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Abstract

In this paper, we propose a novel approach for the numerical solution of
fractional-order ordinary differential equations. The method is based on the
infinite state representation of the Caputo fractional differential operator,
in which the entire history of the state of the system is considered for
correct initialization. The infinite state representation contains an improper
integral with respect to frequency, expressing the history dependence of the
fractional derivative. The integral generally has a weakly singular kernel,
which may lead to problems in numerical computations. A reformulation
of the integral generates a kernel that decays to zero at both ends of the
integration interval leading to better convergence properties of the related
numerical scheme. We compare our method to other schemes by considering
several benchmark problems.
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1322 M. Hinze, A. Schmidt, R.I. Leine

1. Introduction

This paper presents a novel numerical method for the solution of frac-
tional-order ordinary differential equations (FODEs) by exploiting a re-
formulation of the infinite state representation, which has originally been
developed in the context of Lyapunov stability theory.

FODEs are considered within the theory of fractional calculus, which
is a mathematical field dealing with derivatives and integrals of arbitrary
(non-integer) order [6, 27] with a variety of applications. Particularly in
mechanics, fractional damping may arise through the modeling of mechan-
ical systems with viscoelastic components. Complex rheological models
for viscoelastic materials are often described through an array of classical
Kelvin or Maxwell elements (i.e. elements containing derivatives of integer
order), inevitably resulting in a model with a large number of parame-
ters. It has been shown that the viscoelastic behavior of complex materials
in many applications is well represented by fractional-order elements, so
called ‘springpots’, with only a few parameters [2, 30]. Actually, a spring-
pot may be interpreted as an infinite series of Kelvin or Maxwell elements
[15, 16, 26, 28]. This analogy can be expressed by using the infinite state
representation (also called diffusive representation) of fractional derivatives
and integrals introduced in [23, 24]. Furthermore, this idea leads to a po-
tential energy representation for a springpot [16, 34] which in turn can be
used to prove stability of equilibria for fractionally damped mechanical sys-
tems. In this context, a reformulation of the infinite state representation of
fractional derivatives has been developed, which extracts both the energy
preserving and dissipating components of a springpot [17]. This naturally
leads to a Lyapunov functional for the rigorous proof of Lyapunov stability
of equilibria for a class of mechanical systems with fractional damping.

The infinite state representation is widely spread in numerical meth-
ods dealing with fractional derivatives and integrals [32, 35, 39], as this
approach leads to systems of integer-order instead of fractional differential
equations. In contrast to direct approaches to solve fractional differential
equations [9, 11, 22], these methods do not require to process the entire
solution history in every time step which leads to a substantial reduction
of computational costs and memory requirements. The accuracy of the ap-
proximation based on the infinite state representation is impaired by the
presence of a weakly singular kernel. Furthermore, the accuracy depends
on the chosen quadrature [1, 18, 20, 39] and the order of differentiation
[1, 18, 20] whereas the prediction of the asymptotic behavior may be incor-
rect [29].
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NUMERICAL SOLUTION OF FRACTIONAL-ORDER . . . 1323

In this contribution, we propose to exploit the reformulation of the
fractional derivative introduced in [17], which leads to a non-singular inte-
gration kernel that asymptotically decays to zero. Therefore, the related
scheme, which uses a Gauss-Legendre quadrature, causes small truncation
and quadrature errors of the infinite state integral. The performance of the
proposed scheme is studied in comparison to existing numerical methods
for several benchmark problems related to the problems in [37, 38].

In Sect. 2 we set notation for FODEs and the infinite state representa-
tion of Caputo fractional derivatives. Sect. 3 describes a classical scheme to
handle (special types of) FODEs and several methods based on the infinite
state representation. The reformulation of the infinite state representation
is presented in Sect. 4. Based on the reformulation, we derive a numer-
ical scheme and give a brief error analysis. In Sect. 5 we consider a set
of benchmark problems and compare our scheme to the existing methods
from Sect. 3. Finally, in Sect. 6 we draw conclusions and state some gen-
eralizations of the proposed method.

2. Fractional derivatives and fractional-order ordinary
differential equations

We consider the Caputo derivative of order α ∈ (0, 1) of a continuously
differentiable real-valued function q(t) as

CDα
t0+q(t) =

1

Γ(1− α)

∫ t

t0

(t− τ)−αq̇(τ)dτ (2.1)

with the Gamma function

Γ(α) =

∫ ∞

0
uα−1e−udu. (2.2)

As initialization time instant t0 ∈ [−∞, 0] we consider the beginning of the
non-zero history of q(t), i.e. q(t) = q̇(t) = 0 for t ≤ t0 and we think of t = 0
as initial time instant. Accordingly, we consider an initialized fractional
derivative of q similar as in [21]. Note that the initialization time instant
t0 is a property of (the history of) the function q and not of the differential
operator. The definition (2.1) is related to the fractional Riemann-Liouville
integral

Iαt0+q(t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1q(τ)dτ (2.3)

by
CDα

t0+q(t) = I1−α
t0+ q̇(t). (2.4)

An equation of the form

Aq(n)(t) +B CD
αn−1

t0+ q(n−1)(t)

= F
(
t, q(t),CD

α0

t0+q(t), q̇(t), . . . ,
CD

αn−2

t0+ q(n−2)(t), q(n−1)(t)
)
(2.5)
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1324 M. Hinze, A. Schmidt, R.I. Leine

is denoted as an (explicit) fractional-order ordinary differential equation
(FODE) of order n ∈ N (or n−1+αn−1 forA = 0), with A,B ∈ R, A∨B �= 0
and fractional orders α0, . . . , αn−1 ∈ (0, 1). More generally, q may have
values in Rm. In this case q = (q1, . . . , qm)T ∈ Rm is a vector, A,B ∈ Rm×m

are matrices and αi = (αi,1, . . . , αi,m)T ∈ (0, 1)m, i = 0, . . . , n−1 are multi-
orders such that

CDαi
t0+q

(i)(t) =
(
CD

αi,1

t0+q
(i)
1 (t), . . . ,CD

αi,m

t0+ q(i)m (t)
)T

. (2.6)

In contrast to the classical approach, we will equip an FODE with an
initial function q(t) = q0(t) for t ∈ (t0, 0) instead of initial values at one
time instant. Thus, we relate an FODE to an equivalent functional or
Volterra integro-differential equation with unbounded delay in the sense of
[3, 14, 19].

In the following, we will use another representation of the operator
(2.1), which is called infinite state or diffusive representation [23, 24, 35]
and can be written as the infinite state integral

CDα
t0+q(t) =

∫ ∞

0
μ1−α(ω)y(ω, t)dω, (2.7)

where the function μα is defined as

μα(η) :=
sin(απ)

π
η−α (2.8)

and the infinite states y(η, t), η ∈ (0,∞) solve the initial value problem

ẏ(η, t) = −ηy(η, t) + q̇(t), y(η, 0) =

∫ 0

t0

eητ q̇(τ)dτ. (2.9)

To see (2.7), we use (2.2) and obtain

t−α

Γ(1− α)
=

1

Γ(α)Γ(1 − α)

∫ ∞

0
t−αuα−1e−udu =

∫ ∞

0
μ1−α(ω)e

−ωtdω,

(2.10)
where we substitute u = ωt and use the property

Γ(α)Γ(1 − α) =
π

sin(απ)
. (2.11)

We obtain Eq. (2.7) by inserting (2.10) in (2.1), using Fubini’s theorem
and the solution of (2.9). Using the representation (2.7) together with
(2.9) translates the fractional derivatives in Eq. (2.5) to integer-order. Fur-
thermore, the initial function q0 is transferred to initial conditions of the
infinite states

y(η, 0) =

∫ 0

t0

eητ q̇0(τ)dτ. (2.12)

In this sense, an FODE may be understood as an infinite-dimensional ODE.
Hence, an FODE may also be approximated by an ODE of high (but finite)
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NUMERICAL SOLUTION OF FRACTIONAL-ORDER . . . 1325

dimension, being the key idea behind the infinite state based schemes of
Sect. 3.2 and the novel scheme in Sect. 4.

3. Two kinds of numerical schemes for FODEs

In this section, we will give a brief introduction to a classical and some
infinite state based numerical schemes to solve (special types of) FODEs as
we want to compare these methods to the novel scheme proposed in Sect. 4.

3.1. Predictor-Corrector-Scheme. A classical method to solve fraction-
al initial-value problems of the form{

CDα
t0+q(t) = f(t, q(t)), m− 1 < α ≤ m,

q(k)(0) = q
(k)
0 , k = 0, 1, . . . ,m− 1,

(3.1)

for t ∈ [0, T ] is the predictor-corrector-scheme (PC) proposed in [9] and
extensively analyzed in [10]. Notice that in this scheme a fractional dif-
ferential equation is considered together with initial values instead of an
initial function. The method is applied to the integral form of (3.1) being

q(t) =

�α�−1∑
k=0

q
(k)
0

tk

k!
+

1

Γ(α)

∫ t

0
(t− τ)α−1f(τ, q(τ))dτ. (3.2)

The integral in (3.2) is approximated by a composite trapezoidal rule with
fixed time-step h = tj − tj−1, j = 1, . . . , N = �Th 	 which leads to

q̃(tn+1) =

�α�−1∑
k=0

q
(k)
0

tkn+1

k!
+

hα

Γ(α+ 2)

n+1∑
j=0

aj,n+1f(tj, q̃(tj)) (3.3)

with coefficients

aj,n+1 =

⎧⎨
⎩

nα+1 − (n− α)(n + 1)α j = 0,
(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1 1 ≤ j ≤ n,
1 j = n+ 1.

(3.4)
To avoid solving the nonlinear equation (3.3) for q̃(tn+1), the solution is
estimated in a predictor step with the help of the (explicit) rectangular
rule as

q̃p(tn+1) =

�α�−1∑
k=0

q
(k)
0

tkn+1

k!
+

1

Γ(α)

n∑
j=0

bj,n+1f(tj, q̃(tj)) (3.5)

with coefficients

bj,n+1 =
hα

α
((n + 1− j)α − (n− j)α)

and corrected by (3.3) as
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1326 M. Hinze, A. Schmidt, R.I. Leine

q̃(tn+1) =

�α�−1∑
k=0

q
(k)
0

tkn+1

k!
+

hα

Γ(α+ 2)
f(tn+1, q̃

p(tn+1))

+
hα

Γ(α+ 2)

n∑
j=0

aj,n+1f(tj, q̃(tj)).

(3.6)

The scheme leads to an error estimation

max
j=0,1,...,N

|q(tj)− q̃(tj)| = O(hp), p = min(2, 1 + α), (h → 0). (3.7)

The method may be directly applied to FODEs with rational derivation
orders α0, . . . , αn−1 in (2.5). To this end, (2.5) is transferred to a vectorial
version of (3.1), where α is the greatest common divisor of α0, . . . , αn−1. In
the general case, the irrational derivation orders in the set {α0, . . . , αn−1}
have to be approximated by rational ones. The details may be found in
[8] and [9, Sec. 4]. The algorithm may be improved, e.g. using several
corrector iterations or applying Richardson extrapolation [9, Sec. 3]. In
Sect. 5, we test this algorithm using the implementation fde12.m, [12].

3.2. Infinite state based methods. Methods based on the infinite state
representation (2.7) of the fractional derivative usually start with a dis-
cretization of the infinite states and a related quadrature of the improper
integral in (2.7), which leads to a representation

˜CDα
t0+

q(t) =
N∑

n=0

yn(t)wn,

ẏn(t) = q̇(t)− ηnyn(t), n = 0, . . . , N,

(3.8)

with yn(t) = y(ηn, t). Alternatively, the infinite state representation of the
fractional Riemann-Liouville integral (2.3) of the form

Iαt0+q(t) =

∫ ∞

0
μα(ω)Z(ω, t)dω,

Ż(η, t) = q(t)− ηZ(η, t)

(3.9)

may be discretized as

˜Iαt0+q(t) =

N∑
n=0

Zn(t)wn,

Żn(t) = q(t)− ηnZn(t), n = 0, . . . , N

(3.10)

with Zn(t) = Z(ηn, t). Thereby, the discrete values ηn and wn, n = 0, . . . , N
are the nodes and weights of the chosen quadrature, respectively, where the
kernel μ is incorporated in the weights wn. The approximations (3.8) and
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NUMERICAL SOLUTION OF FRACTIONAL-ORDER . . . 1327

(3.10) bring forth two difficulties: The upper bound of the integral is in-
finite and the kernel μ is weakly singular at zero. Both facts have to be
considered when choosing the quadrature. Furthermore, the substitution
of (3.8) into an FODE (2.5) leads to a stiff ODE (while the substitution
of (3.10) in a fractional integral equation leads to a stiff DAE), asking for
a dedicated stiff solver. Originally, an infinite state scheme of the form
(3.10) is used in [33, 35] together with an adapted version of Oustaloup’s
filter [25] to perform the quadrature. The frequencies ηn are in this case
chosen to be geometrically distributed, i.e. equidistant on a logarithmic
scale. In the much-debated articles [4, 39], transformed representations
similar to (3.8) are introduced. The quadrature used in [39] is of Gauss-
Laguerre type, which is adapted to the improper integral in (2.7). However,
the weak singularity is not considered in this approach and the asymptotic
decay of the integrand for ω → ∞ is rather slow, which leads to slow con-
vergence of the scheme [7]. A significant improvement may be obtained
using a Gauss-Jacobi quadrature for a transformed infinite state integral
[7], which considers the weak singularity at zero. Alternatively, the use of
a Galerkin method was proposed in [7, 32]. Recently, several schemes using
composite quadrature rules have been introduced, e.g. in [20] (composite
Gauss-Legendre) and [1, 18] (composite Gauss-Jacobi). These schemes use
the advantage, that particular subintervals, usually distributed over many
decades, may be chosen in advance to perform the quadrature on each inter-
val (whereas in a single Gaussian quadrature the nodes are only determined
by the zeroes of certain orthogonal polynomials).

In the following, we will describe a composite Gauss-Jacobi quadrature
for (3.10) similar to the quadrature of the scheme in [1], as we will compare
its results to the method proposed in Sect. 4. When using this scheme
in Sect. 5, we will refer to it as the infinite state scheme (ISS). A general
Gauss-Jacobi quadrature is an approximation of an integral over the inter-
val [−1, 1] of a continuous function f weighted by an algebraic function with
(possibly) weak singularities at the boundaries of the integration interval.
It has the form∫ 1

−1
(1 + x)β(1− x)γf(x)dx ≈

N∑
n=0

f
(
s(β,γ)n

)
w(β,γ)
n (3.11)

with β, γ > −1, nodes s
(β,γ)
n and weights w

(β,γ)
n such that polynomials

of degree 2N − 1 are integrated exactly. The details on determining the
nodes and weights may be found e.g. in [5, Ch. 2.7]. In the present
case, we will use a composite version of this idea, i.e. we choose η0 = 0,
η1, . . . , ηK in (0,∞) and perform a Gauss-Jacobi quadrature in each interval
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1328 M. Hinze, A. Schmidt, R.I. Leine

(η0, η1), . . . , (ηK−1, ηK) with nodes ηk,j ∈ (ηk, ηk+1) and weights w
(βk ,γk)
j ,

j = 1, . . . , J , k = 0, . . . ,K − 1. We use a substitution∫ b

a
(x− a)β(b− x)γf(x)dx

=

(
b− a

2

)1+β+γ ∫ 1

−1
(1 + s)β(1− s)γf

(
b− a

2
s+

a+ b

2

)
ds

≈
(
b− a

2

)1+β+γ N∑
n=0

f

(
b− a

2
s(β,γ)n +

a+ b

2

)
w(β,γ)
n

(3.12)
to adapt to the integration boundaries a < b. Applying this procedure to
(3.9) leads to∫ η1

0
μα(ω)Z(ω, t)dω =

sin(απ)

π

∫ η1

0
ω−α Z(ω, t)dω

=
sin(απ)

π

(η1
2

)1−α
∫ 1

−1
(1 + s)−α Z

(η1
2
(1 + s), t

)
ds

≈ sin(απ)

π

(η1
2

)1−α
J∑

j=1

Z

(
η1
2

(
1 + s

(−α,0)
j

)
︸ ︷︷ ︸

=:η0,j

, t

)
w

(−α,0)
j

(3.13)

and, using the abbreviation ηk(s) =
ηk+1−ηk

2 s+
ηk+ηk+1

2∫ ηk+1

ηk

μα(ω)Z(ω, t)dω =
ηk+1 − ηk

2

∫ 1

−1
μα(ηk(s))Z(ηk(s), t)ds

≈ ηk+1 − ηk
2

J∑
j=1

μα

(
ηk

(
s
(0,0)
j

))
Z
(
ηk

(
s
(0,0)
j

)
, t
)
w

(0,0)
j

=
ηk+1 − ηk

2

J∑
j=1

μα(ηk,j)Z(ηk,j, t)w
(0,0)
j

(3.14)

for k = 1, . . . ,K − 1, where ηk,j = ηk

(
s
(0,0)
j

)
. Hence, we only have to

compute one set of nodes and weights(
s
(−α,0)
j , w

(−α,0)
j

)
j=1,...,J

(3.15)

for the quadrature in (3.13) and another set(
s
(0,0)
j , w

(0,0)
j

)
j=1,...,J

(3.16)
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NUMERICAL SOLUTION OF FRACTIONAL-ORDER . . . 1329

for the case (3.14), which is independent of k ∈ {1, . . . ,K−1}. Actually, the
weak singularity only has to be considered in (3.13), while more specifically
(3.14) represents a Gauss-Legendre quadrature. In summary, we obtain the
approximation∫ ∞

0
μα(ω)Z(ω, t)dω ≈ sin(απ)

π

(η1
2

)1−α
J∑

j=1

Z(η0,j, t)w
(−α,0)
j

+

K−1∑
k=1

ηk+1 − ηk
2

J∑
j=1

μα(ηk,j)Z(ηk,j, t)w
(0,0)
j

(3.17)

of (3.9), which may be used in (3.10), where N = K · J . To use this
approximation for solving a fractional integral equation, we still have to
choose an appropriate DAE solver. As the coefficients ηn of Yn in the
ODEs of (3.10) become huge numbers for large n, the resulting DAEs will
usually be stiff, such that explicit time stepping methods fail [7, Sec. 3.2].
Therefore, in our numerical examples, we will use MATLAB’s stiff solver
ode15s.m, which uses an implicit method (BDF).

4. Reformulated infinite state scheme

4.1. Reformulation of the infinite state representation. As discussed
in Sect. 3.2, the asymptotic behavior of the integrand may lead to prob-
lems in the infinite state based methods that we want to overcome using a
reformulation of (2.7). Therefore, we propose to consider a second kind of
infinite states Y (η, t), η ∈ (0,∞) that fulfill

Ẏ (η, t) = −ηY (η, t) + q(t), Y (η, 0) =

∫ 0

t0

eητ q(τ)dτ (4.1)

and Ẏ = y. In the following, we will introduce an expansion of the inte-
gration kernel in (2.7) by the term ω2 + r2 for a real number r > 0. The
following properties will prove to be useful in the proposed reformulation.

Proposition 4.1.∫ ∞

0

μα(ω)

ω + s
dω = s−α, s ∈ C\R−, α ∈ (0, 1). (4.2)

P r o o f. Making use of the Laplace transform of e−ωt

L{e−ωt}(s) =
∫ ∞

0
e−ωte−stdt =

∫ ∞

0
e−(ω+s)tdt

=

[
− 1

ω + s
e−(ω+s)t

]∞
0

=
1

ω + s
,
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1330 M. Hinze, A. Schmidt, R.I. Leine

we obtain Eq. (4.2) using Fubini’s theorem and (2.11) as

∫ ∞

0

μα(ω)

ω + s
dω =

sin(απ)

π

∫ ∞

0
ω−α

∫ ∞

0
e−(ω+s)tdtdω

=
sin(απ)

π

∫ ∞

0
e−st

∫ ∞

0
ω−αe−ωtdωdt

=
sin(απ)

π

∫ ∞

0
e−stΓ(1− α)tα−1dt

=
sin(απ)

π
Γ(1− α)Γ(α)s−α = s−α.

�

Remark 4.1. The result of Prop. 4.1 is also used in [35] (without
proof). A similar proof as the one given here may be found in [36].

Proposition 4.2. For α ∈ (0, 1) and r > 0, the identities

∫ ∞

0

μ1−α(ω)

ω2 + r2
dω = cos

(απ
2

)
rα−2, (4.3)∫ ∞

0

μ1−α(ω)ω

ω2 + r2
dω = sin

(απ
2

)
rα−1 (4.4)

hold.

P r o o f. Substitute η = ω2 and dη = 2ω dω in the integral and obtain∫ ∞

0

μ1−α(ω)

ω2 + r2
dω =

sin(απ)

π

∫ ∞

0

ωα−1

ω2 + r2
dω =

sin(απ)

2π

∫ ∞

0

η
α
2
−1

η + r2
dη

=
sin(απ)

2 sin
(
απ
2

) ∫ ∞

0

μ1−α
2
(η)

η + r2
dη.

Using the sine-double-angle formula and (4.2), we directly obtain (4.3).
The proof of (4.4) is analogous. �

Expansion of (2.7) by the term ω2 + r2 for a fixed r > 0 leads together
with (2.9), (4.1), (4.3) and (4.4) to
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NUMERICAL SOLUTION OF FRACTIONAL-ORDER . . . 1331

CDα
t0+q(t) =

∫ ∞

0

μ1−α(ω)ω

ω2 + r2
ωy(ω, t)dω + r2

∫ ∞

0

μ1−α(ω)

ω2 + r2
y(ω, t)dω

=

∫ ∞

0

μ1−α(ω)ω

ω2 + r2
dω q̇(t)−

∫ ∞

0

μ1−α(ω)ω

ω2 + r2
ẏ(ω, t)dω

+ r2
∫ ∞

0

μ1−α(ω)

ω2 + r2
dω q(t)− r2

∫ ∞

0

μ1−α(ω)ω

ω2 + r2
Y (ω, t)dω

= sin
(απ

2

)
rα−1q̇(t)−

∫ ∞

0

μ1−α(ω)ω

ω2 + r2
ẏ(ω, t)dω

+ cos
(απ

2

)
rαq(t)− r2

∫ ∞

0

μ1−α(ω)ω

ω2 + r2
Y (ω, t)dω.

(4.5)

The advantage of this reformulation of the fractional derivative is the new
kernel with parameter r > 0

K(α, η) =
μ1−α(η)η

η2 + r2
=

sin(απ)

π

ηα

η2 + r2
, (4.6)

that is integrable on R+
0 and fulfills

lim
η→0

K(α, η) = lim
η→∞K(α, η) = 0, α ∈ (0, 1). (4.7)

Furthermore, (4.5) contains only first-order derivatives of q and the infinite
states y and Y , being key to our numerical scheme which is based on the
solution of high-dimensional ODEs. Regarding (2.5), which contains several
fractional orders αi, we generalize (4.5) to

CDαi
t0+q

(i)(t) = sin
(αiπ

2

)
rαi−1q(i+1)(t)−

∫ ∞

0
K(αi, ω)Ẏ

(i+1)(ω, t)dω

+ cos
(αiπ

2

)
rαiq(i)(t)− r2

∫ ∞

0
K(αi, ω)Y

(i)(ω, t)dω

(4.8)
for i = 0, . . . , n− 1 together with

Ẏ (i)(η, t) = q(i)(t)− ηY (i)(η, t), Y (i)(η, 0) =

∫ 0

t0

eητ q(i)(τ)dτ, (4.9)

i = 0, . . . , n, which is related to (2.9) and (4.1).
For a fixed value of α, the function K(α, ·) has a maximum at

ηmax =

√
α

2− α
r. (4.10)

Hence, the position of ηmax may be adjusted by the magnitude of r. The
graphs of K(α, η) for different values of α ∈ (0, 1) and ηmax = 1 (i.e.
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r2 = 2−α
α ) are displayed in Fig. 1. In the examples of Sect. 5, we con-

sider geometrically distributed arguments η1, . . . , ηK centered at 100 = 1
for the function K(α, ·). Therefore, we choose r2 = 2−α

α in Sect. 5, such
that K(α, ·) has its maximum at the central argument.

10−5 10−4 10−3 10−2 10−1 100 101 102 103
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

η

K
(α

,η
)

α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

Figure 1. K(α, η) for different values of α ∈ (0, 1).

4.2. Derivation of the numerical scheme. The key idea of our scheme
is to approximate the integrals of the infinite states Y (i) and their deriva-

tives in Eq. (4.8) by sums of a finite number of states Y
(i)
k,j , k = 0, . . . ,K−1,

j = 1, . . . , J performing a composite Gaussian quadrature. The discretiza-
tion of the infinite states creates two sources of error: the error in conse-
quence of neglecting a part of the integration interval and the approxima-
tion error of the quadrature itself. In particular, we obtain an approxima-
tion∫ ∞

0
K(αi, ω)Y

(i)(ω, t)dω =
K−1∑
k=0

J∑
j=1

K(αi, ηk,j)Y
(i)
k,j (t)wk,j

+ E1

(
Y (i)(·, t)

)
+ E2

(
Y (i)(·, t)

) (4.11)

for the integral of infinite states as may be found in (4.8) with errors
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E1

(
Y (i)(·, t)

)
=

∫ ∞

ηK

K(αi, ω)Y
(i)(ω, t)dω, (4.12)

E2

(
Y (i)(·, t)

)
=

∫ ηK

0
K(αi, ω)Y

(i)(ω, t)dω −
K−1∑
k=0

J∑
j=1

K(αi, ηk,j)Y
(i)
k,j (t)wk,j.

(4.13)

Thereby, similar as in Sect. 3.2 we choose η0 = 0, η1, . . . , ηK in (0,∞)
and perform a Gaussian quadrature in each interval (η0, η1), . . . , (ηK−1, ηK)
with shifted Gauss-Legendre nodes

ηk,j =
ηk+1 − ηk

2
s
(0,0)
j +

ηk + ηk+1

2
∈ (ηk, ηk+1), (4.14)

j = 1, . . . , J , k = 0, . . . ,K − 1 and weights

wk,j =
ηk+1 − ηk

2
w

(0,0)
j , j = 1, . . . , J, k = 0, . . . ,K − 1 (4.15)

related to the standard Gauss-Legendre nodes s
(0,0)
j and weights w

(0,0)
j ,

j = 1, . . . , J . To abbreviate, we denote Y
(i)
k,j (t) := Y (i)(ηk,j, t), j = 1, . . . , J ,

k = 0, . . . ,K − 1. Accordingly, in an arbitrary FODE we can approximate
a fractional derivative CDαi

t0+q
(i)(t) with (4.8) and (4.11) as

˜CDαi
t0+q

(i)(t) = sin
(αiπ

2

)
rαi−1q(i+1)(t)−

K−1∑
k=0

J∑
j=1

K(αi, ηk,j)Ẏ
(i+1)
k,j (t)wk,j

+ cos
(αiπ

2

)
rαiq(i)(t)− r2

K−1∑
k=0

J∑
j=1

K(αi, ηk,j)Y
(i)
k,j (t)wk,j.

(4.16)

Hence, we approximate (2.5) by a system

(
A+B sin

(αn−1π

2

)
rαn−1−1

)
q(n)(t)−B

K−1∑
k=0

J∑
j=1

K(αn−1, ηk,j)Ẏ
(n)
k,j (t)wk,j

= F̃

(
t, q(t), q̇(t), . . . , q(n−1)(t),

(
Y

(0)
k,j

)
k,j

, . . . ,
(
Y

(n)
k,j

)
k,j

)

−B cos
(αn−1π

2

)
rαn−1q(n−1) +Br2

K−1∑
k=0

J∑
j=1

K(αn−1, ηk,j)Y
(n−1)
k,j (t)wk,j

(4.17)
together with
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Ẏ
(i)
k,j (t) = q(i)(t)− ηk,jY

(i)
k,j (t), (4.18)

i = 0, . . . , n, j = 1, . . . , J , k = 0, . . . ,K − 1, related to (4.9). The system
(4.17) may be transformed into a first-order ODE which together with
(4.18) can be solved by a standard ODE-solver. Correspondingly, the initial
function q0(t), t ∈ (t0, 0) of the original FODE (2.5) has to be translated

to initial values Y
(i)
k,j (0) for the approximating ODE through

Y
(i)
k,j (0) =

∫ 0

t0

eηk,jτq
(i)
0 (τ)dτ, (4.19)

i = 0, . . . , n, j = 1, . . . , J , k = 0, . . . ,K − 1. In Sect. 5 we refer to the
method proposed here as reformulated infinite state scheme (RISS).

Remark 4.2. The kernel K(α, η) decays algebraically of order α to
zero for η → 0 such that the integrand is not differentiable at zero and
the Gauss-Legendre approximation is of low order. However, the error
may be controlled by choosing a small value for η1 which we show in the
next section. The advantage of a Gauss-Legendre quadrature in all subin-
tervals (instead of a Gauss-Jacobi quadrature in (0, η1)) is that only one

set of weights and nodes can be used to discretize the infinite states Y (i),
i = 0, . . . , n. Therefore, the number of states in (4.17) does not depend
on the number of fractional derivatives in (2.5). Furthermore, an explicit
FODE (2.5) leads to an explicit ODE (4.17) as approximation.

4.3. Error analysis. We restrict our analysis to the estimation of the error
resulting from the discretization of the infinite states, i.e. (4.12), (4.13).
For the truncation error E1 we estimate the infinite states Y (i) using the
solution of (4.9) in [ηK ,∞) as∣∣∣Y (i)(η, t)

∣∣∣ = ∣∣∣∣Y (i)(η, 0)e−ηt +

∫ t

0
e−η(t−τ)q(i)(τ)dτ

∣∣∣∣
≤ Ce−ηK t +

∥∥∥q(i)∥∥∥
∞

∫ t

0
e−ηK(t−τ)dτ

≤ Ce−ηK t +

∥∥q(i)∥∥∞
ηK

(4.20)

for some constant C > 0 and the uniform norm ‖·‖∞ in [0, t]. Using (4.20),
for fixed t ≥ 0 we obtain the estimation
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∣∣∣E1

(
Y (i)(·, t)

)∣∣∣ ≤
(
Ce−ηK t +

∥∥q(i)∥∥∞
ηK

)∫ ∞

ηK

K(αi, ω)dω

≤
(
Ce−ηK t +

∥∥q(i)∥∥∞
ηK

)
sin(αiπ)

π

∫ ∞

ηK

ωαi−2dω

≤
(
Ce−ηK t +

∥∥q(i)∥∥∞
ηK

)
sin(αiπ)

π

ηαi−1
K

1− αi
= O

(
ηαi−2
K

)
,

(4.21)

which shows an algebraic decay of the truncation error for growing ηK .
Furthermore, because of the exponential term in (4.21), we expect larger
contributions of this term to the total error for time instants t � 1

ηK
.

To estimate the quadrature error, we decompose

E2

(
Y (i)(·, t)

)
=

K−1∑
k=0

E2,k

(
Y (i)(·, t)

)
(4.22)

with

E2,k

(
Y (i)(·, t)

)
=

∫ ηk+1

ηk

K(αi, ω)Y
(i)(ω, t)dω −

J∑
j=1

K(αi, ηk,j)Y
(i)
k,j (t)wk,j,

k = 0, . . . K − 1,
(4.23)

and introduce another estimation for Y (i) of the form∣∣∣Y (i)(η, t)
∣∣∣ = ∣∣∣∣Y (i)(η, 0)e−ηt +

∫ t

0
e−η(t−τ)q(i)(τ)dτ

∣∣∣∣
≤ C +

∥∥∥q(i)∥∥∥
∞

∫ t

0
dτ = C +

∥∥∥q(i)∥∥∥
∞
t,

(4.24)

for some constant C > 0 and the uniform norm ‖ · ‖∞ in [0, t]. For the
first interval, as the integrand is not differentiable at zero, we use (4.24) to
estimate for fixed t ≥ 0

∣∣∣E2,0

(
Y (i)(·, t)

)∣∣∣ ≤ sin(αiπ)

π

(
C +

∥∥∥q(i)∥∥∥
∞
t
)

×
⎛
⎝∫ η1

0

ωαi

ω2 + r2
dω +

J∑
j=1

ηαi
0,j

η20,j + r2
w0,j

⎞
⎠
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1336 M. Hinze, A. Schmidt, R.I. Leine

≤ sin(αiπ)

π

(
C +

∥∥∥q(i)∥∥∥
∞
t
) ηαi

1

r2

⎛
⎝∫ η1

0
dω +

J∑
j=1

w0,j

⎞
⎠

= 2
sin(αiπ)

π

(
C +

∥∥∥q(i)∥∥∥
∞
t
) η1+αi

1

r2
= O(η1+αi

1 ),

(4.25)

where the next-to-last equality holds as the quadrature is exact for constant
functions. The estimation (4.25) shows an algebraic decay of |E2,0| for de-
creasing η1 and the time-linear term in (4.25) leads to a larger contribution
of this term to the total error for time instants t � 1

η1
.

As the integrand is smooth in the other intervals, we can use an ap-
proximation theorem due to Jackson from [5, Chap. 4.8] similar as in [7,
Thm. 9]. As stated in [5], an l-times continuously differentiable function
f ∈ C l[a, b] may be approximated by a polynomial pJ of degree ≤ J as

|f(x)− pJ(x)| ≤ C(l)

(
b− a

J

)l ∥∥∥f (l)(x)
∥∥∥
∞

(4.26)

for a constant C(l) > 0 and the uniform norm ‖ · ‖∞ in [a, b]. As pJ can be
integrated exactly using Gauss-Legendre quadrature, we obtain∣∣∣E2,k

(
Y (i)(·, t)

)∣∣∣ ≤ ∫ ηk+1

ηk

∣∣∣K(αi, ω)Y
(i)(ω, t)− pJ(ω)

∣∣∣ dω
+

J∑
j=1

∣∣∣K(αi, ηk,j)Y
(i)
k,j (t)− pJ(ηk,j)

∣∣∣wk,j

≤ 2C(l)(ηk+1 − ηk)
l+1

∥∥∥∥ dl

d(·)l
(
K(αi, ·)Y (i)(·, t)

)∥∥∥∥
∞
J−l.

(4.27)
Thereby, the interval length

ηk+1 − ηk =

((
ηK
η1

) 1
K−1

− 1

)
ηk (4.28)

can be adjusted by the parameter K. The estimation (4.27) shows a rapid
decay of the error for growing J but fixed K, η1, ηK . However, if the ratio
ηK
η1

is increased, the parameter K has to be chosen large enough to bound

the interval lengths (4.28) for large values of k.

Remark 4.3. To obtain small errors in (4.25), (4.27), the infinite

states Y (i)(η, t), i = 0, . . . , n have to be sufficiently smooth with respect
to the first argument for η ∈ (0,∞). This requirement restricts the set of

admissible initial functions. For t0 > −∞ there is no limitation as q
(i)
0 ,
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i = 0, . . . , n are bounded on [t0, 0] and hence

|Y (i)(η, 0)| ≤ sup
t∈[t0,0]

|q(i)(t)|
∫ 0

t0

eητdτ = sup
t∈[t0,0]

|q(i)(t)|1 − eηt0

η
, (4.29)

which is finite even for η → 0. In the case t0 = −∞ not every conceivable
initial function leads to continuous infinite states. One example is a con-

stant past q0 ≡ C, q
(i+1)
0 ≡ 0, i = 0, . . . , n−1, which leads to Y (0)(η, 0) = C

η ,

which has a strong singularity in η = 0 such that Gauss-Legendre quadra-
ture of

∫∞
0 K(α, ω)Y (0)(ω, 0)dω fails.

In summary, we obtain the total error resulting from the discretization
of the infinite states by the estimations (4.21), (4.25) and (4.27) which can
be controlled by the quadrature parameters ηK , η1 and J, K, respectively.
The total error of the reformulated infinite state scheme results from the
combined error of the infinite state discretization and the time-stepping
method. The latter depends on the ODE solver used, which can be chosen
independently from the infinite state discretization. The combined error is
not in the scope of this paper.

5. Benchmark problems

In this section, we consider a number of benchmark problems, mainly
of the form (2.5) equipped with initial functions. Most of the problems are
inspired by those from [37, 38] sometimes with adapted initial conditions
as the original problems do not fit the initial function approach or the fact
mentioned in Rem. 4.3 leads to modification of the problems. In all the
numerical examples we apply the reformulation (4.16) and choose K = 25
and J = 10 as parameters of quadrature, where ηk, k = 1, . . . ,K are
logarithmically spaced in [10−5, 105], i.e.

η1 = 10−5, ηK = 105, ηk = η1

(
ηK
η1

) k−1
K−1

, k = 2, . . . ,K. (5.1)

We state the resulting ODE and solve it using MATLAB’s solver ode15s.m
(absolute and relative tolerance at 10−8), which uses certain backward dif-
ferentiation formulas [31]. We compare the results to those of other methods
mentioned in Sect. 3.

Benchmark Problem 1. We consider the simple one-term fractional
differential equation with zero initial function given by{

CDα
−∞+q(t) = 1− q(t),

q(t) = 0, t ≤ 0
(5.2)
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with the closed form solution q(t) = 1−Eα(−tα) (Fig. 2), where Eα is the
one-parameter Mittag-Leffler function.

10−510−410−310−210−1 100 101 102 103 104 105

0

0.2

0.4

0.6

0.8

1

t

q

α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

Figure 2. Benchm. 1: Analytical solution of (5.2) for var-
ious values of α.

10−510−410−310−210−1 100 101 102 103 104 105

10−13

10−10

10−7

10−4

t

Δ(0)

α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

Figure 3. Benchm. 1: Absolute error of the numerical so-
lution of (5.2) using RISS for various values of α.
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10−10 10−7 10−4 10−1 102 105 108

0

0.2

0.4
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0.8

1

t

q

α = 0.1

Figure 4. Benchm. 1: Analytical solution (yellow) and nu-
merical solution using RISS (blue) and a scaled version of
RISS (orange) with correct approximation of the asymptotic
behavior of the solution for α = 0.1.

Using (4.17), this problem may be approximated as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
sin
(απ

2

)
rα−1q̇(t)−

K−1∑
k=0

J∑
j=1

K(α, ηk,j)Ẏ
(1)
k,j (t)wk,j

= 1−
(
1 + cos

(απ
2

)
rα
)
q(t) + r2

K−1∑
k=0

J∑
j=1

K(α, ηk,j)Y
(0)
k,j (t)wk,j

(5.3)
together with (4.18) and zero initial conditions in all states. The solution
of (5.3) can be compared to the closed form solution of (5.2) for which
the Mittag-Leffler function can be computed with the help of [13]. The
absolute errors

Δ(0)(t) = |q(t)− q̃(t)| (5.4)

between the exact solution q(t) and its numerical approximation q̃(t) are
shown in Fig. 3 for many time scales. The results are generally good but
show increasing static errors for small values of α for very small and very
large time scales, i.e. the method leads to a wrong approximation of the
asymptotic behavior of the solution. This phenomenon is in agreement with
the estimations (4.21) and (4.25), which reveal increasing errors for small
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and large t, respectively. In Fig. 4, we compare the solution of (5.3) for
α = 0.1 to a scaled version of it, where the last term in (5.3) is multiplied
by a factor

cos
(
απ
2

)
rα

r2
∑K−1

k=0

∑J
j=1K(α, ηk,j)

1
ηk,j

wk,j

,

such that the asymptotic behavior of the solution is correctly estimated.
Unfortunately, the scaling leads to a larger error for smaller time scales and
does not improve the approximation. We conclude, that RISS provides a
good approximation of the solution of (5.2) only in a certain time interval.
However, this interval can be extended by decreasing η1 and increasing ηK
together with an appropriate choice of J and K as explained in Sect. 4.3.

Furthermore, for t ∈ (0, 100) we compare the results of RISS, ISS (ap-
plied to the fractional integral equation equivalent to (5.2)) and PC in
Fig. 5. Thereby, we choose J = 20 for ISS such that the dimensions of
the approximating ODEs in RISS and ISS are equal and we use a fixed
step size h = 5 · 10−4 for PC as this choice leads to a similar computation
time as for RISS with the parameters specified above. Fig. 5 shows a good
performance of RISS for all chosen values of α while ISS works well only
for large α ∈ (0, 1) and large time scales. The main reason for that seems
to be the truncation error for ISS, which can be approximated similar as
in (4.21), by∣∣∣∣∣

∫ ∞

ηK

μα(ω)Z(ω, t)dω

∣∣∣∣∣
≤ C

∫ ∞

ηK

μα(ω)e
−ωtdω + ‖1− q‖∞

∫ ∞

ηK

μα(ω)

ω
dω

≤ C
tα−1

Γ(α)
+ ‖1− q‖∞

sin(απ)

απ
η−α
K

(5.5)

for some constant C > 0 and the uniform norm ‖ · ‖∞ in [0, t] while the
quadrature error for ISS can be estimated similar to (4.27). The error term
in (5.5) has a large influence for small time scales, especially for α → 0
and is of lower order in ηK than the error in (4.21). In [1], such large
errors can be avoided by splitting a local part of the fractional integral
(2.3) before introducing the infinite state representation. The local part is
then treated by an approximation method for Volterra integrals. For PC,
we notice the improvement of the convergence behavior with increasing
values of α corresponding to (3.7). Especially for large t, the absolute
errors become smaller than for RISS. However, the computational costs for
the used implementation of PC [12] behave like O (n · log(n)2) with n = T

h
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while RISS seems to work much more efficient. To see this, we present the
relation between computation time and the mean absolute error Δ̄(0) for
the three methods in Fig. 6. Therefore, we have increased the number J of
quadrature nodes for fixed parameters K = 25, η1 = 10−5 and ηK = 105 for
RISS (J = 1, 2, 3, . . . , 10) and ISS (J̃ = 2J) such that the dimensions of the

resulting ODEs for RISS (2KJ+1) and ISS (KJ̃+1) are equal and we have

decreased the time step h for PC as h = 10−
J
4 . For ISS, we obtain almost no

reduction of the mean error for growing J . Apparently, the truncation error
(5.5) is larger in magnitude than the quadrature error, which is reduced by
increasing J . For RISS, we observe a steep decay of the mean error until
J = 7. For larger values of J , the mean error remains almost the same
as the error terms in (4.21) and (4.25) seem to predominate. For PC, we
observe a slow decay of the error with increasing computation time such
that RISS works more efficiently in the example given.

Remark 5.1. A slight change of (5.2) leads to an FODE with a non-
zero constant initial function

{
CDα

−∞+q(t) = −q(t),

q(t) = 1, t ≤ 0
(5.6)

with the closed form solution q(t) = Eα(−tα). As q̇(t) = 0 for t < 0, the
fractional differential operator in (5.6) can as well be initialized at zero
which leads to a classical non-zero initial condition q(0) = 1. As explained
in Rem. 4.3, RISS is not suitable for such a problem, especially for α → 0
(Fig. 7). However, with the objective of modeling real systems, an infinite
non-zero history seems inappropriate.

Benchmark Problem 2. Another one-term fractional differential
equation with zero initial function adapted from [38] has the form

{
CD0.7

−∞+q(t) = f(t),

q(t) = 0, t ≤ 0
(5.7)

with a piecewise defined right-hand side

f(t) =

{
1

Γ(1.3) t
0.3, 0 ≤ t ≤ 1,

1
Γ(1.3) t

0.3 − 2
Γ(2.3)(t− 1)1.3, t > 1.

(5.8)
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Figure 5. Benchm. 1: Absolute error of the numerical so-
lution of (5.2) using RISS (blue), ISS (red) and PC (green)
for various values of α.
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Figure 6. Benchm. 1: Work-precision diagram for RISS
(blue), ISS (red) and PC (green) for α = 0.5.
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Figure 7. Benchm. 1: Absolute error of the numerical so-
lution of (5.6) using RISS for various values of α.
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The analytical solution of (5.7) is given by

q(t) =

{
t, 0 ≤ t ≤ 1,
t− (t− 1)2, t > 1

(5.9)

in the interval (0, 2). The approximation of (5.7) using (4.17) has the form⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
sin

(
7π

20

)
r−0.3q̇(t)−

K−1∑
k=0

J∑
j=1

K(0.7, ηk,j)Ẏ
(1)
k,j (t)wk,j

= f(t)− cos

(
7π

20

)
r0.7q(t) + r2

K−1∑
k=0

J∑
j=1

K(0.7, ηk,j)Y
(0)
k,j (t)wk,j.

(5.10)
Again, the absolute errors using RISS, ISS and PC (h = 5 ·10−5) have been
computed and the results may be found in Fig. 8. The step size for PC was
again chosen such that the computation time of PC and RISS are similar.
As in Benchm. 1, the best results can be obtained using RISS.

0 0.5 1 1.5 2
10−8

10−7

10−6

10−5

10−4

t

Δ(0)

Figure 8. Benchm. 2: Absolute error of the numerical so-
lution of (5.7) using RISS (blue), ISS (red) and PC (green).

Benchmark Problem 3. We consider a third-order FODE adapted
from the second problem in [38] of the form⎧⎨

⎩
...
q (t) +CD0.5

−∞+q̈(t) + q̈(t) + 4q̇(t) +CD0.5
−∞+q(t) + 4q(t) = 6 cos(t),

q(t) =
√
2 sin

(
t+

π

4

)
, t ≤ 0,

(5.11)

which has the closed form solution q(t) =
√
2 sin(t + π

4 ) for t > 0. For

the reformulation of (5.11) we have to introduce the infinite states Y (i),
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i = 0, . . . , 3 that fulfill (4.9). We apply (4.16) in (5.11) and obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 +

1√
2r

)
...
q (t)−

K−1∑
k=0

J∑
j=1

K(0.5, ηk,j)Ẏ
(3)
k,j (t)wk,j

+

(
1 +

√
2r

2

)
q̈(t)− r2

K−1∑
k=0

J∑
j=1

K(0.5, ηk,j)Y
(2)
k,j (t)wk,j

+

(
4 +

1√
2r

)
q̇(t)−

K−1∑
k=0

J∑
j=1

K(0.5, ηk,j)Ẏ
(1)
k,j (t)wk,j

+

(
4 +

√
2r

2

)
q(t)− r2

K−1∑
k=0

J∑
j=1

K(0.5, ηk,j)Y
(0)
k,j (t)wk,j

= 6cos(t).

(5.12)

The initial function in (5.11) may be transferred to the initial values

Y (0)(η, 0) =

∫ 0

−∞
eητ q(τ)dτ =

η − 1

1 + η2
, (5.13)

Y (1)(η, 0) =

∫ 0

−∞
eητ q̇(τ)dτ =

η + 1

1 + η2
, (5.14)

Y (2)(η, 0) =

∫ 0

−∞
eητ q̈(τ)dτ = − η − 1

1 + η2
, (5.15)

Y (3)(η, 0) =

∫ 0

−∞
eητ

...
q (τ)dτ = − η + 1

1 + η2
(5.16)

of the infinite states. In Fig. 9 we show the absolute error

Δ(2)(t) = |q(t)− q̃(t)|+ |q̇(t)− ˙̃q(t)|+ |q̈(t)− ¨̃q(t)| (5.17)

for t ∈ (0, 1000) which has a maximal value Δ
(2)
max ≈ 10−6. Furthermore, we

compare the results of RISS and PC (h = 10−4) on the interval t ∈ (0, 100).
Apparently, RISS works slightly better than PC in this example while the
computation time for PC is by a factor 3 higher than for RISS.
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0 200 400 600 800 1,000
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10−6

10−5

10−4

t

Δ(2)

Figure 9. Benchm. 3: Absolute error of the numerical so-
lution of (5.11) using RISS (blue) for t ∈ (0, 1000) (left),
t ∈ (0, 100) (right) and PC for t ∈ (0, 100) (green).

Benchmark Problem 4. The nonlinear explicit FODE{
CD

√
2−1

−∞+ q̇(t) = 2
√
2−0.5e−2tq(t)CD0.5

−∞+q(t) + 4e4t − q̇2(t)

q(t) = e2t, t ≤ 0
(5.18)

with closed form solution q(t) = e2t is adapted from the third problem in
[38]. The associated ODE of the form (4.17) and the initial conditions of
the infinite states can be derived as for the previous examples. For brevity,
we only present the relative error

Δ(1)
r (t) =

∣∣∣∣q(t)− q̃(t)

q(t)

∣∣∣∣+
∣∣∣∣ q̇(t)− ˙̃q(t)

q̇(t)

∣∣∣∣ (5.19)

using RISS in Fig. 10 (left).

Benchmark Problem 5. The nonlinear implicit FODE{
CD0.2

−∞+q(t)
CD0.8

−∞+q̇(t) +
CD0.3

−∞+q(t)
CD0.7

−∞+q̇(t) = 8e4t

q(t) = e2t, t ≤ 0
(5.20)

similar to the fourth problem in [38] with closed form solution q(t) = e2t

is not of the form (2.5). Nevertheless, we can introduce our reformulation
(4.8), which leads to an implicit ODE that we can solve using MATLAB’s
ode15i.m. We present the relative error (5.19) in Fig. 10 (right).
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0 0.5 1 1.5 2

10−8
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t

Δ
(1)
r

0 1 2 3

10−8

10−7

t

Δ
(1)
r

Figure 10. Benchm. 4 and 5: Relative error of the numer-
ical solution of (5.18) (left) and (5.20) (right) using RISS.

6. Conclusion

The proposed numerical method for the simulation of fractional ordi-
nary differential equations is based on the infinite state representation of
fractional derivatives and uses a reformulation which leads to an integrable
kernel K(α, η), that is defined for α ∈ (0, 1) and η ≥ 0 and does not have
a weak singularity at η = 0. Therefore, we can approximate the occurring
infinite state integrals all by the same quadrature of Gauss-Legendre type
with reasonable errors that can be controlled by the quadrature parameters.
This procedure transforms general FODEs to ODEs that can be solved by
an ODE solver suitable for stiff ODEs. One advantage of the approach is
the consideration of initial functions to correctly initialize fractional deriva-
tives and its translation to initial values of the infinite states.

In comparison to a standard infinite state scheme (ISS, see Sect. 3.2)
without reformulation, we obtain better results with our scheme for several
benchmark problems, as the truncation error appears to decay much faster
(compare (4.21) and (5.5)). The classical predictor-corrector scheme to
solve fractional differential equations leads to similar results regarding the
error as the reformulated infinite state scheme. However, especially for
long-time simulation the computation time is much higher (see Fig. 6). Our
method is applicable to a wide class of FODEs, i.e. even for nonlinear or
fully implicit problems containing several fractional (even irrational-order)
or integer-order operators. Moreover, the proposed scheme can be applied
to problems containing variable-order fractional derivatives which leads to
an explicitly time-dependent approximating ODE.
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plications. Hermès, Paris (1995).

[26] K. D. Papoulia, V. P. Panoskaltsis, N. V. Kurup and I. Korova-
jchuk, Rheological representation of fractional order viscoelastic ma-
terial models. Rheologica Acta 49 (2010), 381–400.

[27] I. Podlubny, Fractional Differential Equations. Ser. Mathematics in
Science and Engineering Vol. 198, Academic Press, San Diego (1999).

[28] H. Schiessel and A. Blumen, Hierarchical analogues to fractional relax-
ation equations. J. of Phys. A: Mathematical and General 26 (1993),
5057–5069.

[29] A. Schmidt and L. Gaul, On a critique of a numerical scheme for
the calculation of fractionally damped dynamical systems. Mechanics
Research Commun. 33 (2006), 99–107.

[30] A. Schmidt and L. Gaul, Finite element formulation of viscoelastic
constitutive equations using fractional time derivatives. Nonlinear Dy-
namics 29 (2002), 37–55.

Auth
or'

s c
op

y



1350 M. Hinze, A. Schmidt, R.I. Leine

[31] L. Shampine and M. Reichelt, The MATLAB ODE Suite. SIAM J. on
Sci. Computing 18 (1997), 1–22.

[32] S. J. Singh and A. Chatterjee, Galerkin projections and finite elements
for fractional order derivatives. Nonlinear Dynamics 45 (2006), 183–
206.

[33] J.-C. Trigeassou, N. Maamri, J. Sabatier and A. Oustaloup, State vari-
ables and transients of fractional order differential systems. Computers
and Math. with Appl. 64 (2012), 3117–3140 (SI: Advances in FDE, III).

[34] J.-C. Trigeassou, N. Maamri, J. Sabatier and A. Oustaloup, A Lya-
punov approach to the stability of fractional differential equations. Sig-
nal Processing 91 (2011), 437–445.

[35] J.-C. Trigeassou, N. Maamri, J. Sabatier and A. Oustaloup, Transients
of fractional-order integrator and derivatives. Signal, Image and Video
Processing 6 (2012), 359–372.

[36] Y. Wei, P. W. Tse, B. Du and Y. Wang, An innovative fixed-pole
numerical approximation for fractional order systems. ISA Trans. 62
(2016), 94–102 (SI: Control of Renewable Energy Systems).

[37] D. Xue, Fractional-order Control Systems - Fundamentals and Numer-
ical Implementations. Ser. Fractional Calculus in Applied Sciences and
Engineering, De Gruyter, Berlin (2017).

[38] D. Xue and L. Bai, Benchmark problems for Caputo fractional-order
ordinary differential equations. Fract. Calc. Appl. Anal. 20, No 5
(2017), 1305–1312; DOI: 10.1515/fca-2017-0068;
https://www.degruyter.com/view/j/fca.2017.20.issue-5/

issue-files/fca.2017.20.issue-5.xml.
[39] L. Yuan and O. P. Agrawal, A numerical scheme for dynamic systems

containing fractional derivatives. J. of Vibration and Acoustics 124
(2002), 321–324.

1 Institute for Nonlinear Mechanics
University of Stuttgart
Pfaffenwaldring 9, 70569 Stuttgart, GERMANY

e-mail: hinze@inm.uni-stuttgart.de Received: May 6, 2019
schmidt@inm.uni-stuttgart.de
leine@inm.uni-stuttgart.de

Please cite to this paper as published in:

Fract. Calc. Appl. Anal., Vol. 22, No 5 (2019), pp. 1321–1350,
DOI: 10.1515/fca-2019-0070; at https://www.degruyter.com/view/j/fca.

Auth
or'

s c
op

y

https://www.degruyter.com/view/j/fca.2017.20.issue-5/issue-files/fca.2017.20.issue-5.xml
https://www.degruyter.com/view/j/fca

	1. Introduction
	2. Fractional derivatives and fractional-order ordinary differential equations
	3. Two kinds of numerical schemes for FODEs
	3.1. Predictor-Corrector-Scheme
	3.2. Infinite state based methods

	4. Reformulated infinite state scheme
	4.1. Reformulation of the infinite state representation
	4.2. Derivation of the numerical scheme
	4.3. Error analysis

	5. Benchmark problems
	6. Conclusion
	Acknowledgements
	References



