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Abstract. The aim of the paper is to derive a closed-form approxima-
tion for a nonlinear mode of a system with a vibro-impact nonlinear
energy sink. Hereto, the multiple scales method is used to analyze the
dynamical behavior of a linear oscillator coupled with a vibro-impact
nonlinear energy sink (VI NES). The steady state response in the vicin-
ity of 1:1 resonance is approximated. The resonance frequency of the ex-
amined nonlinear system for different excitation levels is estimated and
the corresponding backbone curve is identified. The theoretical findings
agree with the simulation results and represent a possible new approach
for system identification.
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1 Introduction

The present study investigates the dynamics of a strongly nonlinear sytem, com-
prising a linear oscillator (LO) with an embedded strong nonlinear attachement,
i.e. a vibro-impact nonlinear energy sink (VI NES). The addition of a NES to
primary structures helps absorb and mitigate the vibration energy when the
structure is excited within a certain frequency range. Different types of coupling
have been widely studied theoretically [5, 8, 10] and experimentally [9, 11, 13] in
order to understand the essential changes in the dynamics of the whole system
caused by such an attachement. A main phenomenon that has been observed for
various types of NES is the irreversible targeted enery transfer (TET) that guar-
antees the absorption of the vibration energy from the primary structure. Many
studies (e.g. [4, 5]) have been conducted to understand the working principle
of NES, being strongly related to the theory of nonlinear modes (NM). Vari-
ous numerical approaches, including control-based methods (e.g. [2, 15]), have
been applied to approximate NMs of nonlinear vibrating structures through the
approximation of periodic solutions of the corresponding conservative system.
These methods are mainly based on Rosenberg’s definition for NMs and on the
invariance property of the NM in the configuration space under the system’s flow
[1]. Most of these studies use an asymptotic approach, i.e. the multiple scales
method (MSM), to approximate the invariant manifold. This approach provides
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a way to construct an approximation of the periodic solutions which depend
simultaneously on different time scales as well as the invariant manifold, whose
topology offers a valuable insight into the system behaviour [12, 13].
In this work, the simplest case of periodic motion of the vibro-impact NES is
considered, namely 1:1 resonance with 2 symmetric impacts per period. The
method of multiple scales is applied as in [5, 7] to approximate the solutions and
determine a qualitative relation between the LO motion and the NES described
by the slow invariant manifold (SIM). The SIM represents the set of all possible
equilibria in the vicinity of 1:1 resonance and is therefore relevant in the study of
TET. Based on these results, a closed-form expression for the backbone curve is
identified. In this context, the backbone curve is defined as the curve connecting
the maxima of the frequency response functions for different excitation levels [2,
14, 15]. The numerical simulation results of the backbone curve identification as
well as the relevant findings are discussed.

2 Model description

The mechanical system is composed of a primary damped linear oscillator (LO)
of mass M and a VI NES, built as a particle of mass m, moving freely within a
straight cavity of the primary mass (see Fig.(1)). The particle undergoes impacts
at the walls on either sides of the cavity, with a Newtonian coefficient of restitu-
tion 0 < r ≤ 1. The system is subjected to a harmonic base excitation, denoted
by e(t), with an amplitude E and a frequency ω. Let the coordinates q1 (t) and

Fig. 1: Scheme of a LO coupled with a vibro-impact absorber (LO-VI NES).

q2 (t) describe the absolute displacements of the primary massM and secondary
mass m, respectively. Contact with the cavity extremes exists if |q1 − q2| = b,
where b is half the width of the cavity. In the following, we will only be interested
in motions consisting of phases with no contact |q1 − q2| < b with intermittent
impacts when a collision occurs at contact. Persistent contact phases, during
which contact is present during a non-zero time-interval, will not be considered.
The non-impulsive motion is therefore described by the equation of motion

|q1 − q2| < b : Mq̈1 + cq̇1 + kq1 = ke(t) + cė(t) , mq̈2 = 0 (1)
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where k and c represent the stiffness and damping coefficients of the LO. The im-
pulsive dynamics is governed by the Newtonian impact law and the conservation
of linear momentum:

|q1 − q2| = b :
(
q̇+1 − q̇+2

)
= −r

(
q̇−1 − q̇−2

)
, Mq̇+1 +mq̇+2 =Mq̇−1 +mq̇−2 . (2)

The superscripts (·)− and (·)+ denote the value at the time instant immediately
before and after the impact, respectively, and the dots represent the differentia-
tion with respect to the time t.
Following [5], we transform the equations of motion (1) and (2) into a nor-
malised form, which allows the response analysis to be performed in a general
framework. For this purpose, the following normalised parameters and quantities
are introduced:

ϵ =
m

M
, G =

E

bϵ
, ω0 =

√
k

M
, Ω =

ω

ω0
, λ =

c

mω0
, q̃1 =

q1
b
, q̃2 =

q2
b
, τ = ω0t .

Next, barycentric coordinates v = q̃1 + ϵq̃2 and w = q̃1 − q̃2 that represent
the displacement of the center of the mass and the internal displacement of the
NES, respectively, are introduced. Substituting the new coordinates in (1) and
(2) along with a harmonic base excitation function e(t) = E sin(ωt) yields

∀ |w| < 1 :

v′′ +
ϵλ

1 + ϵ
(v′ + ϵw′) +

1

1 + ϵ
(v + ϵw) = ϵG sin(Ωτ) + ϵ2ΩλG cos(Ωτ) ,

w′′ +
ϵλ

1 + ϵ
(v′ + ϵw′) +

1

1 + ϵ
(v + ϵw) = ϵG sin(Ωτ) + ϵ2ΩλG cos(Ωτ) ,

(3)

∀ |w| = 1 : v+ = v− , w+ = w− , v′+ = v′− , w′+ = −rw′− , (4)

where the prime symbol (·)′ represents the differentiation w.r.t. the dimensionless
time τ .

3 Multiple scales method

The first step in the analysis of the model described by the equations (3) and (4)
requires the approximation of the solutions, whereby the corresponding quanti-
ties are uniformly expanded in power series of a small parameter. In this context,
the mass ratio ϵ is used as a perturbation parameter and to define the new time
scales necessary to carry out the analysis using the MSM [6]. The MSM exploits
the fact that the motion can, approximately, be regarded to take place on two
time scales: a slow and a fast scale. The oscillatory behavior is described by the
fast time scale τ0 = τ , and the decaying and shifting behavior is described by the
slower time scale, denoted by τ1 = ϵτ . Thus, the solutions v and w, considered
to be functions of τ0 and τ1, are expanded up to the first order:

v(τ, ϵ) = v(τ0, τ1, ϵ) ∼ v0(τ0, τ1) + ϵv1(τ0, τ1) +O(ϵ2) ,

w(τ, ϵ) = w(τ0, τ1, ϵ) ∼ w0(τ0, τ1) + ϵw1(τ0, τ1) +O(ϵ2) .
(5)
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The substitution of the approximation (5) into the equations of motion (3) trans-
forms the derived ODEs into PDEs according to:

d

dτ
= D0 + ϵD1 ,

d2

dτ2
= D2

0 + 2ϵD0D1 +O(ϵ2) , where Di =
∂

∂τi
. (6)

Next, the coefficients of the same ϵ-order in both sides of the obtained equations
are set equal [7]. The approximated motions v0 and w0 between the impacts can
be deduced and expressed using sine/cosine terms and a linear function that
depend on the fast scale τ0, while the amplitudes and phases are expressed as
functions of the slower scale τ1

v0(τ0, τ1) = C(τ1) sin(τ0+θ(τ1)) , w0(τ0, τ1) = v0(τ0, τ1)+F (τ1)τ0+D(τ1) . (7)

Determination of periodic motions: It is expected that the system exhibits
periodic responses due to the harmonic periodic external excitation. Following [4,
7], the 1:1 internal resonance with two symmetric impacts per period is consid-
ered. This allows to express the linear term in w0 using a nonsmooth sawtooth
function as w0 = v0 + B(τ1)Π (τ0 + η(τ1)), where the k-th impact occurs at
τ c0,k = π

2 + kπ − η. The nonsmooth sawtooth function Π(z) and its derivative
M(z) are defined as

Π(z) =
4

π

∞∑
k=1

(−1)k+1

(2k − 1)2
sin((2k−1)z) ,M(z) = sign(cos(z)), ∀z ̸= π

2
+kπ. (8)

Moreover, the quantitative nearness to primary resonance can be described by
a dimensionless detuning parameter σ according to Ω = ω

ω0
= 1 + σϵ.

The suppression of the secular terms in the dynamics of v1 and w1 results in a set
of two first-order nonlinear ODEs that govern the modulation of the amplitude
and phase of the solutions in the presence of 1:1 internal resonance between
impacts [7]. Introducing the phase difference between the external excitation and
the displacement of the center of mass, denoted by γ = θ − στ1, as well as the
phase difference between the external excitation and the internal displacement
of the NES, denoted by ψ = η − στ1, the sought solutions can be written as

v0 = C(τ1) sin(Ωτ0 + γ(τ1)) , w0 = v0 +B(τ1)Π (Ωτ0 + ψ(τ1)) , (9)

and the resulting ODE system for the slow dynamics between the impacts, i.e.
|w0| < 1, is given by

D1C = −1

2

(
λC +

4

π
B sin (ψ − γ) +G sin (γ)

)
,

D1γ = − 1

2C

(
− 4

π
B cos (ψ − γ) +G cos(γ)

)
− σ ,

(10)

while the jump in the amplitude B and phase η at a collision time-instant, i.e.
|w0| = 1, is governed by

B+ = rB− + (1 + r)C− cos
(
Ωτ c0,k + γ−

)
M

(
Ωτ c0,k + ψ−) ,

ψ+ = −B
−

B+

(
ψ− − kπ

)
−

(
B−

B+
+ 1

)
Ωτ c0,k + kπ .

(11)
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The periodic solutions of (3) and (4) for 1:1 internal resonance with two sym-
metric impacts per period are approximately described using the slow variables
(C, γ,B, ψ) by the equilibria of the system (10)-(11). Hence, a constant behav-
ior at steady state for this type of motion can be characterized through the
fulfillment of the following three conditions. In the upcoming derivations, the
subscript (·)ss denotes the constant values of the variables at steady state.

Condition 1: Internal 1:1 resonance with two symmetric impacts per
period: For this type of steady state, the contact condition and the correspond-
ing impact relations can be reformulated. Substituting the collision time instant
τ c0,k = 1

Ω

(
π
2 + kπ − ψ

)
into the impact condition |w0| = 1 and the impact laws

(11), while assuming a constant amplitude B during this type of motion, delivers
two conditions that can be combined to obtain a relationship between the LO’s
oscillation amplitude C and the velocity B of the NES

C2 = R2B2 +
(
1− π

2
B
)2

with R =
1− r

1 + r
. (12)

Equation (12) describes a 2D manifold in the slow variables configuration space,
called the slow invariant manifold (SIM), which only depends on the coefficient
of restitution r.

Conditions 2 and 3: Constant amplitude and constant phase at steady
state: The fulfillment of both conditions requires considering the slow dynamics
of the variables C and γ. Consequently the right-hand side of the ODEs in (10)
must vanish to guarantee a constant behavior over time.

Fig. 2: Free resonant motion of the VI
NES on the SIM for r = 0.65. The
black cross represents the equilibrium
attained with the PLL for G = 1.1.

Fig. 3: Backbone curves for different
values of r. The black lines correspond
to r = 1.
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Description of the system’s flow on the SIM: Fulfillment of all con-
ditions: The two above-mentioned conditions describe the steady-state motion
on the SIM. For an initial condition which is not on the SIM follows a short rapid
motion to the SIM at the time-scale τ0, followed by a slow motion along the SIM
possibly to a steady-state. Here, we will be interested in the slow quasi-static
motion along the SIM at the time-scale τ1. After rearranging (10), inserting the
inelastic impact conditions and introducing a new variable C̃ = C2, the ODE
system that describes the time variation w.r.t. the slow time variable τ1 along
the SIM is given by

D1C̃ = −λC̃ − 4

π
RB2(C̃)−G

√
C̃ sin(γ),

D1γ =
1

C̃

2

π
B(C̃)

(
1− π

2
B(C̃)

)
− G

2
√
C̃

cos(γ)− σ .
(13)

Since the investigation of the steady state solutions occurs on the SIM, the
amplitude B can be expressed as a function of the amplitude C̃, namely,

B(C̃) = Bmin±
√
π

2
Bmin

(
C̃ − C̃min

)
with Bmin =

π
2

(R2 + π2

4 )
, C̃min =

R2

(R2 + π2

4 )
.

The determination of the equilibria for the system above follows from setting
the right-hand side of (13) to zero or, equivalently, solving the equations

−G
√
C̃ss sin(γss) = k1C̃ss ± k2

√
C̃ss − C̃min + k3 ,

G

√
C̃ss cos(γss) = k4C̃ss ± k5

√
C̃ss − C̃min + k6

(14)

with the coefficients

k1 = λ+ 8
π2RBmin , k2 = 8

πRBmin

√
2
πBmin ,

k3 = 4
πRBmin

(
Bmin − 2

π C̃min

)
k4 = − 4

πBmin − 2σ ,

k5 = 4
π

√
2
πBmin (1− πBmin) , k6 = 4

πBmin

(
1− π

2Bmin + C̃min

)
.

(15)

The equilibria from (14) describe the steady state response regime of the original
system from (1)-(2) in the state of 1:1 resonance. Therefore, the SIM can be
perceived as the possible set of equilibria that could satisfy the 1:1 resonance
with two symmetric impacts per period at steady state. Thus, the study of the
evolution of the flow on the SIM and the existence of a corresponding equilibrium
on the SIM give an insight into the behavior of the original system and its modal
motion. The stable and unstable regions of the SIM have been established and
can be found in [5, 7].

4 Nonlinear mode identification

In this section, the analysis is pushed further to investigate and determine the
modal properties of the LO VI-NES using the results from the previous section.
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In a first step towards modal identification, despite the complexity of the system’s
dynamics, the phase resonance condition can be exploited as a straightforward
extension of the linear theory. The main idea is to determine the frequency at
which the response amplitude is at its maximum value. The resonance frequency
ΩR is characterized by the parameter σR through ΩR = 1 + σRϵ. Considering
the steady state amplitude C̃ss = C̃ss (σ) to be a function of σ, the resonance
condition is given by

∂C̃ss

∂σ

∣∣∣∣
σ=σR

= 0 , and
∂2C̃ss

∂σ2

∣∣∣∣
σ=σR

< 0 . (16)

For convenience, we use in the next derivation the notation (·)′ for differentiation
w.r.t. σ at σ = σR. Using the resonance condition C̃ ′

ss = 0, the steady state
condition (14) can be differentiated with respect to σ, to yield

G

√
C̃ssγ

′
ss cos(γss) = 0 , G

√
C̃ssγ

′
ss sin(γss) = −k′4C̃ss ̸= 0 . (17)

and therefore, γ′ss ̸= 0, sin(γss) ̸= 0 and cos(γss) = 0. Moreover, from (13) we
can deduce that sin(γss) < 0, which yields the extremum condition

γss = −π
2
+ 2pπ , p ∈ Z . (18)

Consequently, similar to linear systems, the identification of a nonlinear mode of
the vibro-impact system requires approximately a phase difference of π

2 between
the external excitation and the displacement.
Inserting the phase resonance condition (18) into (14) yields

G

√
C̃ss,R = k1C̃ss,R ± k2

√
C̃ss,R − C̃min + k3 , (19)

0 = k4C̃ss,R ± k5

√
C̃ss,R − C̃min + k6 , (20)

Equation (19) defines the relation between the steady state amplitude at res-
onance C̃ss,R and the external excitation level G. Equation (20) depends on
k4 = k4 (σ) and can be reformulated to express the detuning parameter σR (as
well as the frequency ΩR) as a function of the steady state amplitude and the
system parameter r according to

σR =
1

2C̃ss,R

(
±k5

√
C̃ss,R − C̃min + k6

)
− 2

π
Bmin . (21)

Equation (21) describes the backbone curve for the amplitude response of the
considered nonlinear system: Figure (3) depicts the obtained curves for different
values of the coefficient of restitution r. In a second step towards the modal iden-
tification, a verification of the obtained modal lines is pursued via the extended
periodic motion concept (EPMC), a modal approach developed by Krack [16],
where the isolation of a NM is performed using a controlled external excitation.
The results of this approach will not be discussed in this work. However, we were
able to show that, for the studied system, the EPMC is equivalent to the phase
resonance condition γc = −π

2 , if terms up to the first-order O(ϵ) are considered.
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5 Numerical experiments and simulation results

The main focus of this section lies on the identification of the backbone curve of
the considered NM from the resonance decay response of the system combined
with a Phase-Locked-Loop (PLL)[2, 3]. This procedure relies on the invariance
property of the NM, as it represents the main characteristic that unifies the
different definitions of NMs. The PLL will be used to control the response of
the forced system to attain a specific type of resonance, namely 1:1 internal
resonance with two symmetric impacts per period. When the NM is reached,
i.e. the equivalent slow flow is on the SIM, the controller is turned off and
the decaying response along the NM and the corresponding SIM is monitored
and analysed. The introduced modal approaches are implemented and compared
with direct numerical simulations results of the nonlinear system (3) and (4).
The numerical values used for the simulation are taken from [7]. The tuning
parameters of the implemented PLL-controller are chosen heuristically in such a
way that the stability, the convergence as well as a minimal phase error over time
are guaranteed. The simulations are carried out for different levels of external
excitation followed by analysis and comparison of the results. The observations
concern essentially the location of the computed equilibria.
For a low level of forcing, the system (13) possesses two equilibria. One lies on
the left branch of the SIM, charcterized by an amplitude Bss below the NES
activation threshold Bmin, and the second equilibrium is situated on the low
side of the right branch. However, the computed equilibria for medium or high
level of excitation are always located on the right branch of the SIM and are
characterised by a much higher amplitude Css and an amplitude Bss above the
activation threshold of the NES. It has also been noticed that the PLL does
only converge towards the equilibria situated in the low right side of the SIM,
suggesting that it only permits the generation of stable steady state solutions,
and therefore attains only stable regions of the nonlinear mode. This suggestion
is actually confirmed by the results presented in [5, 7], where the stable areas of
the SIM have been established.
Based on this first interpretation, the developed approach is used to identify the
stable parts of the analytically determined backbone curve. First, the closed loop
system is simulated long enough for the solution to attain a stable steady state.
The analytical and numerical values of this first step are compared in Fig.(4). It
can be clearly seen that the PLL solution converges toward the equilibrium that
satisfies the activation threshold condition. Next, the system’s input is removed
and the decaying evolution of the flow along the SIM is monitored. With an
absent external excitation, the oscillation’s amplitude decreases until the VI
NES is completely inactive. The flow of the free resonant response is depicted
in Fig.(2). The regime of 1:1 resonance with two symmetric impacts per period
is maintained despite the decreasing oscillation’s amplitude C. Subsequently,
the velocity of the VI NES decreases until the activation threshold is no longer
satisfied, at which point the flow leaves the SIM and the internal impacts of
the NES are no longer synchronized and vanish over time. The damping effect
due to the NES internal impacts ceases, and the decrease of the LO amplitude
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is caused essentially by the linear damping of the structure. The oscillation’s
amplitude and frequency are directly evaluated from the free resonant response.
Lastly, the numerically estimated backbone curve, describing the dependency
between the amplitudes Ĉi,max and their corresponding frequencies through the
detunig parameter σ̂i,max, is compared to the analytic prediction from (21). The
estimated modal line is shown in Fig.(5), depicting the identified stable branch
of the backbone curve and confirming the analytical results.

Fig. 4: Comparison of the analytically
and numerically estimated amplitude
and the corresponding frequency for
G = 1.1.

Fig. 5: Backbone curve for r = 0.65.
The green point represents the start-
ing point attained with the PLL
for G = 1.1. The black crossed cir-
cles correspond to the estimated val-
ues from the free resonant response.

6 Conclusion

The dynamics of a linear oscillator coupled with a VI NES and subjected to a
harmonic excitation in the vicinity of resonance is investigated theoretically and
numerically. Using the MSM under the assumption of a very small mass ratio,
a relationship between the motion of the main system and the VI NES velocity
is established. The expression of the 2D manifold in the slow variables space
is determined and the relation between its topology and the predicted system’s
response is investigated. It is shown that the resonance frequency and the cor-
responding resonance amplitude are closely related to the position of the fixed
points on the SIM. The developed analytical investigation is pushed further to
extract the modal properties of the system. The resonance condition for the sys-
tem is derived and used to determine a closed-form description of the system’s
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considered backbone curve. The verification of the obtained results is carried
out numerically. The backbone curve of the considered nonlinear mode is iden-
tified using the resonance decay response of the system combined with a PLL.
The presented results of the numerical simulations agree with the theoretical
findings. Further exploitation of these results will concern their extension and
application to more complex structures with possible mode interaction or the
investigation of different response regimes around the SIM, which may provide
a deeper understanding of the VI-NES dynamics.
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