generator L : F → F maps an observable
to its derivative along the flow, i.e. if g ∈ F then

(Lg)(x) = ġ(x) =
∂g

∂x
f(x) . (4)

This equivalent representation of the dynamical system is linear in its argu-
ment g, even if the original dynamics in state-space form was nonlinear. However,
the linearity comes at the price of an infinite dimensional function space.

To make the approach numerically feasible, a projection to a finite-dimensional
subspace FN ⊂ F spanned by the basis functions Ψ := {Ψ1, . . . , ΨN} is consid-
ered. Using an orthogonal projection, the derivative of the basis functions can
be separated by (LΨ)(x) = Ψ̇(x) =: AΨ(x) + r(x), where the constant ma-
trix A collects all linear coefficients for the portion of Ψ̇ that lies in FN , and the
elements in r are orthogonal to FN . Using z(t) ≈ Ψ(x(t)) and neglecting this
orthogonal remainder, the corresponding lifted dynamics

ż = Az; z(0) = Ψ(x0) (5)

approximates the original dynamics.
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The authors recently showed [7] that the dynamics (1) has a Koopman lift
ż = Hz, where H is the truncated Hill matrix (3) of order Nu, if observables

Ψlin(y, t) =
(
yTeiNuωt, . . . ,yT, . . . ,yTe−iNuωt

)T ∈ CN (6)

that are linear in the state and derived from Fourier basis functions in time
are chosen as a basis. Expressing (5) using the basis Ψlin as a linear dynamical
system with y as output and y0 as initial condition, we obtain

ż(t) = Hz(t)

y(t) ≈ zy(t) = C(t) z(t)

z(0) = Ψlin(y(0), 0) = Wy0

(7)

as a dynamical systems interpretation of the Hill matrix. Here, C(t) ∈ Cn×N is
a possibly time-dependent projection matrix that satisfies

C(t)Ψlin(y, t) = y ∀t ∈ [0, T ) (8)

and W ∈ CN×n is a stack of 2Nu + 1 identity matrices. While there is a nNu-
parameter family of time-dependent admissible C matrices, one option is to pick
the entries in (6) that correspond to frequency zero. For this naive choice, the
matrix C is constant and given by

C0 =
(
0 . . . 0 In×n 0 . . . 0

)
. (9)

4 Monodromy matrix and stability

As the system (7) is linear time-autonomous (possibly except for C), its closed
form solution can be explicitly computed as

y(t) ≈ zy(t) = C(t)eHtz(0) = C(t)eHtWy(0) . (10)

The key finding of [7] is that the matrix C(t)eHtW ∈ Rn×n is an approxima-
tion of the fundamental solution matrix Φ(t), which is the matrix that satisfies
y(t) = Φ(t)y(0). In particular, for t = T , the monodromy matrix is approxi-
mated via

ΦT ≈ C(T )eHTW . (11)

Consequently, the Floquet multipliers can be approximated by the eigenvalues
of (11). This constitutes a novel stability method arising from the Hill matrix,
which we will name projection-based Koopman-Hill stability method. It is labeled
sorting-free because the approach does not use the same steps as standard Hill
stability methods [3, 6], as illustrated in Figure 1.

In all these state-of-the-art Hill method approaches, the complete set of eigen-
values of the Hill matrix are determined in the first step. This is a computation-
ally intense operation which may lack accuracy. Only n of these n(2Nu+1) eigen-
values approximate the true Floquet exponents, while the others do not carry



Optimal projection in a Koopman-based sorting-free Hill method 5

Fig. 1: Flowchart comparing the three general stability approaches. For each of
the methods, the most computationally demanding step is located in the second
column.

physical meaning and may compromise the stability information. The state-of-
the-art methods differ in the sorting algorithms that are used to identify this
subset.

In the proposed sorting-free method, however, once the Hill matrix is ob-
tained, the monodromy matrix is determined directly via (11). As H will be
relatively sparse in many applications, the action of the matrix exponential on
the smaller matrix W can be determined efficiently [10]. As a second step in the
sorting-free approach, it remains to solve eig(ΦT ). The real-valued ΦT of size
n × n is in general much smaller than the Hill matrix H ∈ Cn(2Nu+1)×n(2Nu+1).
The result are n FM and no a posteriori sorting of candidates is necessary.

Alternatively, the monodromy matrix can be determined via time-integration
of the LTV dynamics (1) over one period [4], commonly referred to as the 2n-
pass method1. Afterwards, it again remains to solve the eigenvalue problem on
the n × n monodromy matrix. The presented sorting-free projection method
therefore has the advantage of being a Hill-based method, which is favorable in
an HBM setting, and at the same time only requiring to compute the smaller
eigenvalue problem of the monodromy matrix, similar to the time-integration
based method.

5 Projection matrix optimization

The aim of this section is to characterize the class of time-dependent matrices C
that satisfy the constraint (8) and yield approximations of the monodromy ma-

trix via (11). The l-th row of (8) is expressed by yl =
∑Nu

k=−Nu
cl,k(t)yle

ikωt as
all yl are independent. This equality can only hold if

cl,k(t) = ĉl,ke
−ikωt,

Nu∑
k=−Nu

ĉl,k = 1 . (12)

1 The number n in the name 2n-pass refers to the number of DOF of the mechanical
system, called np below, and should not be confused with the number of states n.
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Further, the conjugate symmetry ĉl,k = ĉl,−k ensures real-valued results in the
dynamics (7). Hence, Nu independent complex-valued parameters characterize
admissible choices for the l-th row of C, where all but 2Nu + 1 entries vanish.

It is sensible to collect all parameters ĉk,l into a long row vector ĉall with
ĉall = (ĉ1,−Nu , . . . , ĉ1,Nu , ĉ2,−Nu , . . . , ĉn,Nu). As a practicable condition, ĉall can
be chosen such that the resulting fundamental matrix optimally satisfies the
original dynamics. Substituting (11) into the dynamics (1) yields

R(t, ĉall) := (C(t)eHtW)· − J(t)C(t)eHtW ≈ Φ̇(t)− J(t)Φ(t) = 0 (13)

and since this residual is ideally expected to vanish, a cost function can be defined

via Lvar(ĉall) =
∫ T

0
∥R(t, ĉall)∥2 dt. The time-dependent matrix Cint(t) created

from the ĉall that minimize this cost while satisfying the constraints (12) will
produce a good estimate of the monodromy matrix.

The special structure of C allows to reformulate the optimization over the
integral residual into a quadratic program. Its cost matrix, however, is of size
n(2Nu + 1)×n(2Nu + 1), rendering this criterion inefficient in practice due to
the need of numerical quadrature. Alternatively, the residual (13) can be set to
zero only at m specific time instants {t1, . . . , tm}. This reduces the quadratic
program to a linear equation system with mn2 equations of the form

ĉall (lij(tk)− qij(tk)) = 0, (14)

where lij , qij ∈ Cn(2Nu+1) determine the (ij)-th matrix entries of the first and
second summand in (13), respectively, via

ĉalllij(t) =
(
Ċ(t)eHtW +CHeHtW

)
ij
, ĉallqij(t) =

(
J(t)C(t)eHtW

)
ij

.

After separation of ĉall and (14) into their real and imaginary parts and consid-
eration of the constraints (12), this leaves a real linear equation system of size
2mn2 × 2nNu and the projection matrix created from its least-squares solution
will be denoted as Csamp. Usually, m can be chosen rather small ( between 1
and 10) as Nu is seldom chosen to be larger than n.

6 Application to a vertically excited multiple pendulum

The various considered approaches for the projection matrix C are illustrated for
the linearized dynamics of a vertically excited multiple pendulum. A sketch of
the considered mechanical system is given in Figure 2a. The pendulum consists
of np joints, each of mass m, with viscous absolute damping d̂, linked by np rods
of length l. The suspension point of the pendulum moves along the direction of
gravity with y0(t) = ŷ0 cos(2ωt). The linearized multiple pendulum dynamics(

I 0
0 M

)(
θ̇

θ̈

)
=

(
0 I

−[a+ 2b cos(2ωt)]D −dI

)(
θ

θ̇

)
(15)
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is derived in [7] with the abbreviations

(M)ij=np+1−max(i, j), D=diag(np, . . . , 1), a=
g

l
, b=2ŷ0

ω2

l
, d=

d̂

ml2
.

After inversion of the left matrix, this dynamics is of the form ẏ = J(t)y that
can be analyzed using the presented methods. For np = 1, it simplifies to the
well-known Mathieu equation.

(a) Sketch of vertically excited multiple
pendulum.
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(b) Accuracy of Floquet multipliers
over Nu for the linearized 1-pendulum
with (a, b, d) = (5, 0.5, 0).

To analyze the convergence behavior of our proposed method, the accuracy
of the FM of the equilibrium is studied. As a basis for comparison, the “true” FM
are determined from the monodromy matrix obtained by the 2n-pass method.

The total FM error εtotal = minπ∈P

√∑n
l=1

∣∣λl,true − λπ(l),cand

∣∣2 is defined as the

norm of the difference between the “true” FM and the FM candidates obtained
by a given method, while the latter are reordered by a permutation π ∈ P such
that this error is minimal.

For np = 1, i.e. for the Mathieu equation, and parameters (a, b, d) = (5, 0.5, 0),
all considered projection matrices C are compared in Figure 2b. Concerning
classical Hill methods, the dotted blue accuracy curve was obtained using the
imaginary part sorting criterion [5] and the solid curve with the symmetry-based
criterion [3, 11]. The dark green dotted accuracy curve corresponds to the naive
projection matrix C0 (9). The matrix Csamp was obtained by evaluating (14)
for m = 20 linearly spaced time instants and its accuracy is given in dashdotted
green. The results for the projection matrix Cint, obtained by minimizing the
residual in an integral sense, are given in dashed light blue. Noting that the
solutions of the quadratic program and the sampled equations have a common
structure of alternating entries, the matrix C1 = (I,−I, I, . . . ,−I, I) ∈ Rn×N is
also included.
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All approaches except for the integration-based projection matrix converge
towards an accuracy of 10−12, which is the error of the FM obtained by 2n-
pass. The integration-based projection matrix Cint provides the best estimate
for low Nu, but as Nu increases and other projection matrices also yield almost-
perfect results, rank loss coupled with numerical quadrature inaccuracies prevent
a true minimizer with good performance from being found. For this reason, the
integration-based approach will not be plotted in the figures below. The error of
the Floquet multipliers obtained by the naive choice C0 does eventually converge
towards (numerically) zero, albeit slower than the other more problem-specific
projection matrices. With a similar argument as in [3], as the Hill matrix H will
have a band structure if Nu is chosen sufficiently large, its middle rows are less
impacted by the truncation error. As the naive C matrix only picks these middle
rows, the error will eventually converge.

The sparsity-promoting computational benefits of the projection-based meth-
ods take effect for larger system sizes. To illustrate this, the considered methods
have been evaluated for multiple values of np, in each case increasing Nu until a
total FM error of less than 10−4 is reached. This critical value of Nu is given in
Figure 3a, while the computation time to evaluate stability for that Nu is given
in Figure 3b. The computation time includes the construction of H as well as all
steps shown in Figure 1, i.e. the large eigenvalue problem along with the eigen-
value sorting for the classical approaches, and the construction of the matrix
C, the matrix exponential and the small eigenvalue problem for the projection-
based approaches. For the optimized matrix Csamp, m = 8 linearly spaced time
samples were chosen in each step, and the matrix exponential of the last time
sample t8 = T was later re-used for the monodromy matrix. In Figure 3c, the
ratio of the computation time of the individual methods against the symmetry-
based method are given. This means that a method performs faster than the
symmetry-based method for a given np if this ratio is < 1.
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Fig. 3: Nu and computation time needed to yield FM estimates with an accuracy
better than 10−4 for varying np and parameters (a, b, d) = (5, 0.5, 0).
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The imaginary-part based method only identifies the correct FM candidates
for very large Nu, incurring exorbitant and not practically feasible computation
times. In contrast, the symmetry-based sorting criterion is able to identify the
correct FM candidates already for rather small Nu for all considered values of np,
confirming the qualitative behavior reported in [11]. While the problem-specific
projection matrices C1 and Csamp need similar values of Nu as the symmetry-
based criterion, the naive projection matrix C0 only converges for larger Nu. In
the computation time diagram 3b, this yields multiple break-even points between
the individual approaches, separating the np space into three regions. In region I,
for small np, the computational overhead of all projection-based methods is large
since more steps of similar matrix size have to be performed than in the classical
approaches. In region II starting at np = 30, however, the optimized projection
matrix Csamp is faster than the classical symmetry-based method as solving the
large eigenvalue problem becomes more costly while the computational effort of
the matrix exponential grows with a more gentle slope. The onset of region III
is characterized by the break-even point of the optimized matrix Csamp and the
naive matrix C0. In this region, the effort of evaluating the matrix exponential
at m− 1 additional time instants and solving a system of mn2 linear equations
is more costly than increasing Nu. The matrix C1 has the least computational
effort in all approaches, but as it was determined by manual inspection, the
behavior of the projection matrix C1 can not be extended to systems beyond
the considered multiple pendulum.

7 Conclusion

The numerical experiments reported in Section 6 have shown that the projection
matrix C in the newly introduced projection-based Hill method greatly influ-
ences accuracy and convergence speed of the proposed method. Various ways
of identifying a suitable projection matrix differing in theoretical and computa-
tional effort have been compared. While the naive projection matrix C0 always
converges towards the correct values, the convergence rate w.r.t the frequency
order Nu can be improved for other choices. In particular, the evaluation of the
approximated LTV dynamics over one period using few time samples yields a
projection matrix estimate that improves this performance. However, this again
incurs additional numerical effort.

The tradeoff between solving the large eigenvalue problem of the classical
methods, solving a system of linear equations for an optimized C matrix and
needing larger Nu for the same accuracy range divides the space of system or-
ders into multiple regions. While the projection-based method can not compete
effort-wise against the state-of-the-art symmetry-based Hill method for small
system sizes, for high numbers of DOF, as they do usually occur in practice, this
method offers significant benefits regarding computational cost. For the multiple
pendulum, the optimization using additional time samples can also be used with
a low frequency order Nu, and hence low numerical effort, to identify structure
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in the optimal C matrix, which can then explicitly be used for larger but similar
systems with even smaller computational effort.

Beyond the mainly academical examples in this work, it would be expedient
to apply the novel stability method to systems of more practical relevance. Large
systems that were already analyzed extensively using the MANLAB framework
(e.g. [12]) could benefit from the stability insights of our proposed method, while
simultaneously serving as practical examples of the performance of the method.
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