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Abstract: In this paper, we develop a Lyapunov stabil-
ity framework for fractionally damped mechanical sys-
tems. In particular, we study the asymptotic stability of
a linear single degree-of-freedom oscillator with viscous
and fractional damping. We prove that the total mech-
anical energy, including the stored energy in the frac-
tional element, is a Lyapunov functional with which one
can prove stability of the equilibrium. Furthermore, we
develop a strict Lyapunov functional for asymptotic sta-
bility, thereby opening the way to a nonlinear stability
analysis beyond an eigenvalue analysis. A key result of
the paper is a Lyapunov stability condition for systems
having negative viscous damping but a sufficient amount
of positive fractional damping. This result forms the step-
ping stone to the study of Hopf bifurcations in fractionally
damped mechanical systems. The theory is demonstrated
on a stick-slip oscillator with Stribeck friction law leading
to an effective negative viscous damping.

Keywords: fractional derivative, Lyapunov functional,
functional differential equation, Hopf bifurcation, spring-
pot
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1 Introduction
This paper is concerned with the development of a Lya-
punov stability framework, including Lyapunov’s direct
method, for the analysis of stability properties of mech-
anical systems with fractional damping. The scope of the
paper is limited to single degree-of-freedom oscillators
with both viscous and fractional damping.
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The term fractional refers to fractional calculus, which
is a mathematical theory dealing with derivatives and
integrals of arbitrary (non-integer) order [1, 2] with a vari-
ety of applications in science and engineering [3]. Particu-
larly in mechanics, fractional damping may arise through
the modeling of mechanical systems with viscoelastic
components. Complex rheological models for viscoelastic
materials are often described through an array of clas-
sical Kelvin or Maxwell elements, inevitably resulting in
a model with a large number of parameters. It has been
shown that the viscoelastic behavior of complex mater-
ials is in many applications well represented by frac-
tional order elements with only a few parameters [4, 5].
Furthermore, a description using fractional order force-
displacements relationships may have much better extra-
polation properties on long time-scales. The introduction
of fractional calculus in mechanics leads to the concept
of a springpot element, being a force law reacting linearly
on a fractional derivative of its elongation. In a more gen-
eral setting, springpot elements may also arise through
fractional-order control laws [6].

Many problems in industrial applications originate
from (dynamic) instability phenomena, e. g. stick-slip
vibrations in oilwell drillstrings, flutter of airfoils, shimmy
of vehicles and feedback instabilities in control systems.
Methods to rigorously prove stability of linear and non-
linear systems are therefore quintessential. The Lyapunov
stability framework, which encompasses the method of
Lyapunov functions, forms a central element in the
research fields Nonlinear Dynamics and Control Theory
[7]. The introduction of springpot elements in (controlled)
mechanical systems asks for an extension of the Lyapunov
stability framework to non-integer order derivatives. A
major complication arises through the non-local charac-
ter of fractional derivatives, i. e. the force in a springpot
element depends on the total history of the elongation.
A system with springpot elements has therefore an infin-
ite state which asks for the use of Lyapunov function-
als instead of Lyapunov functions in Lyapunov’s direct
method, which are introduced in the theory of functional
differential equations (FDEs) [8–12]. Special Lyapunov
functionals for FDEs with fractional derivatives are intro-
duced in [13, 14], which have been shown to represent the
potential energy of an infinite arrangement of springs and
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dashpots [15–17]. The energy expressions for springpots
are based on the infinite state or diffusive representa-
tion of fractional integrators, which were introduced by
Montseny [18], Matignon [19] and have been elaborated
by Trigeassou et al. [13, 14, 20, 21]. Beyond that, a lot of
work has been done on stability conditions [22, 23] and
Lyapunov theory [24–26] for fractional differential equa-
tions, which cannot directly be used for mechanical sys-
tems containing springpots, as the differentiation order
is in general irrational for such systems. Furthermore,
the Laplace transform method has been used to prove
stability of equilibria of mechanical systems containing
springpots [27, 28].

The aim of this paper is to give a complete stability
analysis of a linear single degree-of-freedommass-spring-
dashpot-springpot system. The analysis encompasses the
following results/tasks:
– The total mechanical energy of the system is derived

through the use of the infinite state representation of
the springpot element (Section 3).

– The system is put in the form of an FDE and, based
on this, definitions of Lyapunov stability and attractiv-
ity of fractionally damped mechanical systems are
given. Furthermore, a Lyapunov-Krasovskii theorem is
presented for this class of systems (Section 4.2).

– It is shown that the total mechanical energy is a Lya-
punov functional for the system with positive viscous
and fractional damping with which stability of the
equilibrium can be proven (Section 4.3). Furthermore,
a strict Lyapunov functional for positive viscous and
fractional damping is derived which rigorously proves
asymptotic stability (Section 4.4). However, this Lya-
punov functional fails to give a stability result in the
case of anti-damping, in which the viscous damping is
negative.

– An extensive eigenvalue analysis is given and, based
on that, an expression for the general solution is
derived. The eigenvalue analysis reveals that the equi-
librium can still be asymptotically stable in the pres-
ence of anti-damping (Section 4.5.1).

– A strict Lyapunov functional for the case of anti-
damping is derived in Section 4.5.2. This leads to a
Lyapunov stability condition for systems having negat-
ive viscous damping but a sufficient amount of positive
fractional damping. Moreover, this result opens the
way to study global asymptotic stability of nonlinear
systemswith fractional damping. The theory is demon-
strated on a stick-slip oscillator with Stribeck friction
law leading to an effective negative viscous damping
(Section 4.5.3).

The scope of the present paper is limited to a single
degree-of-freedom oscillator, being of course a first step
into the direction of multi degree-of-freedom systems. A
brief outlook on how these results can be extended to
more degrees of freedom will be given in the conclusion
section of the paper.

2 Fractional calculus and infinite
state representation

We will consider the fractional derivative of Caputo type
that is based on the fractional Riemann–Liouville integ-
ral, which is defined for an integrable function x = x(t)
with t ≥ t0 and a scalar value ! > 0 as

I!t0+x(t) =
1

A(!)

∫ t

t0
x(4)(t – 4)!–1d4, (1)

where A(!) is the Gamma function. For ! = 0 we set
I0t0+x := x and it can be seen directly that the choice
! = 1 leads to the classical integral. In this paper, we
will describe this integral operator by the infinite state
representation [21]

{
ż(9, t) = –9z(9, t) + x(t),
I!t0+x(t) =

∫
∞

0 ,!(9)z(9, t)d9.
(2)

The infinite state z(9, t) fulfills the above differential
equation ∀9 ≥ 0 and the fractional integral is obtained
by integrating all contributions z(9, t) weighted by the
function

,!(9) :=
sin(!0)

0 9–!. (3)

The equivalence of eqs. (1) and (2) is derived in [15]. The
representation (2) is very useful to give a mechanical
interpretation of a fractional derivative (Section 3) and to
formulate Lyapunov functionals for fractionally damped
mechanical systems (Section 4). Using the variation of
constants formula, we can formulate eq. (2) as

I!t0+x(t) =
∫
∞

0
,!(9)

∫ t

t0
e–9(t–4)ẋ(4)d4d9. (4)

Finally we introduce the fractional Caputo derivative for
an absolutely continuous function x = x(t) and 0 < ! < 1
as

CD!
t0+x(t) = I1–!t0+ ẋ(t). (5)
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3 Springpot: Mechanical
representation and potential
energy

In this section, we will briefly introduce the Caputo
springpot (Figure 1) as an abstract mechanical element
and discuss its mechanical representation to gain a poten-
tial energy expression which may be used for Lyapunov
stability considerations of mechanical systems contain-
ing springpots. Again, details may be found in [15]. A
springpot is defined by its constitutive equation

f (t) = c CD!
t0+q(t), (6)

where f is the force acting on the springpot which results
in an elongation q depending on the coefficient c > 0, ini-
tialization time t0 < 0 and differentiation order ! ∈ (0, 1).
The time interval [t0, 0] represents the entire significant
history of the springpot, i. e. for earlier time-instants t ≤ t0
we assume q(t) = 0 and f (t) = 0.

Figure 1: Force acting on a springpot.

Together with eqs. (2) and (5) we derive the infinite state
representation of a Caputo springpot as

{
ẏ(9, t) = –9y(9, t) + q̇(t), y(9, t0) = 0,
f (t) = c

∫
∞

0 ,1–!(9)y(9, t)d9.
(7)

The infinite state y in eq. (7) may, similar as in eq. (4), be
expressed by the variation-of-constants formula

y(9, t) =
∫ t

t0
e–9(t–4)q̇(4)d4 =

∫ 0

t0–t
e9sq̇(t + s)ds, (8)

which will be useful for stability considerations later on.
The above representation leads to a mechanical analogue
model of a springpot, which is a parallel arrangement of
an infinite number of Maxwell elements (Figure 2) as in

Figure 2: Schematic mechanical representation of a Caputo
springpot.

[16], where the forces g(9, t)d9 of the Maxwell elements
are integrated to the resulting force

f (t) =
∫
∞

0
g(9, t)d9 (9)

on the system. The springs of the Maxwell elements are
characterized by their elongation qs(9, t) and spring con-
stant k(9)d9 and the dashpots by the elongation qd(9, t)
and constant d(9)d9 such that the elongation of the sys-
tem q(t) appears as

q(t) = qs(9, t) + qd(9, t) ∀9 ≥ 0 (10)

with the incremental internal force

g(9, t)d9 = k(9)d9 qs(9, t) = d(9)d9 q̇d(9, t). (11)

Differentiation of eq. (10) and substitution of eq. (11) leads
to

q̇(t) =
ġ(9, t)
k(9) +

g(9, t)
d(9) . (12)

Comparison of eqs. (9) and (12) to (7) results in the identi-
fication

g(9, t) = c,1–!(9)y(9, t), k(9) = c,1–!(9),

d(9) = c,1–!(9)
9 , 9 =

k(9)
d(9) .

(13)

Furthermore, we obtain an interpretation of the infinite
state y of the Caputo springpot as

y(9, t) = g(9, t)
c,1–!(9)

=
g(9, t)
k(9) = qs(9, t). (14)

Finally, we consider the energy of the mechanical equi-
valent system which is the potential energy stored in the
springs of the Maxwell elements, i. e.
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E(t) =
1
2

∫
∞

0
k(9)q2s(9, t)d9, (15)

which can be reformulated with eqs. (13) and (14) as

E(t) =
c
2

∫
∞

0
,1–!(9)y2(9, t)d9. (16)

4 Stability
4.1 Introduction

The mechanical representation and the potential energy
expressed in terms of the infinite state y were derived
more detailed in [15]. The energy expression in eq. (16) was
used to prove stability of the equilibrium of amass-spring-
springpot system. In the following we want to extend this
approach to consider stability of the same system when
linear (anti-)damping is introduced, i. e. we regard the
system (Figure 3)

mq̈(t) = –dq̇(t) – c CD!
t0+q(t) – kq(t), t ≥ 0 (17)

with mass m, elongation q(t), spring coefficient k, spring-
pot coefficient c, damping coefficient d and differen-
tiation order ! ∈ (0, 1) and given initial functions
>1,>2 ∈ CB((–∞, 0];R) such that

q(t) = >1(t), t ≤ 0,
q̇(t) = >2(t), t ≤ 0,

(18)

where >i(t) = 0 for t ≤ t0, i = 1, 2. Again, with the help of
eqs. (7) and (8) we reformulate eq. (17) as an FDE

Figure 3:Mass-spring-dashpot-springpot system.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̇(t) =v(t),

v̇(t) = –
k
m
q(t) –

d
m
q̇(t)

–
c
m

∫ 0

t0–t

∫
∞

0
,1–!(9)e9sd9 vt(s)ds,

(19)

where

vt(s) = v(t + s), s ∈ (–∞, 0] (20)

and use the associated stability theory. For the cases d>0
(damping) and d < 0 (anti-damping) we use different
methods to prove Lyapunov stability of the equilibrium of
eq. (17).

4.2 Theoretical background

The system (19) is a representative of an FDE of the form

ẋ(t) = f (t, xt), t ≥ t1 ≥ 0 (21)

with initial time t1 and a map

f : S → R
n (22)

defined on

S = [0,∞) × QH ,
QH : = {> ∈ CB((–∞, 0];Rn) | ‖>‖∞ < H}, H > 0,

(23)

i. e. the function f acts in its second argument on the
space CB((–∞, 0];Rn) of continuous and bounded func-
tions defined on the negative half space together with the
norm

‖>‖∞ = sup
s∈(–∞,0]

‖>(s)‖2, (24)

where ‖.‖2 is the Euclidean norm. Furthermore, let

x ∈ C((–∞,T);Rn), T > t1,
xt(s) = x(t + s), s ∈ (–∞, 0],

(25)

such that

xt ∈ CB((–∞, 0];Rn).

We assume f locally Lipschitzian in QH which ensures
local existence and uniqueness of a solution x(t1,>) of
eq. (21) for a given initial function > and initial time t1
[9, 11]. Moreover, let f (t, 0) = 0 ∀t ≥ t1, such that the
trivial solution x(t1,>)(t) = 0 is an equilibrium of the
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system. In the following theorem, we formulate sufficient
conditions for (asymptotic) stability of the trivial solution
of eq. (21) by a Lyapunov theorem adapted to the space
CB((–∞, 0];Rn) as in [8, 9, 11]. We need the following
definitions.

Definition 4.1. A solution of eq. (21) with initial function
> ∈ CB((–∞, 0];Rn) and initial time t1 ≥ 0 is a func-
tion x(t1,>) defined and continuous on an interval (–∞,T),
T > t1, such that xt(t1,>) ∈ S for t ∈ [t1,T), xt1 (t1,>) = > and
x(t1,>)(t) satisfies eq. (21) for t ∈ [t1,T).

Definition 4.2 (Stability). The trivial solution x(t1,>)(t)=0
of eq. (21) together with (23), (25), initial function > and
initial time t1 is called
(a) stable, if for all : ∈ (0,H] there exists a $ = $(t1, :) > 0

such that ‖x(t1,>)(t)‖2 < : for t ≥ t1 if > ∈ Q$.
(b) asymptotically stable, if it is stable and for all t1 there

exists a $ = $(t1) > 0 such that limt→∞
‖x(t1,>)(t)‖2 = 0

if > ∈ Q$.

Theorem 4.3 (Lyapunov-Krasovskii [9, 11]). Let f : S → R
n

such that f (t, 0) = 0 ∀t ≥ t1 and denote ui : [0,∞) → R,
i = 1, 2 some scalar, continuous, non-decreasing functions
such that ui(0) = 0 and ui(r) > 0 for r > 0. Let there exist a
continuous functional V : [0,∞) × QH → R such that

u1(‖>(0)‖2) ≤V(t,>), (26)

V(t, 0) = 0, V̇(t, xt) ≤ 0, (27)

then the trivial solution of eq. (21) is stable.
Furthermore, if the additional assumptions

∃L >0 : ‖f (t,>)‖2 < L, t ≥ t1, > ∈ QH , (28)

V̇(t, xt) ≤ –u2(‖x(t1,>)(t)‖2) (29)

are satisfied, then the trivial solution is asymptotically
stable.

Remark 4.4. As f is assumed locally Lipschitzian in QH,
condition (28) is fulfilled, if the Lipschitz constant L is
independent of time t ≥ t1.

4.3 Undamped Case

First, we consider eq. (17) for the case d = 0 and use the
total mechanical energy

V1(t, qt, vt) =
1
2
mv2t (0) +

1
2
kq2t (0)

+
1
2
c
∫
∞

0
,1–!(9)y2(9, t)d9

(30)

as a Lyapunov functional as in [15], where we use a sim-
plified notation in terms of the infinite state y and keep in
mind the formulation in eq. (8) or

y(9, t) =
∫ 0

t0–t
e9svt(s)ds, 9 ≥ 0. (31)

We prove stability of the trivial solution with the help of
Theorem 4.3. It is obvious, that inequality (26) holds for
V1. Furthermore, as

V̇1(t, qt, vt) = kqt(0)q̇t(0) +mvt(0)v̇t(0)

+ c
∫
∞

0
,1–!(9)y(9, t)ẏ(9, t)d9

= vt(0)
(
mq̈t(0) + kqt(0)

+ c
∫
∞

0
,1–!(9)y(9, t) d9

)

– c
∫
∞

0
9,1–!(9)y2(9, t) d9

= –c
∫
∞

0
9,1–!(9)y2(9, t) d9 ≤ 0, (32)

inequality (27) is fulfilled, such that the trivial solution is
stable.

4.4 Linear damping

Using the energy functional V1 in the case d > 0 again
leads to a non-positive rate of V1

V̇1 = –dv2(t) – c
∫
∞

0
9,1–!(9)y2(9, t) d9 ≤ 0, (33)

which only proves stability of the equilibrium. However,
we could find an augmented candidate Lyapunov func-
tional which contains the potential energy term (16) to
prove asymptotic stability with the help of Theorem 4.3.

Proposition 4.5. The trivial solution of the damped mass-
spring-springpot system (17) (m, d, k, c > 0, ! ∈ [0, 1]) is
asymptotically stable.

Proof. We introduce a Lyapunov functional as in The-
orem 4.3 defined on S using the simplified notation in
terms of the infinite state y as in eq. (31). Furthermore, we
introduce another infinite state Y = Y(9, t) which satisfies
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Ẏ(9, t) = –9Y(9, t) + q(t), Y(9, t0) = 0. (34)

Similar to eq. (31), this may be reformulated as

Y(9, t) =
∫ 0

t0–t
e9sqt(s)ds, 9 ≥ 0 (35)

and differentiating eq. (8) and comparing to eqs. (31) and
(34) we obtain

y(9, t) = Ẏ(9, t) = –9Y(9, t) + q(t). (36)

Hence, we formulate the Lyapunov functional

V2(t, qt, vt) =
1
2
mv2t (0) +

1
2
kq2t (0) +

d2

4m
q2t (0)

+
1
2
dqt(0)vt(0)

+
1
2
c
∫
∞

0
,1–!(9)y2(9, t)d9

+
cd
4m

∫
∞

0
,1–!(9)9Y2(9, t)d9

(37)

and check the conditions in Theorem 4.3. For (26) we can
estimate

V2(t, qt, vt) ≥
1
2
mv2t (0) +

1
2
kq2t (0)

+
d2

4m
q2t (0) +

1
2
dqt(0)vt(0)

=
1
4
mv2t (0) +

1
2
kq2t (0)

+
(

d
2
√
m
qt(0) +

√
m
2

vt(0)
)2

≥
1
4
mv2t (0) +

1
2
kq2t (0).

(38)

Moreover, we compute the rate ofV2 along solution curves

V̇2 = mvt(0)v̇t(0) + kqt(0)q̇t(0) +
d
2
q̇t(0)vt(0)

+
d
2
qt(0)v̇t(0) +

d2

2m
qt(0)q̇t(0)

+ c
∫
∞

0
,1–!(9)y(9, t)ẏ(9, t)d9

+
cd
2m

∫
∞

0
,1–!(9)9Y(9, t)Ẏ(9, t)d9

= –dv2t (0) – cvt(0)
∫
∞

0
,1–!(9)y(9, t)d9

+
d
2
v2t (0) +

d
2
qt(0)

[
–
k
m
qt(0) –

d
m
vt(0)

–
c
m

∫
∞

0
,1–!(9)y(9, t)d9

]
+
d2

2m
qt(0)vt(0)

+ c
∫
∞

0
,1–!(9)y(9, t)

(
vt(0) – 9y(9, t)

)
d9

+
cd
2m

∫
∞

0
,1–!(9)

(
qt(0) – y(9, t)

)
y(9, t)d9

= –
d
2
v2t (0) –

kd
2m

q2t (0)

– c
∫
∞

0
,1–!(9)

(
9 +

d
2m

)
y2(9, t)d9

≤ –
d
2
v2(t) –

kd
2m

q2(t)

which proves inequality (29). Finally, we still have to
check condition (28), which is non-trivial only for the
last addend of the right-hand side of the second equa-
tion in (19). For this term we have to split the interval of
integration in two parts which yields for (1,∞)

∣∣∣∣
∫
∞

1
,1–!(9)

∫ 0

t0–t
e9svt(s)dsd9

∣∣∣∣
≤

∫
∞

1
,1–!(9)

∫ 0

–∞
e9sdsd9‖vt‖∞

=
sin(!0)

0

∫
∞

1
9!–2d9‖vt‖∞

=
sin(!0)
(1 – !)0 ‖vt‖∞.

For the integration over (0, 1), we achieve together with
eq. (36)

∣∣∣∣
∫ 1

0
,1–!(9)

∫ 0

t0–t
e9sq̇t(s)dsd9

∣∣∣∣
≤

∫ 1

0
,1–!(9)

∣∣∣∣q(t) – 9
∫ 0

t0–t
e9sqt(s)ds

∣∣∣∣d9
≤

∫ 1

0
,1–!(9)

(
‖qt‖∞ + 9

∫ 0

–∞
e9sds‖qt‖∞

)
d9

= 2
∫ 1

0
,1–!(9)d9‖qt‖∞

= 2
sin(!0)
!0 ‖qt‖∞.

This completes the proof. ◻

4.5 Linear anti-damping

For the case d < 0, whose physical interpretation is
explained and motivated in Section 4.5.3, we expect the
equilibrium of eq. (17) to remain stable only for certain
values of d and it appears to be much more difficult
to find Lyapunov functionals that yield stability criteria.
Therefore, we start with the Laplace transform method
to find sufficient conditions for stability and try to find
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similar conditions with the help of a Lyapunov functional.
Finally, we compare the results.

4.5.1 Laplace transform method

Before we introduce the Laplace transform of eq. (17), we
derive the Laplace transform of the fractional derivative.
Therefore, consider the Laplace transform of (7)

sL
{
y(9, t)

}
(s)–y(9, 0)

= –9L
{
y(9, t)

}
(s) + sQ(s) – q0,

L

{
CD!

t0+q(t)
}
(s) =

∫
∞

0
,1–!(9)L

{
y(9, t)

}
(s)d9.

(39)

with Laplace transform Q(s) of q(t) and initial value
q(0) = q0. Substitution of the first equation of (39) in the
second results in

L

{
CD!

t0+q(t)
}
(s)

=
∫
∞

0
,1–!(9)

sQ(s) – q0 + y(9, 0)
9 + s

d9.
(40)

We reformulate (40) with the help of the following
relation.

Proposition 4.6.
∫
∞

0

,!(9)
9 + s

d9 = s–!, s ∈ C\R
–, ! ∈ (0, 1) (41)

Proof. Due to the relation for the Laplace transform of e–9t

L{e–9t}(s) =
∫
∞

0
e–9te–stdt =

∫
∞

0
e–(9+s)tdt

=
[
–

1
9 + s

e–(9+s)t
]
∞

0
=

1
9 + s

we obtain eq. (41) using the formula

A(!)A(1 – !) = 0
sin(!0)

and Fubini’s Theorem as∫
∞

0

,!(9)
9 + s

d9 =
sin(!0)

0

∫
∞

0
9–!

∫
∞

0
e–(9+s)tdtd9

=
sin(!0)

0

∫
∞

0
e–st

∫
∞

0
9–!e–9td9dt

=
sin(!0)

0

∫
∞

0
e–st A(1 – !)t!–1dt

=
sin(!0)

0 A(1 – !)A(!)s–! = s–!.

◻

This leads to the Laplace transform of the fractional
derivative

L

{
CD!

t0+q(t)
}
(s)

= s!Q(s) – s!–1q0 +
∫
∞

0
,1–!(9)

y(9, 0)
9 + s

d9.
(42)

Hence, we obtain the Laplace transform of eq. (17) as

m
(
s2Q(s) – sq0 – v0

)
= –kQ(s) – c

(
s!Q(s) – s!–1q0

+
∫
∞

0
,1–!(9)

y(9, 0)
9 + s

d9
)

– d(sQ(s) – q0)

(43)

with Laplace transform Q(s) of q(t) and initial values
q(0) = q0, q̇(0) = v0. Solving equation (43) for Q(s) leads to

Q(s) =
m(sq0 + v0)

ms2 + ds + cs! + k

+ c
s!–1q0 –

∫
∞

0 ,1–!(9) y(9,0)9+s d9
ms2 + ds + cs! + k

+
dq0

ms2 + ds + cs! + k
.

(44)

The inverse Laplace transform may be obtained integrat-
ing along a Hankel contour and using the residue the-
orem, similar as described in [27, 28]. We will accomplish
the entire derivation later and see, that, similar to the clas-
sical case, stability of the equilibrium depends on the real
part of the poles of the right-hand side of eq. (44), i. e. we
consider the equation

ms2 + ds + cs! + k = 0. (45)

Let s = rei(, we obtain real and imaginary part of eq. (45)
as

mr2 cos(2() + dr cos(() + cr! cos(!() + k = 0,
mr2 sin(2() + dr sin(() + cr! sin(!() = 0.

(46)

From (46) we want to derive conditions, such that the
roots of eq. (45) are located in the left-half complex plane.
Therefore, we first consider the critical case for stability
( = ±02 , which turns (46) into

–mr2 + cr! cos
(!0
2

)
+ k = 0,

dr + cr! sin
(!0
2

)
= 0.

(47)
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For fixed m, c, k and ! the first equation of (47) has
a unique solution r = r∗ > 0, which may be inserted
in the second equation to compute a critical d < 0 for
stability

dcrit = –c sin
(!0
2

)
r!–1∗ . (48)

By numerical solution of eq. (47), we obtain the critical
negative damping parameter dcrit depending on the value
of ! ∈ (0, 1) and the parameters m, c, k, see Figure 4.
The value |dcrit| is a measure for the damping capabil-
ity of the springpot. As expected, it holds that dcrit → 0
for ! → 0, as in this case the springpot degenerates to
a spring, which stores energy and dcrit → –c for ! → 1,
as the springpot becomes a dashpot. The dependency of
dcrit on ! for ! ∈ (0, 1) may change drastically for differ-
ent parameters and it is quite interesting that dcrit < –c
can be achieved for certain values of !, i. e. a springpot
can induce higher damping than a dashpot with the same
coefficient. An example for this phenomenon is given in

Section 4.5.3, where the knowledge (and tuning) of the
system parameters m, k, c and ! lead to the character-
ization of a Stribeck friction law. From the critical case
for stability we now derive the following inequality condi-
tions on r, such that a solution s = rei( of (45) is located in
the left-half complex plane. More specifically, we obtain
the following proposition.

Proposition 4.7. Let the inequalities

–mr2 + cr! cos
(!0
2

)
+ k ≤ 0, (49)

dr + cr! sin
(!0
2

)
> 0 (50)

have a non-empty solution set for r > 0. Then there
exists a pair of complex conjugate roots s = rei(, s̄ = re–i(
of (45) such that 0

2 < ( <
0
2–! . Furthermore, there

exists no solution outside the sectors
{
( ∈

( 0
2 ,0

)}
and{

( ∈
(
–0, – 0

2
)}
.

Figure 4: Critical negative damping parameter depending on ! ∈ (0, 1) for different parameters.
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Figure 5: Representation of the solution set of inequalities (49) and (50).

Remark 4.8. To depict the solution set of inequalities (49)
and (50), consider Figure 5 below, where r∗ < R∗ has to hold.

Proof of Proposition 4.7. From (46) we see that for each
root s = rei( of equation (45), its complex conjugate
s̄ = re–i( is another root. Therefore, we only consider
0 ≤ ( ≤ 0. We examine the following cases.
– Case 1: ( = 0

In this case, eq. (45) degenerates to one equation

mr2 + dr + cr! + k = 0. (51)

Using eqs. (49) and (50), we can estimate

mr2 + dr + cr! + k

> cr!
(
1 + cos

(!0
2

)
– sin

(!0
2

))
+ 2k.

As the function

h(!) := 1 + cos
(!0
2

)
– sin

(!0
2

)

fulfills

h(0) = 2, h(1) = 0,

h′(!) = –
0
2

(
sin

(!0
2

)
+ cos

(!0
2

))
< 0

∀! ∈ (0, 1),

we obtain

mr2 + dr + cr! + k > 0

and there exists no solution of eq. (51).
– Case 2: ( = 0

The second equation of (46) in this case reads as

cr! sin(!0) = 0,

which has no solution for ! ∈ (0, 1) except r = 0, which
does not solve the first equation of (46)

mr2 – dr + cr! cos (!0) + k = 0.

– Case 3: 0 < ( < 0
2

Multiplying the first equation of (46) by cos(() and the
second by sin(() sums up as

mr2 cos(() + dr + cr! cos((1 – !)() + k cos(() = 0. (52)

The left-hand side of eq. (52) may be estimated with
(49) and (50) as

mr2 cos(() + dr + cr! cos((1 – !)() + k cos(()

> cr!
(
cos(() cos

(!0
2

)
+ cos((1 – !)()

– sin
(!0
2

))
+ 2k cos(() > 0,

because

cos(() cos
(!0
2

)
> 0

and

cos((1 – !)() – sin
(!0
2

)
= cos((1 – !)() – cos

(
(1 – !)0

2

)
> 0.

Hence, there is no solution of eq. (45) for ( ∈
(
0, 02

)
and

! ∈ (0, 1).
– Case 4: 0

2 < ( < 0
Multiplying the second equation of (46) by cos(!()
and subtracting the first equationmultiplied by sin(!()
leads to

mr2 sin((2 – !)() + dr sin((1 – !)() – k sin(!() = 0,
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which may be solved for r > 0 as

r(() = –
d
2m

sin((1 – !)()
sin((2 – !)()

+

√(
d
2m

sin((1 – !)()
sin((2 – !)()

)2
+
k
m

sin(!()
sin((2 – !)() .

(53)

Furthermore, multiplying the first equation of (46) by
sin(2() and subtracting the second equationmultiplied
by cos(2() leads to

dr sin(() + cr! sin((2 – !)() + k sin(2() = 0. (54)

As the first and the last term on the left-hand side of
eq. (54) are negative for ( ∈

( 0
2 ,0

)
, the second term has

to be positive to solve the equation, i. e.

sin((2 – !)() > 0⇒ 0
2
< ( < 0

2 – ! .

Now, we consider the left-hand side of eq. (54) as a
function of (

g(() :=dr(() sin(() + cr!(() sin((2 – !)()

+ k sin(2(), ( ∈
(0
2
,

0
2 – !

)

with r(() given by eq. (53). The function g is continuous
for ( ∈

( 0
2 ,

0
2–!
)
and it holds that

g
(0
2

)
= dr + cr! sin

(
(2 – !)0

2

)
= dr + cr! sin

(!0
2

)
> 0

as follows from (50). Furthermore, it can be seen from
(53), that there exists a constant C > 0, such that

lim
(→ 0

2–!
r(() = lim

(→ 0
2–!

C
sin((2 – !)() =∞,

so that

lim
(→ 0

2–!
g(() = lim

(→ 0
2–!

[
d

C
sin((2 – !)() sin

( 0
2 – !

)

+ c
(

C
sin((2 – !)()

)!
sin((2 – !)()

+ k sin
(

20
2 – !

)]
= –∞.

Therefore, there is at least one root of g, i. e. one pair
of complex conjugate solutions of eq. (45) such that
( ∈

( 0
2 ,

0
2–!
)
.

◻

As we have found conditions for solutions of the char-
acteristic eq. (45) to be in the left-half complex plane, we
want to prove asymptotic stability of the trivial solution
by inverse Laplace transform using fundamental ideas of
complex analysis. Therefore, we reformulate eq. (44) as

Q(s) =
ms + d + cs!–1

ms2 + ds + cs! + k
q0 +

m
ms2 + ds + cs! + k

v0

–
c

ms2 + ds + cs! + k

∫
∞

0
,1–!(9)

y0(9)
9 + s

d9.
(55)

Similar as in [27] we consider the function

E(s) := ms + d + cs!–1

ms2 + ds + cs! + k
(56)

and we compute the inverse Laplace transform . (t) of
E(s) = L{. (t)}(s). As

. (0) = lim
s→∞

sE(s) = 1,

we obtain

L{.̇ (t)}(s) = sE(s) – . (0) = ms2 + ds + cs!

ms2 + ds + cs! + k
– 1

= –
k

ms2 + ds + cs! + k
,

which, together with eq. (55) leads to the solution

q(t) =q0. (t) –
m
k
v0.̇ (t)

+
c
k

∫
∞

0
,1–!(9)y(9, 0)

∫ t

0
e–9(t–4).̇ (4)d4d9

(57)

of eq. (17) and we examine the asymptotic behavior of q
from . and .̇ . Therefore, we determine the inverse Laplace
transform

. (t) = 1
20i

∫ 3+i∞

3–i∞
E(s)estds, Re(3) > 0

with the help of the residue theorem

1
20i

∫
G
E(s)estds =

∑
j
Res

(
E(s)est, sj

)
, (58)

where sj are the roots of eq. (45) and the closed curve G
(Figure 6) is split up in six parts, such that

. (t) =
∑
j
Res

(
E(s)est, sj

)

–
1
20i limR→∞

%→0

∫
II–VI

E(s)estds.
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Figure 6: Curve G used for integration to apply the residue theorem.

First, we compute the residues for a pair of complex con-
jugate roots s1, s2 = s̄1 of eq. (45). As s1/2 are simple
poles of E, we obtain the residue by derivation of the
denominator as

Res
(
E(s)est, s1

)
+ Res

(
E(s)est, s2

)
=

ms1 + d + cs!–11
2ms1 + d + c!s!–11

es1t

+
ms2 + d + cs!–12
2ms2 + d + c!s!–12

es2t.

As the two addends are conjugate, we obtain with
s1 = a + ib = rei(

Res
(
E(s)est, s1

)
+ Res

(
E(s)est, s2

)
= 2Re

( ms1 + d + cs!–11
2ms1 + d + c!s!–11

es1t
)

= 2eat cos(bt)
f1(r, ()
f3(r, ()

+ 2eat sin(bt)
f2(r, ()
f3(r, ()

.

with

f1(r, () = 2m2r2 + d2 + 3mrd cos(()
+ (1 + !)cdr!–1 cos((1 – !)()
+ (2 + !)mcr! cos((2 – !)() + c2!r2(!–1),

f2(r, () = (2 – !)mcr! sin((2 – !)() +mdr sin(()
+ (1 – !)cdr!–1 sin((1 – !)(),

f3(r, () = 4m2r2 + d2 + 4mdr cos(()
+ 2cd!r!–1 cos((1 – !)()
+ 4mc!r! cos((2 – !)() + c2!2r2(!–1). (59)

We continue considering the contribution of the
integral along the paths II – VI to the value of . . There is
no contribution of II, because

∣∣∣∣ 1
20i

∫
II
E(s)estds

∣∣∣∣
=
∣∣∣∣∣ 1
20i

∫ 0

0
2

E
(
3 + Rei6

)
e3teR cos(6)teiR sin(6)tiRei6d6

∣∣∣∣∣
≤

1
20C1(t)e

–C2RtR ⋅
0
2
R �→

R→∞
0,

with C1,C2 > 0 as E(s) → 0 for s → ∞ and cos(6) < 0 for
6 ∈ ( 02 ,0). The same argumentation holds for path VI. For
path IV, we obtain

1
20i

∫
IV
E(s)estds

= –
1
20i

∫ 0

–0
E
(
%ei6

)
e%t(cos(6)+i sin(6))i%ei6d6

�→
%→0

0,

as sE(s) → 0 for s → 0. Finally, for III and V we obtain a
contribution

1
20i

∫
III,V

E(s)estds

=
1
20i

∫
∞

0

(
E
(
9ei0

)
– E

(
9e–i0

))
e–9td9

=
1
0

∫
∞

0
Im
(
E
(
9ei0

))
e–9td9

with

1
0 Im

(
E
(
9ei0

))
= –

1
0

kc9!–1 sin(!0)
(m92–d9+k)2+2c9! cos(!0)(m92–d9+k)+c292!

= – ,1–!(9)kc
(m92–d9+k)2+2c9! cos(!0)(m92–d9+k)+c292! .

This leads us to the inverse Laplace transform of E

. (t) =
∑
j odd

(
2eajt cos(bjt)

f1(rj, (j)
f3(rj, (j)

+ 2eajt sin(bjt)
f2(rj, (j)
f3(rj, (j)

)

+
∫
∞

0
,1–!(9)Z(9)e–9td9

(60)

for roots sj/j+1 = aj ± ibj = rje±i(j of eq. (45) where

Z(9) = kc
(m92–d9+k)2+2c9! cos(!0)(m92–d9+k)+c292! . (61)
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The asymptotic behavior of . is determined by the expo-
nential functions in the first addends of eq. (60), which
decay, as aj < 0 ∀j, if the inequalities (49) and (50) have
a non-empty solution set. Furthermore, the asymptotic
behavior of the last term in eq. (60) may be estimated as
follows. It holds that

(m92 – d9 + k)2 + 2c9! cos(!0)(m92 – d9 + k) + c292!

> (m92 – d9 + k – c9!)2 ≥ 0.

Hence, Z is continuous and bounded in [0,∞) and by the
mean value theorem, there exists C3 > 0 such that∫

∞

0
,1–!(9)Z(9)e–9td9

= C3
∫
∞

0
,1–!(9)e–9td9 = C3

t–!

A(1 – !) ,

which leads to algebraic decay of order ! for the last term
in eq. (60) for t →∞. For .̇ , we obtain the expression

.̇ (t) =
∑
j odd

2
eajt

f3(rj, (j)
(
(ajf1(rj, (j)

+ bjf2(rj, (j)) cos(bjt)

+ (ajf2(rj, (j) – bjf1(rj, (j)) sin(bjt)
)

–
∫
∞

0
,1–!(9)Z(9)9e–9td9,

(62)

where the first terms again describe an exponentially
decaying oscillation and the last term fulfills

–
∫
∞

0
,1–!(9)Z(9)9e–9td9 = –!C3

t–!–1

A(1 – !) ,

which again implies algebraic decay, this time of order
1 + ! for t → ∞. To conclude asymptotic stability of the
trivial solution of eq. (17) from the asymptotic behavior of
. , we still have to consider the last term in eq. (57). There-
fore, we recall from eq. (8), that the initial infinite state
y(9, 0) has the form

y(9, 0) =
∫ 0

t0
e94q̇(4)d4, (63)

which may be estimated as

|y(9, 0)| =
∣∣∣∣
∫ 0

t0
e94q̇(4)d4

∣∣∣∣
=
∣∣∣∣[e94q(4)]0t0 – 9

∫ 0

t0
e94q(4)d4

∣∣∣∣
≤ 2‖q‖∞ + 9

∫ 0

–∞
e94d4‖q‖∞ = 3‖q‖∞,

(64)

which is bounded if q ∈ CB((–∞, 0];R). Furthermore,
consider the reformulation

∫ t

0
e–9(t–4).̇ (4)d4 = d

dt

∫ t

0
e–9(t–4). (4)d4 – . (0)e–9t (65)

of the inner integral in the last term of eq. (57). The last
term in eq. (65) results in a term

∣∣∣∣
∫
∞

0
,1–!(9)y(9, 0)e–9td9

∣∣∣∣ ≤ 3‖q‖∞ t–!

A(1 – !)

in eq. (57). Substitution of the exponential terms of . in the
last term of eq. (57) using eq. (65) leads to the estimation

∣∣∣∣
∫
∞

0
,1–!(9)y(9, 0)

d
dt

∫ t

0
e–9(t–4)esj4d4d9

∣∣∣∣
≤ 3‖q‖∞

∣∣∣∣
∫
∞

0
,1–!(9)

1
9 + sj

(
sjesjt + 9e–9t

)
d9
∣∣∣∣

≤ 3‖q‖∞
( ∣∣∣∣sj

∫
∞

0

,1–!(9)
9 + sj

d9
∣∣∣∣ eRe(sj)t

+
∫
∞

0
,1–!(9)e–9td9

)

= 3‖q‖∞
(∣∣∣s!j ∣∣∣ eRe(sj)t + t–!

A(1 – !)

)
.

with roots sj of eq. (45). For the algebraic decay part in .
we obtain, again using themean value theorem a constant
C4 > 0 and the term

∣∣∣∣
∫
∞

0
,1–!(9)y(9, 0)

×
d
dt

∫ t

0
e–9(t–4)

∫
∞

0
,1–!(')Z(')e–'4d'd4d9

∣∣∣∣
≤ C4

∣∣∣∣ ddt
∫
∞

0
,1–!(9)

∫ t

0
e–9(t–4)

4–!
A(1 – !)d4d9

∣∣∣∣
= C4

∣∣∣∣ ddt CD!
0+

(
t1–!

A(2 – !)

)∣∣∣∣
= C4|1 – 2!| t–2!

A(2 – 2!) .

in the last term of eq. (57). In summary, we obtain suffi-
cient conditions (49) and (50) for global asymptotic stabil-
ity of the equilibrium of eq. (17), from which we retrieve a
Lyapunov functional in Section 4.5.2.

Remark 4.9. It is even possible to obtain a purely exponen-
tial solution of eq. (17) without algebraic decay. Choose the
initial function q(4) = esj4 for 4 ∈ (–∞, 0] (which is not in
CB((–∞, 0];R)) for a root sj of eq. (45). This leads to initial
conditions
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q̇(4) = sjesjt, y(9, 0) =
∫ 0

–∞
e94sjesj4d4 =

sj
9 + sj

.

Using this function in the Laplace transform (55) leads to

Q(s) =
ms + d + cs!–1

ms2 + ds + cs! + k
+

msj
ms2 + ds + cs! + k

–
csj

ms2 + ds + cs! + k

∫
∞

0

,1–!(9)
(9 + s)(9 + sj)

d9

=
ms + d + cs!–1 +msj
ms2 + ds + cs! + k

– csj

∫
∞

0
,1–!(9)
9+sj d9 –

∫
∞

0
,1–!(9)
9+s d9

(s – sj)(ms2 + ds + cs! + k)

=
(
ms + d + cs!–1 +msj

)
(s – sj)

(s – sj)(ms2 + ds + cs! + k)

– csj
s!–1j – s!–1

(s – sj)(ms2 + ds + cs! + k)

=
1

s – sj
.

Hence, the solution is

q(t) = esjt, ∀t,

which shows that the integral term in eq. (42) should in
general not be omitted.

4.5.2 Lyapunov functional

To formulate a Lyapunov functional, we will use the iden-
tities of the next proposition.

Proposition 4.10. For ! ∈ (0, 1) and r > 0, the identities
∫
∞

0

,1–!(9)
92 + r2

d9 = cos
(!0
2

)
r!–2 (66)∫

∞

0

,1–!(9)9
92 + r2

d9 = sin
(!0
2

)
r!–1 (67)

hold.

Proof. Substitute ' = 92 and d' = 29d9 in the integral
and obtain

∫
∞

0

,1–!(9)
92 + r2

d9 =
sin(!0)

0

∫
∞

0

9!–1

92 + r2
d9

=
sin(!0)
20

∫
∞

0

'!
2 –1

' + r2 d'

=
sin(!0)
2 sin

( !0
2
) ∫ ∞

0

,1– !
2
(')

' + r2 d'.

Using sine-double-angle formula and eq. (41), we directly
obtain eq. (66). The proof of eq. (67) is analogous. ◻

In the following, let r∗ be the solution of the first equa-
tion of (47). We reformulate eq. (17) using eqs. (7), (36) and
Proposition 4.10 as

mq̈(t) = –kq(t) – dq̇(t) – cr2∗
∫
∞

0

,1–!(9)
92 + r2∗

y(9, t)d9

– c
∫
∞

0

,1–!(9)9
92 + r2∗

9y(9, t)d9

= –
(
k + c cos

(!0
2

)
r!∗
)
q(t)

–
(
d + c sin

(!0
2

)
r!–1∗

)
q̇(t)

+ cr2∗
∫
∞

0

,1–!(9)
92 + r2∗

9Y(9, t)d9

+ c
∫
∞

0

,1–!(9)
92 + r2∗

9ẏ(9, t)d9.

(68)

Introducing the quantities

k̃ = k + c cos
(!0
2

)
r!∗, d̃ = d + c sin

(!0
2

)
r!–1∗ , (69)

and new coordinates

q̃(t) = q(t) –
c
k̃
r2∗
∫
∞

0

,1–!(9)
92 + r2∗

9Y(9, t)d9

=
k
k̃
q(t) +

c
k̃
r2∗
∫
∞

0

,1–!(9)
92 + r2∗

y(9, t)d9
(70)

and

ṽ(t) = q̇(t) –
c
m

∫
∞

0

,1–!(9)
92 + r2∗

9y(9, t)d9 (71)

we obtain the system
⎧⎪⎨
⎪⎩

˙̃q(t) = ṽ(t),

˙̃v(t) = – k̃
m q̃(t) –

d̃
m ṽ(t) –

d̃c
m2

∫
∞

0

,1–!(9)
92+r2∗

9y(9, t)d9.
(72)

Note that the first equation in (72) holds, as r∗ is a solu-
tion of the first equation of (47). Moreover, we consider
the candidate Lyapunov functional

V3(t, qt, vt) =
m
2
ṽ2t (0) +

k̃
2
q̃2t (0)

+
d̃c
2m

∫
∞

0

,1–!(9)
92 + r2∗

9y2(9, t)d9
(73)

and prove inequality (26) for V3 w.r.t. the functions qt
and vt. Therefore, consider the split of the integral term
in eq. (73)
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∫
∞

0

,1–!(9)
92 + r2∗

9y2(9, t)d9

=
∫ 1

0

,1–!(9)
92 + r2∗

9y2(9, t)d9

+
∫
∞

1

,1–!(9)
92 + r2∗

9y2(9, t)d9

and use the mean value theorem for the first term and the
inequality 9 ≥ 1 in the second term to find a constant
C̃ > 0, such that

∫
∞

0

,1–!(9)
92 + r2∗

9y2(9, t)d9

≥ C̃
∫
∞

0

,1–!(9)
92 + r2∗

y2(9, t)d9.
(74)

Moreover, we use Hölder’s inequality to obtain

(∫
∞

0

,1–!(9)
92 + r2∗

y(9, t)d9
)2

≤

∫
∞

0

,1–!(9)
92 + r2∗

d9 ⋅
∫
∞

0

,1–!(9)
92 + r2∗

y2(9, t)d9
(75)

and

(∫
∞

0

,1–!(9)
92 + r2∗

9y(9, t)d9
)2

≤

∫
∞

0

,1–!(9)9
92 + r2∗

d9 ⋅
∫
∞

0

,1–!(9)
92 + r2∗

9y2(9, t)d9.
(76)

Using the three inequalities above and Proposition 4.10,
we can estimate (73) as

V3(t, qt, vt) ≥
m
2
ṽ2t (0) +

d̃c
4m sin

( !0
2
)
r!–1∗

×

(∫
∞

0

,1–!(9)
92 + r2∗

9y(9, t)d9
)2

+
k̃
2
q̃2t (0) +

d̃cC̃
4m cos

( !0
2
)
r!–2∗

×

(∫
∞

0

,1–!(9)
92 + r2∗

y(9, t)d9
)2

(77)

Finally, applying the general relation

(a + b)2 + γb2 =
γ

1 + γ
a2 +

(
a√
1 + γ

+
√
1 + γb

)2
(78)

for a, b, γ ∈ R, γ > 0 on the first two and the last two
terms of (77) using eqs. (70) and (71), we obtain inequality
(26) for V3. Furthermore, we compute the rate of V3 as

V̇3 =m ˙̃vt(0)ṽt(0) + k̃q̃t(0) ˙̃qt(0)

+
d̃c
m

∫
∞

0

,1–!(9)
92 + r2∗

9y(9, t)ẏ(9, t)d9.

Inserting the dynamics from (72), we obtain

V̇3 = –d̃ṽ2(t) +
d̃c2

m2

(∫
∞

0

,1–!(9)
92 + r2∗

9y(9, t)d9
)2

(79)

–
d̃c
m

∫
∞

0

,1–!(9)
92 + r2∗

92y2(9, t)d9. (80)

Again, using Hölder’s inequality leads to
(∫

∞

0

,1–!(9)
92 + r2∗

9y(9, t)d9
)2

≤

∫
∞

0

,1–!(9)
92 + r2∗

d9 ⋅
∫
∞

0

,1–!(9)
92 + r2∗

92y2(9, t)d9
(81)

and together with eq. (66), we finally obtain

V̇3 ≤ –d̃ṽ2(t)–
d̃c
m

(
1 –

c
m
cos

(!0
2

)
r!–2∗

)
×

∫
∞

0

,1–!(9)
92 + r2∗

92y2(9, t)d9
(82)

where, due to eq. (47)

1 –
c
m
cos

(!0
2

)
r!–2∗ > 0

⇔ mr2∗ – c cos
(!0
2

)
r!∗ = k > 0.

In summary, we found a Lyapunov functional V3, such
that V̇3 ≤ 0, which has the form of an energy functional
w.r.t. the new coordinates q̃t and ṽt but it has the disad-
vantage that we cannot prove asymptotic stability of the
trivial solution of eq. (17) with the help of V3 as in the
classical case of the damped linear oscillator using the
total mechanical energy as a Lyapunov function. Hence,
we introduce another Lyapunov functional V4, which is
related to the functional V2 in Section 4.4, to prove the
following proposition.

Proposition 4.11. Let m, k, c > 0, ! ∈ (0, 1) and let
r = r∗ > 0 be the solution of

–mr2 + cr! cos
(!0
2

)
+ k = 0.

Let d ∈ R be such that the inequality

dr∗ + cr!∗ sin
(!0
2

)
> 0

holds. Then the trivial solution of eq. (17) is asymptotically
stable.
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Proof.We introduce the Lyapunov functional

V4(t, qt, vt) =
1
2
mṽ2t (0) +

1
2
k̃q̃2t (0) +

d̃2

4m
q̃2t (0)

+
1
2
d̃q̃t(0)ṽt(0)

+
d̃c
2m

∫
∞

0

,1–!(9)
92 + r2∗

9y2(9, t)d9

+
d̃2c
4m2

∫
∞

0

,1–!(9)
92 + r2∗

92Y2(9, t)d9

–
d̃2c
4m2

c
k̃
r2∗
(∫

∞

0

,1–!(9)
92 + r2∗

9Y(9, t)d9
)2
(83)

and check the conditions in Theorem 4.3. Once again, we
use Hölder’s inequality to obtain

(∫
∞

0

,1–!(9)
92 + r2∗

9Y(9, t)d9
)2

≤

∫
∞

0

,1–!(9)
92 + r2∗

d9 ⋅
∫
∞

0

,1–!(9)
92 + r2∗

92Y2(9, t)d9.

Together with (76), estimation (38) and Proposition 4.10
we obtain

V4(t, qt, vt)

≥
1
4
mṽ2t (0) +

1
2
k̃q̃2t (0)

+
d̃c

2m sin( !02 )r!–1∗

(∫
∞

0

,1–!(9)
92 + r2∗

9y(9, t)d9
)2

+
d̃2c
4m2

c
k̃
r2∗

(
k̃

c cos( !02 )r!∗
– 1
)

×

(∫
∞

0

,1–!(9)
92 + r2∗

9Y(9, t)d9
)2

.

All coefficients in this estimation are positive and, again
using eqs. (70), (71) and (78), we obtain relation (26) for
V4. Furthermore, we compute the rate of V4 as

V̇4 =mṽt(0) ˙̃vt(0) + k̃q̃t(0) ˙̃qt(0) + d̃
2
ṽt(0) ˙̃qt(0)

+
d̃
2
q̃t(0) ˙̃vt(0) + d̃2

2m
q̃t(0) ˙̃qt(0)

+
d̃c
m

∫
∞

0

,1–!(9)
92 + r2∗

9y(9, t)ẏ(9, t)d9

+
d̃2c
2m2

∫
∞

0

,1–!(9)
92 + r2∗

9Y(9, t)9Ẏ(9, t)d9

–
d̃2c
2m2

c
k̃
r2∗
(∫

∞

0

,1–!(9)
92 + r2∗

9Y(9, t)d9
)

×

(∫
∞

0

,1–!(9)
92 + r2∗

9Ẏ(9, t)d9
)

Inserting the dynamics and using eqs. (81) and (74), we
obtain

V̇4 ≤ –
d̃
2
ṽ2(t) –

d̃c
m

(
1 –

c
m
cos

(!0
2

)
r!–2∗

)
×

∫
∞

0

,1–!(9)
92 + r2∗

92y2(9, t)d9

–
k̃d̃
2m

q̃2(t) –
d̃2cC̃
2m2

∫
∞

0

,1–!(9)
92 + r2∗

y2(9, t)d9.

Again, with the help of the estimations (75), (81) and eqs.
(70), (71) and (78), one can prove that V̇4 fulfills inequality
(29) w.r.t. q and v. This completes the proof. ◻

Remark 4.12.
(a) As a special case, Proposition 4.11 proves asymptotic

stability of the trivial solution of eq. (17) for the case
d = 0. Previously in Section 4.3, with the help of the
energy functional we could only prove stability but not
attractivity of the trivial solution.

(b) The conditions for asymptotic stability in Proposition
4.11 are equivalent to the necessary and sufficient con-
ditions obtained by the eigenvalue analysis in Propos-
ition 4.7. In that sense, the choice of the functionals V3
and V4 is optimal.

4.5.3 Example: Stick-slip oscillator [29–31]

In this section, we describe a model of a mechanical sys-
tem, where effective negative linear damping occurs in
the linearization of the equation of motion around an
equilibrium and we give sufficient conditions for local
asymptotic stability of the equilibrium using Proposi-
tion 4.11. Consider a mass m suspended by a spring with
spring coefficient k, and a springpot with coefficient c
and differentiation order ! ∈ (0, 1), which is sliding on
a conveyor belt as in Figure 7. By q we denote the dis-
placement of the mass. The belt moves with a constant
velocity vdr > 0 in the direction of q and we assume
friction between the mass and the belt, which leads to
a friction force FT , such that the equation of motion
reads as

mq̈(t) = FT – c CD!
t0+q(t) – kq(t). (84)
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Figure 7: Fractionally damped oscillator with dry friction and graph of a set-valued force law describing the Stribeck effect.

For the friction force FT in the slip phase we consider the
force law

FT = –,(vrel)FNsign(vrel), vrel ≠ 0 (85)

where

vrel(t) = q̇(t) – vdr (86)

is the relative velocity between mass and belt,

FN = mg (87)

is the normal force acting on the mass and , = ,(v) is
the friction coefficient depending on the relative velocity,
where the function , increases (at least) for small negative
values of vrel, i. e.

,′(–|v|) > 0, |v| ≪ 1, (88)

which is known as the Stribeck effect. We consider the slip
equilibrium q∗ of eq. (84)

0 = FT – kq∗, (89)
–FT = ,(–vdr)FNsign(–vdr) = –,(–vdr)mg, (90)

which implies

q∗ =
,(–vdr)mg

k
(91)

We introduce a new coordinate

q̄ = q – q∗, (92)

such that we reformulate eq. (84) in terms of q̄ as

m ¨̄q(t) + c CD!
t0+q̄(t) + k(q̄(t) + q

∗)

= –,( ˙̄q(t) – vdr)mg sign( ˙̄q(t) – vdr).
(93)

Linearizing the right-hand side of eq. (93) near the equi-
librium leads to

m ¨̄q(t) + c CD!
t0+q̄(t) + k(q̄(t) + q

∗)

= ,(–vdr)mg + ,′(–vdr)mg ˙̄q(t) +O
( ˙̄q2

)
,

(94)

which together with eq. (91) leads to the linearized equa-
tion

m ¨̄q(t) – ,′(–vdr)mg ˙̄q(t) + c CD!
t0+q̄(t) + kq̄(t) = O

( ˙̄q2
)
(95)

Hence, using Proposition 4.11, we obtain the condition

cr!–1∗ sin
(!0
2

)
> ,′(–vdr)mg (96)

for local asymptotic stability of the slip equilibrium q∗,
where again r∗ is the solution of

–mr2 + cr! cos
(!0
2

)
+ k = 0.

5 Conclusion
The previous sections have given a complete stability
analysis of a linear single degree-of-freedommass-spring-
dashpot-springpot system, including an eigenvalue ana-
lysis, a derivation of total mechanical energy and Lya-
punov functionals for various cases. The major merit of
the paper lies in the extension of the Lyapunov stability
framework to fractionally damped mechanical systems as
this step is essential for rigorous proofs of global stabil-
ity properties of nonlinear systems and further bifurcation
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analysis. Specifically, the results in Section 4 show how
the terms in the Lyapunov functional related to the spring-
pot element have to be split, i. e. how one has to deal with
fractional damping in a Lyapunov setting.

The scope has been limited to a single degree-of-
freedom oscillator with viscous and fractional damping.
Obviously, these results need to be generalized to multi
degree-of-freedom systems. That such a generalization is
possible, at least in special cases, can be seen by looking
at a linear multi degree-of-freedom system

Mq̈ + Dvq̇ + DfD!
t0+q + Kq = 0

with symmetric system matrices. If the viscous damping
matrix Dv and fractional damping matrix Df are propor-
tional to the mass and stiffness matrices (or, more gener-
ally, Caughey damping), then one can use known results
from linear vibration analysis to show that the modal
equations are decoupled single degree-of-freedom frac-
tionally damped oscillators as dealt with here. Clearly,
further research is needed for more general cases.

A key result of the paper is the Lyapunov stabil-
ity condition for systems having negative viscous damp-
ing but a sufficient amount of positive fractional damp-
ing. The example of a stick-slip oscillator demonstrates
that negative viscous damping is relevant. More gener-
ally, all Hopf bifurcation instabilities in non-conservative
mechanical systems are due to negative effective viscous
damping. The mechanism leading to effective negative
damping may be quite complicated, e. g. be caused by
mode coupling, follower forces or aerodynamic forces
(flutter), and also be attributed to Ziegler’s paradox. A
typical task within control theory is the design of a feed-
back law which stabilizes the equilibrium and a common
tool to achieve this is Lyapunov-based control design.
Hence, Lyapunov methods can be used to stabilize sys-
tems with negative effective viscous damping, either with
integer or fractional PID control. The Lyapunov tech-
niques developed here, specifically the results on anti-
damping, may prove to be instrumental for this purpose.
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