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Abstract Many technical applications, such as brakes
and metal forming processes, are affected by aniso-
tropic frictional behavior, where the magnitude and the
direction of the friction force are dependent on the slid-
ing direction. Existing dry friction laws do not suf-
ficiently describe all relevant macroscopic aspects of
anisotropic friction, and the influence on the dynamics
of mechanical systems is largely unknown. Further-
more, previous experimental work on anisotropic fric-
tion is limited and the fact that the friction force is not
always acting parallel to the sliding direction is often
neglected. In this paper, an anisotropic dry friction law
with the capability to describe the nonsmooth behav-
ior of stick and slip and allowing for non-convex but
star-shaped sets of admissible friction forces is formu-
lated using tools from convex analysis. The formula-
tion of the friction law as normal cone inclusion enables
the direct implementation in numerical time-stepping
schemes. The stability of systemswith anisotropic fric-
tion is studied and an eigenvalue analysis reveals that
the anisotropic friction law is in theory capable of caus-
ing anisotropic friction-induced instability. In addition,
experimental setups for detailed investigations of the
frictional behavior are described. The measurements
reveal complex shaped force reservoirs and confirm the
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validity of the presented friction law. Finally, it is shown
that the presented friction law leads to a more accu-
rate prediction of the motion of nonsmooth mechanical
systems.
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1 Introduction

In this work, a set-valued anisotropic dry friction law
that enables the use of non-convex friction force reser-
voirs and allows for an accurate representation of the
behavior of stick and slip is formulated in the frame-
work of convex analysis. In addition, experiments are
performed to verify the friction law and anisotropic
friction is identified as a possible cause of friction-
induced instability.

While friction is indispensable in many everyday
situations and technical applications such as screws,
braking systems, clutches and driving wheels, it often
causes unwanted effects in engineering and a large
amount of effort is put into the control and reduction
of friction forces. The most basic laws of friction in
use today are commonly attributed to Amontons and
Coulomb (see [1] and [2]) and read as:

– The friction force is directly proportional to the nor-
mal load.

– The friction force does not depend on the apparent
area of contact.
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– The friction force is independent of the magnitude
of the velocity once motion starts.

The work of tribologists has been focused on extend-
ing the friction laws to address different aspects of fric-
tion especially on the microscale [3]. For many appli-
cations, only the macroscopic aspect of friction is of
interest, and the laws of Amontons and Coulomb ade-
quately describe the frictional behavior, which is why
they are frequently implemented in multibody simula-
tions. To facilitate a numerical treatment, often regular-
ized friction laws are applied [4]. These regularizations
are based on smooth approximations of the discon-
tinuous behavior of the friction force at the transition
from slip to stick. Commonly, arctangent functions are
used to describe the friction force as a smooth single-
valued function of the sliding velocity. The system is
then described by an ordinary differential equation and
standard integration techniques can be applied. How-
ever, regularized friction laws lead to stiff differential
equations that cause numerical difficulties and lack the
ability to properly describe stiction since even for small
nonzero external forces motion is initiated. This moti-
vates the use of set-valued force laws [5] that allow the
friction force to take a range of values at zero sliding
velocity. The nonsmooth transition from slip to stick
involves a discontinuity in the time evolution of the
friction force,while the state of the system remains con-
tinuous. Such a behavior can be described by extending
the differential equation to a differential inclusion with
set-valued right-hand side [6]. The framework of this
formulation is given by convex and nonsmooth anal-
ysis (see [7–10]). Systems with unilateral contact and
frictional impacts can be formulated as measure differ-
ential inclusions [11,12]. This formulation gives rise to
a numerical discretisation known as the time-stepping
method [12–14].

Typically, isotropic frictional properties are assu-
med, in the sense that the magnitude and direction of
the friction force are independent of the sliding direc-
tion and the location of the contact point on a surface.
In reality, the frictional properties ofmany surfaces sig-
nificantly vary along different directions of a surface.
This anisotropic frictional behavior can be induced by
the crystal structure of a material, occurs on the sur-
face of biological, composite or textile materials and
may result from machining or finishing of a surface
[15]. In engineering, knowledge of anisotropic friction
is essential since the majority of engineering surfaces

has such properties. Machined surfaces, created, e.g.,
by cutting, milling or grinding, have a distinct surface
pattern which determines frictional behavior [16]. In
sheet metal forming, the rolling direction of the mate-
rial has an influence on the friction forces between the
workpiece and the tool which in turn influences the
deformation of the workpiece and the surface finish
of the product [17,18]. Early experiments specifically
performed to study directional effects of friction on
metallic surfaces have been carried out by Rabinow-
icz [19] and Halaunbrenner [20]. Their results indi-
cate that the magnitude of the friction force is depen-
dent on the direction of sliding and the friction force
is not always acting parallel to the sliding direction.
This is confirmed by the experiments in [21] and [22],
where anisotropy results fromamacroscopic periodical
waviness of the surface. Knowledge of both the magni-
tude of the friction force and the relationship between
the sliding direction and the direction of the friction
force is crucial for accurate simulations of systemswith
anisotropic dry friction.

Different approaches on themodeling of anisotropic
dry friction exist. In [23] sliders with wheels or skates
are used to model anisotropic frictional behavior. In
contrast, in [24] and [25], the microstructure of the
contact surface is modeled with unidirectional wedge-
shaped asperities, which on the macroscopic scale
leads to friction laws similar to laws in plasticity the-
ory. The resulting sets of all friction forces are not
necessarily convex, but for convex shapes a bipo-
tential [26] can be applied for finite element com-
putations of systems with anisotropic friction [27].
Furthermore, tensor formulations of anisotropic fric-
tion laws exist (see [28] and [29]) and the concept
of normal cone inclusions has been applied, e.g., for
the simulation of a snake robot [30] and a bobsleigh
[31].

Another important aspect of mechanical systems
with friction is the possible occurrence of friction-
induced instabilities. The squealing of automotive
braking systems is one of themost prominent examples
demonstrating the loss of stability of a steady sliding
motion.Many other examples can be found in technical
applications,where the loss of stability often occurs due
to friction-induced Hopf bifurcations. Despite the fact
thatmany researchers have extensively studied the field
of friction-induced vibrations, the underlying mech-
anisms are still not fully understood. Especially, the
influence of anisotropic friction on the stability of slid-
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ing motion has not been studied yet. In [32] a historical
review of the stick-slip phenomenon is given. In addi-
tion to stick-slip, in [33] possible mechanisms leading
to chatter are described. The effects of sprag-slip and
mode-coupling are described, e.g., in [34] and [35],
respectively. The surveys [36–39] review the classical
frictionmodels used to represent the frictional behavior
in braking systems. Furthermore, in [40], an in-depth
study of the stability of systems with friction and brake
squeal in particular is given.

From the existing literature in the field of anisotropic
dry friction, several unsolved problems can be identi-
fied:

– No existing dry friction law sufficiently describes
all relevantmacroscopic aspects of anisotropic fric-
tional behavior and is formulated such that it allows
for an implementation in numerical time-stepping
schemes.

– The influence of anisotropic friction on the stability
of equilibria of mechanical systems is unknown.

– Previous experimental work on anisotropic friction
is insufficient.

A fundamental criterion of a meaningful dry fric-
tion law is the accurate description of the constitutive
behavior of stick and slip, which requires a set-valued
formulation. Friction laws given in the form of normal
cone inclusions are capable of describing this behav-
ior. However, they are based on the assumptions that
the set of all admissible friction forces is convex and
the sliding direction is defined by normality to that
set. Those assumptions do not necessarily hold for real
anisotropic frictional behavior. Most of the existing tri-
bometers and other experimental setups used for the
measurement of friction forces only record the com-
ponent of the friction force directly opposing the slid-
ing direction. Anisotropic friction forces, however, are
generally not collinear to the sliding direction. Infor-
mation on the force component acting orthogonal to
the direction of sliding is therefore often lost. To vali-
date anisotropic friction laws, accurate measurement
results of the magnitude and direction of the fric-
tion as a function of the sliding direction are neces-
sary.

In this paper, the properties of systemswith anisotro-
pic dry friction are analyzed analytically as well as
experimentally. The paper provides the reader with the
mathematical background necessary for the formula-
tion of anisotropic friction laws in the framework of

convex analysis and for the numerical simulation with
time-stepping methods. Specifically, the aims of this
work are:

– To formulate a highly general force law that enables
the description of a large class of anisotropic dry
friction models and that can be implemented in
existing numerical algorithms,

– To classify different isotropic friction-induced
instability phenomena according to their underly-
ing mechanisms and to analyze the possibility of
anisotropic friction being the cause of self-excited
vibrations,

– To experimentally analyze the effects of anisotropic
friction both qualitatively and quantitatively.

Throughout this work, in the sense of Amontons, the
friction force is assumed to be proportional to the nor-
mal load and independent of the apparent area of con-
tact. The scope of this work is the contact between
uniform surfaces, i.e., anisotropy due to different fric-
tion properties at different locations of a surface is not
considered. Furthermore, only the macroscopic behav-
ior of mechanical systems is of interest. Microscopic
effects and wear at the contact points are neglected.

Section 2 provides the mathematical preliminaries
that are needed in the remainder of this work and
the equation of motion of a system with contacts is
introduced. Anisotropic friction laws are discussed in
Sect. 3. First, associated friction laws that are based
on normality of the sliding direction to a convex force
reservoir are analyzed. After showing that different
frictionmodels lead to force laws in which normality to
the force reservoir is no longer given and the force reser-
voir is not necessarily convex, an extended normal cone
inclusion friction law is formulated. Section 4 is con-
cerned with friction-induced instability mechanisms.
Two experimental setups are presented in Sect. 5, and
experimental results for different contact partners are
shown.

2 Nonsmooth dynamics

This section gives a brief introduction to the dynam-
ics of nonsmooth mechanical systems [5,13,41,42].
The nonsmooth nature of systems with unilateral con-
tact or dry friction can be expressed in the frame-
work of convex analysis by means of set-valued force
laws.
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2.1 Elements from convex analysis

Comprehensive treatises of the topic are given by [7]
and [8]. We consider a subset C of R

p and denote its
boundary and interior, bdryC and intC , respectively.

Definition 1 (Convex Set) A set C ⊆ R
p is called

convex if for every pair of points x ∈ C and y ∈ C
also (1 − s)x + s y ∈ C for all s ∈ (0, 1). In addition,
it is strictly convex if (1 − s)x + s y ∈ intC for all
s ∈ (0, 1).

A special case of possibly non-convex sets are star-
shaped sets.

Definition 2 (Star-Shaped Set) A setC ⊆ R
p is called

star-shapedwith respect to the origin if for every x ∈ C
also sx ∈ C for all s ∈ [0, 1). In addition, it is called
strictly star-shaped if sx ∈ intC for all s ∈ [0, 1).
Figure 1 shows examples of different sets.

A function f : R
p → R ∪ {∞} is called convex

if its epigraph epi( f (x)) = {(x, z) ∈ R
p × R | z ≥

f (x), x ∈ R
p} is a convex subset of R

p+1. For a con-
vex but possibly non-differentiable function having the
additional properties of being lower semi-continuous
and proper [7], the subdifferential is defined as

∂ f (x) = {
y | f (x∗) ≥ f (x) + yT(x∗ − x), ∀x∗ ∈ R

p}.

(1)

The subdifferential is a set-valued function, ∂ f (x) :
R

p ⇒ R
p. An example is given by the set-valued Sign

function being defined by

Sign(x) = ∂|x | =

⎧
⎪⎨

⎪⎩

−1 for x < 0,

[−1, 1] for x = 0,

1 for x > 0.

(2)

Definition 3 (Gauge Function) Let C ⊆ R
p be

closed and star-shaped with respect to the origin.
The gauge function of C is defined as kC (x) =
inf {s > 0 | x ∈ sC }.

It follows that the set C in Definition 3 is given as
level set of the gauge function, i.e., C = {x ∈ R

p |
kC (x) ≤ 1}. Gauge functions are defined for star-
shaped sets and are nonnegative and positively homo-
geneous functions of degree one [43] as illustrated in
Fig. 2a.

Definition 4 (Indicator Function) The indicator func-
tion of the set C is defined as

ΨC (x) =
{
0 for x ∈ C ,

+∞ for x /∈ C .
(3)

The gauge as well as the indicator function of a set C
are convex if and only if the set C is convex.

The convex conjugate f ∗ of a convex function f is
defined as

f ∗(x∗) = sup
x

{
xTx∗ − f (x)

}
. (4)

Fig. 1 a Convex set, b
star-shaped and c not
star-shaped set

(a) (b) (c)

Fig. 2 a Gauge function
kC and level set C , b
convex set C with normal
cone, proximal point and
tangent cone

(a) (b)
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For proper, lower semi-continuous and convex func-
tions, it holds that the Fenchel equality

xTx∗ = f (x) + f ∗(x∗) ⇐⇒ x∗ ∈ ∂ f (x)

⇐⇒ x ∈ ∂ f (x∗) (5)

is fulfilled. Of particular importance is the convex con-
jugate of the indicator function, which is called support
function.

Definition 5 (Support Function) Let C ⊆ R
p be

closed and convex. The support function of C is given
as

Ψ ∗
C (x∗) = sup

x

{
xTx∗ | x ∈ C

}
. (6)

In thiswork, normal cone inclusions are of special inter-
est since they allow for the formulation of set-valued
force laws.

Definition 6 (Normal Cone) Let C ⊆ R
p be closed,

nonempty and convex and let x ∈ C . The set of all
vectors y ∈ R

p which do not make an acute angle with
any vector x− x∗ for all x∗ ∈ C form the normal cone
of C in x,

NC (x) = {
y | yT(x∗ − x) ≤ 0, x ∈ C , ∀x∗ ∈ C

}
.

(7)

For x /∈ C , it holds that NC (x) = ∅. The subdif-
ferential of the indicator function yields exactly the
definition of the normal cone, i.e.,

∂ΨC (x) = NC (x). (8)

For a nonsingular linear mapping A ∈ R
p×p, the trans-

formation property

y ∈ NC (x) ⇐⇒ AT y ∈ NA−1C (A−1x) (9)

follows from the chain rule of convex analysis [41,44].
The transformed set A−1C consists of all the vectors
z with Az ∈ C .

In addition to the normal cone, the tangent cone [45]
and proximal point function can be defined as follows.

Definition 7 (Tangent Cone) Let C ⊆ R
p be closed

and let x ∈ C . The tangent cone of C in x is defined
as

TC (x)={ y | ∀tk ↓ 0, xk → x with xk ∈ C ,

∃ yk → y with xk+tk yk ∈ C }.
(10)

Definition 8 (Proximal Point Function) Let C ⊆ R
p

be closed, nonempty and convex. The proximal point
function proxC (z) determines the closest point to z in
C ,

proxC (z) = argmin
x∗∈C

‖z − x∗‖, z ∈ R
p. (11)

The notation proxC (z) has been used here to denote a
projection on a closed convex set, see [12], and has not
to be confused with the proximal operator associated
with a convex function. Normal cone inclusions can
be rewritten as implicit equations using proximal point
functions. It holds that

y ∈ NC (x) ⇐⇒ x = proxC (x + r y), r > 0.
(12)

In Fig. 2b, normal and tangent cones as well as the
relationship between the normal cone and the proximal
point function are illustrated for a two-dimensional set.

The proximal point function x = proxC (z) yields
x = z if z ∈ C . For a point z /∈ C , the proximal point
function results in a projection of z on the boundary of
the set C . For convex sets having a smooth boundary,
i.e., the gradient of the gauge function kC (x) exists for
all x �= 0, it holds that

x=proxC (z) ⇐⇒ x + β∇kC (x)= z, with β > 0.

(13)

In addition, the condition kC (x) = 1 must be fulfilled
since the projected point x has to be on the boundary
of C . This set of equations allows for the calculation
of the closest point to z in C .

2.2 Equation of motion

The dynamics of a time-autonomous mechanical sys-
tem with n degrees of freedom and no frictional uni-
lateral constraints can be described by the equation of
motion

M(q)q̈ − h(q, q̇) = 0, (14)

where q = q(t) ∈ R
n denotes the time dependent set of

generalized coordinates, M ∈ R
n×n is the symmetric
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and positive definitemassmatrix and the vector h ∈ R
n

contains all differentiable forces and gyroscopic terms.
The restriction to time-autonomous systems is not
essential, but is made in this work for simplicity. If, in
addition, m normal and frictional contact forces act on
the system, the equation of motion can be extended as

M(q)u̇ − h(q, u) =
m∑

i=1

(wNi (q)λNi + W i (q)λi ) ,

(15)

where the generalized velocities are denoted u, and
u = q̇ holds for almost all t . The normal force at contact
point i is calledλNi ∈ R andλi ∈ R

p is the correspond-
ing friction force. The dimension p of the friction force
may vary depending on the considered system. For
instance, for planarmechanical systems the sliding fric-
tion force is scalar (p = 1). For spatial mechanical sys-
tems, the contacting bodies have a contact plane and the
sliding friction force is two-dimensional (see Sect. 3.1).
Higher dimensions are necessary if combined sliding
and drilling or rolling friction is considered [42]. The
generalized force directions of the normal and friction
force are defined by wNi ∈ R

n and W i ∈ R
n×p.

The contact forces and force directions are assem-
bled in the vectors and matrices λN , λ,WN ,W and the
equation of motion can be rewritten in the form

M(q)u̇ − h(q, u) = WN (q)λN + W(q)λ. (16)

Note that whenever sliding friction in particular is con-
sidered, i.e., without additional drilling or rolling fric-
tion, the index T is added to the friction force and gen-
eralized force direction yielding λT and WT . In this
work, motion without impacts is considered. There-
fore, the generalized coordinates q(t) as well as the
velocities u(t) are assumed to be time-continuous func-
tions. However, when a transition from slip to stick
occurs or when the direction of sliding at a contact
point is reversed, the friction force λ(t) is discontinu-
ous.At such time instants, the generalized accelerations
u̇ are not defined. Equation (16) therefore only holds
for almost all t .

2.3 Time-stepping method

The equation of motion Eq. (16) of a mechanical
system with contact points in combination with set-
valued force laws, given, e.g., in the form of normal

cone inclusions, yields a differential inclusion. Numer-
ical integration of nonsmooth systems is possible with
event-driven or time-stepping methods. In the follow-
ing, the time-stepping method developed by [12] is
briefly described.

The equation ofmotion can be replaced by the equal-
ity of measures

Mdu − hdt = WNdPN + WdP, (17)

where the dependence of the terms on q and u is omitted
for brevity. This formulation allows for the occurrence
of impacts. In this work, impacts are not considered
and the differential measures are given by du = u̇dt ,
dPN = λNdt and dP = λdt . Since the set of time
instants for which the acceleration u̇ does not exist
is Lebesgue negligible [42], the time evolution of the
velocity u is given by

u(t) = u(t0) +
∫ t

t0
du ∀t ≥ t0. (18)

InMoreau’s time-stepping scheme, the equality ofmea-
sures is approximated over small time steps Δt . The
subscripts B, M and E are used to describe values at
the beginning, midpoint and end of a time step, respec-
tively. The generalized coordinates and velocities at
the beginning of a time step, qB and uB, are known
and the coordinates at the midpoint are obtained from
qM = qB + 1

2uBΔt . Systemmatrices and vectors eval-
uated at the midpoint are denoted with a subscript M.
For closed contacts at the midpoint, the inclusion prob-
lem

MM(uE − uB) − hMΔt = WNMPN + WMP,

γ NE ∈ N
R

−
0
(−PN ), γ E ∈ NC (PN )(−P)

(19)

needs to be solved for the velocities uE at the end of
the time step, where the set-valued force laws are for-
mulated in terms of the normal and frictional contact
efforts, PN and P . Using Eq. (12), normal cone inclu-
sions can be rewritten as implicit proximal point func-
tions. This allows for an iterative solution of the contact
problem, e.g., with a modified Newton algorithm [46].
The scheme

ukE = uB + M−1
M

(
hMΔt + WNMPk

N + WMPk
)

,

(20)
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Set-valued anisotropic dry friction laws 891

Pk+1
N = − prox

R
−
0

(
−Pk

N + rNγ k
NE

)
, rN > 0,

(21)

Pk+1 = − prox
C
(
Pk+1
N

)
(
−Pk + rγ k

E

)
, r > 0

(22)

is iterated with an initial guess of the contact efforts,
until a stopping criterion is reached. The relative veloc-
ities are given as

γ k
NE = WT

NMukE and γ k
E = WT

MukE + χ . (23)

Finally, the coordinates qE at the end of the time step
can be calculated by qE = qM + 1

2uEΔt .

3 Anisotropic friction force laws

In the following, λ ∈ R
p describes the friction force

and γ ∈ R
p the relative velocity between two contact-

ing bodies. In the case of combined sliding and drilling
or rolling friction, γ contains the tangential sliding
velocity and the spin of the contacting bodies scaled to
a velocity. The normal force at the contact is supposed
to be known and is calledλN . In the sense ofAmontons,
friction forces are assumed to be directly proportional
to the normal force. The dependence of the friction
force on the normal force is not written explicitly.

Definition 9 (DryFriction Law) LetF : R
p ⇒ R

p be
an upper semi-continuous set-valued function and let
the image ofF (γ ) be a compact set for all fixed values
of γ and a star-shaped set with respect to the origin for
γ = 0 with F (0) �= {0}. A dry friction law connects
the relative sliding velocity to the friction force via

−λ ∈ F (γ ). (24)

A dry friction law is characterized by having a stick
phase, i.e., the friction force has for zero relative veloc-
ity the character of a constraint force. Hence, a dry
friction law allows for a nonzero friction force at zero
relative velocity (stick).

In the following, friction laws are considered where
no dependence on the magnitude of the sliding velocity
is assumed to exist, as stated by Coulomb. Coulomb-
type friction laws are defined based on Definition 9 of
dry friction laws.

Definition 10 (Coulomb-Type Friction Law) A dry
friction law is called Coulomb-type friction law if it
holds that

F (γ ) = F (aγ ) ∀a ∈ R
+. (25)

Hence, the magnitude of the sliding velocity has no
influence on the flow rule.

The set of all admissible friction forces C ⊂ R
p

is called force reservoir. It holds that F (γ ) ⊆ C and
−λ ∈ C . During stick, the force reservoir C and the
image of F (0) coincide, i.e., C = F (0). Since the
image of F (γ ) is compact for all γ and star-shaped
for γ = 0, the force reservoir has the same properties.
A bounded force reservoir excludes friction forces with
an infinite magnitude which would completely prevent
sliding in the corresponding direction, e.g., a one-way
clutch. Force reservoirs that are not star-shaped are not
suitable to describe the stick phase. Consider a body
under an external load being in static equilibrium such
that the negative friction force equals the external load.
If the magnitude of the external load is reduced, the
body remains in the stick phase and the magnitude
of the friction force reduces correspondingly. This is
impossible for a force reservoir that is not star-shaped
with respect to the origin as seen in Fig. 3a since friction
forces with a smaller magnitude are not always part of
the force reservoir.

During slip, the friction force is defined by the pos-
sibly set-valued flow ruleF (γ ) with γ �= 0. A funda-
mental requirement for a physicallymeaningful friction
force law is that the friction force does not create energy
in the system. Let the rate of dissipation D(−λ, γ ) be
given by

D(−λ, γ ) = −λTγ with − λ ∈ F (γ ). (26)

During stick, D(−λ, 0) = 0. IfF (γ ) is single-valued
for γ �= 0, then the rate of dissipation is solely a
function of the sliding velocity and we write D(γ ).
The same holds if the function is multi-valued if for a
fixed γ the condition −λTγ = const. is fulfilled for all
−λ ∈ F (γ ). This case is illustrated in Fig. 3b.

Definition 11 (Dissipativity of Dry Friction Law) A
dry friction law is called

(i) dissipative if

D(−λ, γ ) ≥ 0 ∀γ ∀ − λ ∈ F (γ ),
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892 S. V. Walker, R. I. Leine

Fig. 3 a Not star-shaped
and therefore nonadmissible
friction force reservoir. b
Constant rate of dissipation
for different friction forces
λ. c Range of admissible
sliding directions for a
given λ

(a) (b) (c)

(ii) strictly dissipative if

D(−λ, γ ) > 0 ∀γ �= 0 ∀ − λ ∈ F (γ ).

Figure 3c shows a graphical representation of the
admissible sliding directions for a specific friction force
for dissipative friction laws. In the following, restric-
tions on the relationship between the sliding velocity
and the friction force and on the force reservoir are
given.

Definition 12 (Associated Coulomb Friction Law) Let
the set C ⊂ R

p be nonempty, compact and convex.
A Coulomb-type friction law is called associated if
F (γ ) = ∂Ψ ∗

C (γ ), i.e.,

−λ ∈ ∂Ψ ∗
C (γ ) ⇐⇒ γ ∈ NC (−λ). (27)

The associated friction law is thus defined by normality
of the sliding velocity γ to the boundary of the force
reservoir during slip. For all friction forces in the inte-
rior of the force reservoir, the contacting bodies stick
and the relative sliding velocity is zero. This behavior
is described by the normal cone inclusion where the
sliding velocity is in the normal cone NC (γ ) to the
force reservoir C .

The inverse relation of the normal cone inclusion is
the friction force being in the subdifferential of the sup-
port function of the force reservoirΨ ∗

C (γ ). It is derived
using the Fenchel equality Eq. (5) and the fact that the
subdifferential of the indicator function of a convex set
is the normal cone to the set.

Proposition 1 (Dissipativity of Associated Coulomb
Friction Law) An associated Coulomb friction law is
dissipative. It is even strictly dissipative if 0 ∈ intC
for all γ .

Proof From the definition of the rate of dissipation
Eq. (26) and the Fenchel equality Eq. (5), it follows that

D(−λ, γ ) = −λTγ = ΨC (−λ) + Ψ ∗
C (γ ). (28)

The indicator functionΨC (−λ) vanishes since the fric-
tion force is always in the force reservoir. It follows that
the rate of dissipation is only a function of the sliding
velocity. Because the force reservoir must contain the
origin, the support function is nonnegative [42] which
gives

D(γ ) = Ψ ∗
C (γ ) ≥ 0. (29)

In addition, if 0 ∈ intC , the support function is strictly
positive, Ψ ∗

C (γ ) > 0 for all γ �= 0. ��
Next, we consider the principle of maximum dissipa-
tion introduced in [47].

Proposition 2 (Principle of Maximum Dissipation)
For a given compact and convex force reservoir C ,
the flow rule which maximizes the rate of dissipation is
the associated flow rule.

Proof Let the friction force during slip (γ �= 0) be
given by the flow rule −λ ∈ F (γ ) such that the rate
of dissipation yields

D(−λ, γ ) = −λTγ ≥ −λ∗Tγ ∀γ ∀ − λ ∈ F (γ )

(30)

for all other flow rules −λ∗ ∈ F ∗(γ ) with −λ∗ ∈ C .
Rewriting Eq. (30) results in the definition of a normal
cone (see Definition 6),

−(λ − λ∗)Tγ ≥ 0 ∀ − λ∗ ∈ C �⇒ γ ∈ NC (−λ).

(31)

Therefore, if the principle of maximum dissipation
is assumed to hold, then the associated flow rule is
obtained. ��
Definition 13 (Maximal Monotone Coulomb-Type
Friction Law) A Coulomb-type friction law is called
maximal monotone ifF (γ ) is maximal monotone, i.e.,
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(i) ∀(γ ,−λ)∈Graph(F ), ∀(γ ∗,−λ∗)∈Graph(F ),

�⇒ −(λ − λ∗)T(γ − γ ∗) ≥ 0,
(ii) Graph(F ) ⊆ Graph(F̂ ) �⇒ Graph(F ) =

Graph(F̂ ) for all functions F̂ fulfilling Condition
(i).

Definition 13(i) ensures the monotonicity ofF , while
Condition(ii) (see [48]) adds thatF is called maximal
monotone if there exists no other monotone set-valued
function whose graph strictly contains the graph ofF .
In other words, no enlargement of the graph is possible
without destroying the monotonicity of F [8].

Proposition 3 Every maximal monotone Coulomb-
type friction law is an associated Coulomb friction law.

Proof Substitution ofγ ∗ = 0 in the definition ofmono-
tonicity (Definition 13(i)) leads to the definition of a
normal cone, i.e.,

−(λ − λ∗)Tγ ≥ 0 ∀ − λ∗ ∈ C �⇒ γ ∈ NC (−λ).

��
Therefore, for a given force reservoir, the only exist-
ing maximal monotone Coulomb-type friction law is
the associated Coulomb friction law. Vice versa, the
following proposition holds.

Proposition 4 Every associated Coulomb friction law
is maximal monotone.

Proof For associated Coulomb friction laws it holds
thatF (γ ) = ∂Ψ ∗

C (γ ). The support function Ψ ∗
C (γ ) is

a lower semi-continuous convex function. The subdif-
ferential of such a function is maximal monotone [7].��
Hence,maximalmonotoneCoulomb-type friction laws
are exactly associated Coulomb friction laws.

Let a system be described by a differential inclusion
consisting of the equation of motion together with a
set-valued associated Coulomb friction law. From the
maximal monotonicity ofF (γ ), existence and unique-
ness of solutions follows [42].

3.1 Planar friction

The definitions and propositions formulated above are
valid in R

p. If tangential friction forces in a contact
plane are considered, then p is equal to two. Higher
dimensions are necessary if in addition to sliding fric-
tion forces a friction torque due to combined sliding
and drilling or rollingmotion occurs [42,49]. In the fol-
lowing sections, sliding in the tangential contact plane
spanned by eT1 and eT2 is considered (see Fig. 4a). The
tangential friction force and the relative sliding velocity
are defined by

λT =
[
λT1
λT2

]
and γ T =

[
γT1
γT2

]
. (32)

The normal force at the contact is called λN . A spe-
cific force reservoir C ⊂ R

2 in combination with a
flow rule defines the friction law at the contact. The
term planar friction is used to emphasize the existence
of two-dimensional friction forces in the contact plane.
Other authors sometimes refer to such behavior as spa-
tial friction (see, e.g., [5]).

3.2 Associated Coulomb friction laws

Associated Coulomb friction laws according to Defi-
nition 12 are valid for all compact and convex force

Fig. 4 a Contact plane and
contact forces on body 1. b
Graphical representation of
isotropic friction law with
stick and slip

(a) (b)
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Fig. 5 a Body sliding on
anisotropic surface. b
Associated Coulomb
friction law

(a) (b)

reservoirs C . The shape of the force reservoir has a
great influence on the frictional behavior at a contact
point. In this section, different shapes of the force reser-
voir are discussed.

Isotropic Friction

The constitutive behavior of stick and slip for isotropic
friction in a plane is given by the following definition.

Definition 14 (Isotropic Coulomb Friction Law) Let
μ > 0 be the isotropic friction coefficient. An isotropic
Coulomb friction law fulfills

(i) γ T = 0 , ‖λT ‖ ≤ μλN ,
(ii) γ T �= 0 , −λT = μλN

γ T‖γ T ‖ ,

where the fraction represents the normalized sliding
velocity, i.e., the unit vector in the plane pointing in the
direction of γ T .

This frictional behavior can be expressed with the
associated Coulomb friction law (Definition 12) and
a circular force reservoir C called Coulomb-Moreau’s
disk [41]:

γ T ∈ NC (−λT ) (33)

with C = {−λT ∈ R
2 | ‖λT ‖ ≤ μλN

}
, see Fig. 4b.

For friction forces inside the force reservoir, the slid-
ing velocity is zero. For friction forces on the boundary
of the set, the vector of the sliding velocity γ T is nor-
mal to the set and therefore points in the direction of
−λT . The magnitude of the sliding friction force is
independent of the sliding direction.

Anisotropic Friction with Various Force Reservoirs

The associated Coulomb friction law is not only use-
ful for the description of isotropic friction but can also
be applied in the anisotropic case if the principle of
maximum dissipation (Proposition 2) is assumed to
hold. This is an assumption that is frequently made

but lacks an experimental verification. In the case of
anisotropic friction, the force reservoir is changed from
a circle to any convex and compact shape. For symmet-
ric force reservoirs, orthotropic force laws are obtained.
For orthotropic friction, often an ellipsoidal force reser-
voir of the form

C =
{

−λT ∈ R
2
∣∣∣∣

( −λT1

μ1λN

)2

+
( −λT2

μ2λN

)2

≤ 1

}

(34)

is assumed. For a non-circular force reservoir, −λT

and γ T are generally not collinear. The force compo-
nent acting orthogonal to the sliding direction causes a
body sliding on a horizontal plane without the presence
of external forces to deflect (see Fig. 5a, b). Only if the
sliding velocity is parallel to the principal axes of the
ellipsoidal force reservoir, the friction force is directly
opposing it.

Orthotropic Coulomb friction during slip can also be
modeled byusing two independent sign functions along
the principal directions of the orthotropic surface [50].
To account for the set-valued nature of Coulomb fric-
tion, the force law can be rewritten using set-valued
Sign functions:

−λT1 ∈ −μ1λNSign(γT1),

−λT2 ∈ −μ2λNSign(γT2).
(35)

Here, stick and slip along the two principal direc-
tions are independent of each other. A physical model
exhibiting such a behavior is the X–Y table shown in
Fig. 6a. Each of the two slide bearings, with friction
coefficient μ1 and μ2, respectively, can move indepen-
dently of the other. The inclusions (35) are equivalent
to the associated Coulomb friction law with the rect-
angular force reservoir
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Fig. 6 a Sketch of a X–Y
table. b Graphical
representation of associated
Coulomb friction law with
rectangular force reservoir

(a) (b)

Fig. 7 a Superellipsoidal
friction force reservoirs with
different roundness factors.
b Friction force reservoir
composed of a rectangle and
two half-ellipses

(a) (b)

C = {−λT ∈ R
2 | ∣∣−λT1

∣∣ ≤ μ1λN ,
∣∣−λT2

∣∣ ≤ μ2λN
}
,

(36)

see Fig. 6b. The force reservoir is convex, but not
strictly convex. If sliding in one of the principal direc-
tions is considered, then the slide bearing orthogonal
to that direction is in the stick phase. Therefore, for a
given sliding direction, a set of possible friction forces
exists, namely all friction forces on the corresponding
straight segment of the boundary of the force reservoir.
The rate of dissipation in the case of such a convex but
not strictly convex force reservoir is still unique since
the component of the friction force orthogonal to the
sliding velocity does not contribute to the dissipation.
A unique friction force is found if the dynamics of the
system is considered.

For friction forces in the corner of the rectangular
force reservoir, the normal cone returns the set of all
sliding directions in the corresponding quadrant. This
means that for a range of sliding directions, the mag-
nitude and direction of the friction force is the same.

Besides the elliptical and rectangular force reser-
voir, other convex force reservoirs for orthotropic fric-
tion are possible. A useful mathematical description of
sets with two semi-axes are superellipses. The general
expression for a superellipsoidal set with roundness
factor s is given as

C =
{
−λT ∈ R

2
∣∣∣∣

∣∣∣∣
λT1

μ1λN

∣∣∣∣

s

+
∣∣∣∣

λT2

μ2λN

∣∣∣∣

s

≤ 1

}
.

(37)

The roundness factor determines the shape of the
superellipse as depicted in Fig. 7a. For s ≥ 1 the set is
convex. A rhombus is obtained for s = 1. The standard
ellipse has a roundness factor of s = 2. If, in addition,
μ1 = μ2 holds, then the force reservoir is circular and
the force law reduces to the form of isotropic Coulomb
friction.

The associated Coulomb friction law can be further
adjusted to specific anisotropic frictional behavior by
implementing suitable force reservoirs. An example of
anisotropic frictional behavior is the contact of a slider
on ice, as plays an important role in the numerical simu-
lation of a bobsleigh on the surface of an ice track [51].
Without anisotropic friction, the bobsleigh would be
unable to steer. In [31], it is assumed that the force
reservoir consists of two half-ellipses connected to a
rectangle, see Fig. 7b.

Capability and Limitations of the Friction Law

The formulation of the friction force law as normal
cone on the friction force reservoir C is an effective
method to describe the set-valued nature of stick and
slip. By adjusting the shape of the force reservoir, the
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magnitude of the friction force for different sliding
directions is specified and the relationship between the
sliding direction and the direction of the friction force
follows from normality to the set. In order to guaran-
tee dissipativity of the friction law, the force reservoir
necessarily has to contain the origin. The formulation
is capable of describing many aspects of anisotropic
frictional behavior. However, all chosen friction force
reservoirs have to fulfill the condition of being convex.
Non-convex sets are not allowed, since the definition of
normal cone inclusions (see Definition 6) is only valid
for convex sets. This limitation makes it impossible to
incorporate more complex non-convex force reservoirs
that are discussed later in this work.

3.3 Non-associated anisotropic friction laws

The assumption of maximum dissipation which holds
for the associated Coulomb friction law is not neces-
sarily valid for real anisotropic frictional behavior. In
this section, other possible anisotropic friction laws are
briefly discussed. Since the sliding direction in those
cases is not directly related to the shape of the force
reservoir, the force laws are called non-associated force
laws.

Collinear Friction Law

The associated Coulomb friction law described above
has for non-circular force reservoirs, a limited number
of sliding directions where the friction force directly
opposes the direction of sliding. A specific anisotropic
friction law which is often encountered in the litera-
ture (e.g., [52]) is based on friction forces that always
directly oppose the sliding direction. In this work, such
a friction law is called collinear friction law.

Definition 15 (Collinear Friction Law) A collinear
friction law is characterized by a friction force dur-
ing slip that is always parallel to the sliding direction
and opposes the relative sliding velocity.

The friction coefficient and with that, the magnitude
of the friction force is dependent on the sliding direc-
tion. During slip, the force law can be expressed in the
form

γ T �= 0 ; −λT = μ(γ T )λN
γ T

‖γ T ‖ , (38)

where the scalar magnitude of the friction force is mul-
tiplied by the normalized vector of the relative sliding

velocity. As before, the shape of the force reservoir has
to be defined. In the following, an ellipsoidal shape as
given in Eq. (34) is assumed. The friction coefficients
along the major axes are μ1 and μ2. With the diagonal
matrix

T =
[

1
μ1λN

0

0 1
μ2λN

]

(39)

the force reservoir C can be expressed as

C =
{
−λT ∈ R

2
∣∣∣∣

√
λT
T T

2λT ≤ 1

}
. (40)

The sliding friction force is then given by

−λT = 1
√

γ T
T T

2γ T

γ T , (41)

i.e., the friction coefficient as a function of the sliding
direction is

μ(γ T ) = 1
√

γ T
T T

2γ T

‖γ T ‖
λN

=
√

γ 2
T1

+ γ 2
T2

√(
γT1
μ1

)2 +
(

γT2
μ2

)2
.

(42)

The force law can be transformed into a set-valued nor-
mal cone inclusion force lawbymakinguse of the trans-
formation property Eq. (9). Considering the fact that
under the linear mapping T the collinear vectors −λT

and γ T remain collinear, the force law can be illus-
trated by the graph shown in Fig. 8a. The transforma-
tion matrix T is chosen such that the elliptical set C is
transformed to the circular set TC with radius one and
the force law is therefore represented by the inclusion

Tγ T ∈ NTC (−TλT ). (43)

This inclusion can be transformed to a normal cone
inclusion on the ellipsoidal force reservoir C using
Eq. (9),

T2γ T ∈ NC (−λT ). (44)

Figure 8b shows a graphical representation of this
collinear force law with ellipsoidal force reservoir.
Since the friction force is directly opposing the sliding
velocity, a sliding body experiencing such a force law
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Fig. 8 a Collinear friction
law transformed to circle. b
Collinear friction law with
elliptical force reservoir

(a) (b)

Fig. 9 a Relative sliding
velocity of a spring in
contact with an inclined
plane. b Contact forces
acting on a spring and the
inclined plane depicted in
local and global reference
frame. Adapted from [25]

(a) (b)

is not deflected. Writing the force law as normal cone
inclusion allows for an efficient numerical treatment of
the set-valued nature of Coulomb friction.

Asperity Model

Microscopic surface asperities play an important role
in the frictional behavior of contacting bodies. Ran-
domly distributed asperities result in isotropic friction.
Anisotropic friction can be modeled by the superposi-
tion of a random distribution and a systematical order
of asperities. In [24], such a model is introduced to
describe anisotropic friction on machined metal sur-
faces. The macroscopic frictional behavior is deter-
mined by investigating the behavior of a mass sliding
on an isotropic inclined plane. Sliding along the plane
on a fixed level curve leads to a macroscopic friction
force equal to the force induced by the isotropic friction
of themass on the plane. However, pushing themass up
the inclined plane requires a higher force which leads
to anisotropic macroscopic behavior. The combination
of inclined planes to parallel wedge-shaped asperities
results in a model capable of specifying the friction
force for all sliding directions. In general, the model
results in non-convex force reservoirs. The relationship
between the friction force and the sliding direction is
not defined by normality of the sliding direction to the
force reservoir C , but by normality to a different con-
vex direction set D . The model therefore leads to a
non-associated friction law.

In a more advanced model [25], one of the con-
tacting surfaces is still modeled with parallel wedge-
shaped asperities. The second surface, however, now
consists of uniformly distributed springs with uniform
stiffness attached to a moving plane. Contact compli-
ance in normal and tangential direction is neglected.
The springs are used to model the friction force when
the two surfaces move parallel to each other with a
constant distance. Figure 10a shows an example of a
fixed wedge-shaped asperity with the same inclination
angle β on both sides in contact with a moving plate
with spring asperities. No separation of the springs and
the wedge asperities is assumed and the springs are
always compressed. Following the calculations of [25],
the set of admissible macroscopic friction forces act-
ing in the contact plane can be obtained. The macro-
scopic relative sliding velocity is γ T . We denote the
relative sliding velocity of a single spring in contact
with an inclined plane by γ̂ T as shown in Fig. 9a. The
projection of γ̂ T on the macroscopic contact plane is
γ T , being under the angle ϕ to the eIT1 -axis. The con-
tact forces acting on a single spring and an inclined
plane are depicted in Fig. 9b. Along the inclined eKT1 -
eKT2 -plane, isotropic friction with friction coefficient μ

is present. The magnitude λ̂T of the friction force act-
ing on the spring is therefore given by λ̂T = μλ̂N ,
where λ̂N represents the normal force, orthogonal to
the inclined plane. The contact forces expressed in the
K -frame acting on the spring are in equilibrium with
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Fig. 10 a Asperity model
with wedge-shaped
asperities in contact with
springs. b Resulting
non-convex force reservoir

(a) (b)

the contact forces acting on the inclined plane λ̄T1 , λ̄T2
and λ̄N expressed in the I -frame of the macroscopic
contact plane. It holds that

λ̄N = λ̂N cosβ − λ̂T1 sin β, (45)

λ̄T1 = λ̂N sin β + λ̂T1 cosβ, (46)

λ̄T2 = λ̂T2 . (47)

The maximum friction force in eKT1 -direction is λ̂T1 =
μλ̂N . Substitution of the friction force inEq. (45) yields

λ̄N = λ̂N (cosβ − μ sin β) . (48)

With the conditions λ̂N > 0 and λ̄N > 0, the admis-
sible range of the friction coefficient is obtained as
μ < cot(β). From Eqs. (45)–(47), functions describ-
ing the macroscopic friction forces of a single spring
can be calculated in the form λ̄T1 = λ̄N HT1(μ, β, ϕ)

and λ̄T2 = λ̄N HT2(μ, β, ϕ), where HT1 and HT2 are
functions of μ, β and ϕ, see [25]. The vertical force
λ̄N depends on the displacement of the corresponding
spring. If a set of springs in contact with both sides of
parallel wedge-shaped asperities with the same incli-
nation angle β on both sides is considered, then the
macroscopic friction forces are found as

λT1 = λN

2

(
HT1(μ, β, ϕ) + HT1(μ,−β, ϕ)

)
,

λT2 = λN

2

(
HT2(μ, β, ϕ) + HT2(μ,−β, ϕ)

)
.

(49)

Here, the macroscopic normal force λN is a function of
the spring stiffness and the constant mean spring dis-
placement. Equation (49) describes the friction forces
for all possible sliding directions and allow for the cal-

culation of the set of admissible macroscopic friction
forces acting in the contact plane. The force reservoir
can be expressed in polar coordinates by

rC (θ) = μλN

cosβ

√
cos2 β cos2 θ + sin2 θ

sin2 θ+[
1−(

1 + μ2
)
sin2 β

]
cos2 θ

,

(50)

where θ describes the angle between the eIT1 -axis and
the direction of the friction force (see [25]). The inclina-
tion angle lies in the range 0◦ ≤ β < 90◦. For β = 0◦,
the isotropic friction lawwith circular force reservoir is
recovered. In Fig. 10b, the force reservoir C is shown
for the parameters μ = 1.2 and β = 36◦. For the given
parameters, the set is clearly non-convex. However, the
setC is always star-shaped since rC (θ) > 0 for all θ , if
admissible values ofμ andβ are considered in Eq. (50).

The sliding direction is not associated with the fric-
tion force reservoir. Instead, it is defined by normality
to an ellipsoidal direction set D at the intersection of
the boundary of the set and the direction of the negative
friction force −λT . The ellipsoidal set is given by

D =
{

−λT ∈ R
2
∣∣∣∣

(−λT1

p1

)2

+
(−λT2

p2

)2

≤ 1

}

,

(51)

with the semi-axes ratio

p2
p1

= cosβ. (52)

For the parameters given above, the set is also shown in
Fig. 10b. The scaling of the direction setD is irrelevant
and can be chosen arbitrarily.
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Fig. 11 Graphical
representation of
non-associated friction law
a with ellipsoidal sets bwith
non-convex force reservoir

(a) (b)

In the literature, the non-convexity of the force reser-
voir is sometimes neglected and the two sets C and D
are assumed to both be of ellipsoidal or superellipsoidal
shape with the same roundness factor [25,53,54]. A
graphical representation of the friction law for ellip-
soidal sets is shown in Fig. 11a. Similar to Sect. 3.3,
the force law in that case can be formulated as normal
cone inclusion. Here, the transformation matrix T is
given by

T =
[

p1
μ1λN

0
0 p2

μ2λN

]

(53)

and the force law is written as

T sγ T ∈ NC (−λT ), (54)

where s represents the roundness factor of the superel-
lipsoidal sets. The collinear friction lawwith ellipsoidal
force reservoir (s = 2) is contained in that formulation
and is obtained for a circular set D for which Eq. (53)
and (54) equal Eqs. (39) and (44), respectively. If the set
D is taken equal to the force reservoirC , then the asso-
ciated Coulomb friction law (Definition 12) is recov-
ered.

To analyze the existence of a convex pseudo-
potential, the force law has to be checked for cyclic
maximal monotonicity [8]. From Proposition 3 it fol-
lows that the force law is not maximal monotone and
consequently not cyclically maximal monotone if C
and D differ in shape. Thus, in general, no convex
pseudo-potential exists. Instead, following [26,54,55],
a bipotential can be found. A force law capable of han-
dling non-convex force reservoirs is derived in the fol-
lowing section.

3.4 Extended normal cone inclusion friction law

The asperity model motivated by [25] and described in
Sect. 3.3 aswell as the tensor formulation of anisotropic
friction by [56] both result in non-associated friction
force laws with possibly non-convex force reservoirs.
The force law Eq. (54), however, is only valid for con-
vex force reservoirs. In this section a set-valued force
law allowing for different shapes of the force reservoir
C and the direction set D as well as for non-convex
force reservoirs is developed in the framework of con-
vex analysis.

Definition 16 (ExtendedNormal Cone Inclusion Fric-
tion Law) Let C ⊂ R

2 be a compact and star-shaped
set and let D ⊂ R

2 be a compact and convex set with
D ⊆ C and 0 ∈ intD . The gauge functions of the sets
are given by kC and kD . ACoulomb-type friction law is
called an extended normal cone inclusion friction law
if

γ T ∈ ND (−αλT ) (55)

with

α = 1

kD (−λT ) − kC (−λT ) + 1
. (56)

A graphical representation of such a friction law is
shown in Fig. 11b. The nonempty sets C and D can
be represented as the level sets of their gauge functions
kC and kD by

C = {−λT | kC (−λT ) ≤ 1} , (57)

D = {−λT | kD (−λT ) ≤ 1} . (58)

The origin is required to be contained in the interior of
D to guarantee that kD (−λT ) is defined for all friction
forces. The sliding direction is given by normality to
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the direction set D . Instead of formulating a force law
as normal cone inclusion on the force reservoir as in
Eq. (54), a normal cone inclusion on set D is defined.
Here, the normality condition is directly fulfilled and
non-convex force reservoirs are no longer excluded.
The challenge is the accurate description of the stick
phase since the force reservoir is independent ofD and
the condition γ T = 0 for friction forces inside the force
reservoir is not automatically fulfilled.
a) −λT ∈ intC : For all friction forces in the interior
of the force reservoir, the sliding velocity must be zero.
Since gauge functions return values less than one for
points in the interior of the corresponding set, it must
hold that γ T = 0 for kC (−λT ) < 1.
b) −λT ∈ bdryC : For friction forces at the boundary
of the force reservoir, the sliding velocity is defined by
the normal cone to the setD at the point of the friction
force scaled to the boundary of D by the parameter α,
i.e.,

γ T ∈ ND (−αλT ) with − αλT ∈ bdryD . (59)

With the gauge function being one for points at the
boundary of the set, Eq. (59) can be rewritten as:

γ T ∈ ND (−αλT ) for kC (−λT ) = 1 (60)

with kD (−αλT ) = 1. The scaling function α =
f (−λT ) thereby scales the friction force to the inte-
rior of D if the friction force lies in the interior of the
force reservoir and to the boundary of D if the force is
at the boundary of C . It is therefore designed as

α :
{

< 1
kD (−λT )

for kC (−λT ) < 1

= 1
kD (−λT )

for kC (−λT ) = 1.
(61)

These conditions are combined in the function

α = 1

kD (−λT ) − kC (−λT ) + 1
, (62)

where the argument of the scaling function α(−λT ) is
omitted for brevity. To ensure that the scaling function
α is always positive, the condition

kD (−λT ) ≥ kC (−λT ) (63)

is imposed. Therefore,D ⊆ C must apply. This can be
reached for all star-shaped C with 0 ∈ intC since it

is always possible to scale the compact set D without
loss of generality.

One of the advantages of the described force law as
normal cone inclusion on the set D is that the force
reservoir is no longer restricted to convex shapes. The
definitions of gauge functions and corresponding level
sets Eq. (58) are also valid for sets that are star-shaped
with respect to the origin [43]. Star-shaped sets are
possibly non-convex. Limiting the force reservoir C
to star-shaped and the set D to convex shapes ensures
that for a given γ T and known dynamics of a system,
a unique friction force λT is assigned. For star-shaped
force reservoirs, the magnitude of a friction force act-
ing in a certain direction during slip is well defined.
During stick the friction force in that direction can take
any value between the value of the sliding friction force
and zero.

If the direction set D is even strictly convex, then
a given nonzero relative sliding velocity γ T is in the
normal cone of the compact set D at a unique bound-
ary point z = −α(−λT )λT (see Fig. 11). From the
scaled friction force z, the friction force −λT can be
calculated by expressing the scaling parameter α as a
function of z, i.e.,

−λT = 1

α
z, (64)

= (kD (−λT ) − kC (−λT ) + 1)z. (65)

= 1

α
(kD (z) − kC (z) + α)z. (66)

Herein, α from Eq. (62) is substituted, then the argu-
ments of the gauge function are replaced with Eq. (64)
and the fact that the gauge functions are positively
homogeneous of degree one is used. If again Eq. (64)
is substituted in Eq. (66), the expression

α(z) = kC (z) − kD (z) + 1 (67)

is obtained, which together with Eq. (64) allows for the
calculation of the friction force for known values of z.
For z on the boundary of D , the gauge function kD (z)
is equal to one.

In analogy to Proposition 1, in which the dissipativ-
ity of the associated friction law is proven, we discuss
the dissipativity of the extended normal cone inclusion
friction law.
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Proposition 5 (Dissipativity of Extended Normal
Cone Inclusion Friction Law) The extended normal
cone inclusion friction law is strictly dissipative.

Proof Rewriting the normal cone inclusion with the
subdifferential of the indicator function and again using
the Fenchel equality results in

γ T ∈ ∂ΨD (−αλT ) ⇐⇒ −αλT ∈ ∂Ψ ∗
D (γ T )

⇐⇒ −αλT
T γ T = ΨD (−αλT ) + Ψ ∗

D (γ T ).
(68)

The indicator function ΨD (−αλT ) is zero because the
scaled friction force is always in the setD . It holds that
Ψ ∗
D (γ T ) > 0 for all γ T �= 0 since 0 ∈ intD . There-

fore, using α > 0, the dissipation rate for the extended
friction force law is given as

D(−λT , γ T ) = −λT
T γ T = 1

α
Ψ ∗
D (γ T ) > 0. ��

Implementation in a Time-Stepping Method

As described in Sect. 2.3, set-valued force laws given in
the form of normal cone inclusions can be used for the
numerical simulation of nonsmooth systems by rewrit-
ing them as implicit proximal point functions. In order
to implement the extended normal cone inclusion fric-
tion law in the iteration scheme, Eq. (22) has to be
replaced by

Pk+1
T = − 1

αk
proxD (−αk Pk

T + rγ k
TE), r > 0,

(69)

where the scaling parameter is determined by

αk = 1

kD (−Pk
T ) − kC (−Pk

T ) + 1
(70)

in each iteration [57].

Capability and Limitations of the Friction Law

The associated force law, based on normality of the
sliding direction to the friction force reservoir C , is
limited to convex shapes of the force reservoir. The
extended normal cone inclusion force lawdoes not have
this limitation. It allows for the implementation of non-
convex but star-shaped force reservoirs, which is moti-
vated, e.g., by the tensor formulation described by [28]
and the asperity model (see Sect. 3.3). Non-convex and

not star-shaped force reservoirs are not permitted since
gauge functions are not defined for such sets. However,
force reservoirs that are not star-shaped are not allowed
for dry friction laws since for such sets a decrease in
the static friction force may lead to a stick-slip tran-
sition. While the force reservoir may be non-convex,
the direction set D in this work is limited to convex
sets.

The formulation of the force law as normal cone
inclusion makes it possible to represent the set-valued
nature of friction with the transition of stick and slip.
Thereby, the advantage of the associated Coulomb fric-
tion law is retained. The extended friction law reduces
to the associated Coulomb friction law if both sets are
convex and C = aD for some a ∈ R

+ which can be
taken equal to one, i.e., C = D . Collinear force laws
are given for a circular shape of the direction set D .
Unlike in Sect. 3.3, where only ellipsoidal force reser-
voirs are considered for the collinear force law, here,
the shape of the force reservoir is arbitrary as long as it
is star-shaped. If both sets have a circular shape, then
the isotropic Coulomb friction force law is recovered.

In the following, the force laws given in tensor
formulation by [28] are considered as examples. Fig-
ure 12 shows the graphical representation of a number
of non-associated force laws. In this work, the direc-
tion sets D are added. The sets are determined numer-
ically under the condition of normality of the sliding
direction to the boundary of the set D . The method
is similar to the processing of the experimental data
which is described in more detail in Sect. 5.2. The
boundary of D is described in polar coordinates by

rD (θ) = rD (0)e
∫ θ
0 tan(θ̃−ϕ)dθ̃ , (71)

where θ is the angle between the friction force and a
fixed axis and ϕ is the angle between the sliding direc-
tion and the same axis (see Fig. 12c). The initial value
rD (0) is chosen such that D ⊆ C .

Figure 12a shows an orthotropic force lawwith ellip-
soidal force reservoir. The setD is also an ellipse with
the same orientation of the major axes but with a differ-
ent semi-axes ratio which causes the non-associativity
of the force law. The force laws shown in Fig. 12b, c
also allow for a direct calculation of a closed convex
set D . In the case of the force law with nonconstant
friction tensor shown in Fig. 12b, the set D is a circle
which corresponds to a collinear force law.
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(a) (b) (c)

Fig. 12 Graphical representation of non-associated anisotropic friction force laws with parameters from [56] and calculated direction
sets D . a Orthotropic force law. b Force law with nonconstant friction tensor. c Force law with fourth order tensor

4 Friction-induced instability

This section is concerned with stability properties of
mechanical systems with friction. Despite the fact that
many researchers have extensively studied friction-
induced vibrations, the underlying mechanisms are
still not fully understood. Especially, the influence
of anisotropic friction on the stability of a sliding
motion has not been studied yet. In this work, sys-
tems with a single frictional contact point are consid-
ered. First, different isotropic friction-induced instabil-
ity phenomena are classified according to their under-
lying mechanisms. In Sect. 4.2, anisotropic friction is
shown to be a possible cause of self-excited vibra-
tions that previously has been ignored by the research
community.

4.1 Classification of isotropic friction-induced
instability phenomena

A n-DOF mechanical system with generalized posi-
tions q ∈ R

n and velocities u = q̇ ∈ R
n and a single

frictional contact point is described by the equation of
motion

Mu̇ − h(q, u) = wNλN + WTλT , (72)

a friction law −λT ∈ F (γ T , λN ) and a unilateral
constraint gN (q) ≥ 0. The generalized force direc-
tions in normal and tangential direction are denoted by
wN ∈ R

n and WT ∈ R
n×p. For the relative sliding

velocity γ T ∈ R
p it holds that

γ T = WT
T u − χ , (73)

where χ ∈ R
p represents a tangential velocity at the

contact point, e.g., originating from the movement of
a belt. We assume that there is no explicit time depen-
dence of the normal contact distance and the relative
sliding velocity (χ = const.).

In Fig. 13 isotropic friction-induced instability phe-
nomena are summarized. The three underlying mecha-
nisms of instability are (a) a nonconstant friction coeffi-
cient causing stick-slip vibrations, (b+c) a nonconstant
normal force leading to geometrically induced insta-
bility and (d) a follower force behavior of the friction
force. In all cases, the friction force during forward
slip is given by an isotropic friction law. Two of the
parameters: friction coefficient, normal force and gen-
eralized force direction are held constant in each case,
while the third is given as a function of the generalized
coordinates or velocities.

The archetype model of friction-induced vibrations
is the one degree of freedom oscillator in contact with a
moving surface often referred to as block-on-beltmodel
(see Fig. 13a). The stick-slip behavior of the model
is extensively studied in the literature, e.g., by [59–
61]. The key aspect is that the friction coefficient is
assumed to be a function of the magnitude of the slid-
ing velocity. A decreasing friction coefficient for an
increasing sliding velocity, known as Stribeck effect,
causes a negative damping coefficient in the linearized
equation of motion, which leads to Hopf-type instabil-
ity of the equilibrium of the system.

For Coulomb friction, the magnitude of the friction
force is not only dependent on the friction coefficient
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Fig. 13 Isotropic
friction-induced instability
phenomena. a Stick-slip
oscillator and Stribeck
friction characteristic. b
Mechanical model to
illustrate mode-coupling. c
Frictional impact oscillator
and simplified model
(adapted from [58]). d
Mechanical model of a
system with frictional
follower force

(a)

(b)

(c)

(d)

μ, but also on the normal force λN . Depending on the
geometry of a mechanical system, the normal force
may be a function of the generalized coordinates or
velocities of the system. Such a dependence of the nor-
mal force is responsible for two instability phenomena
that occur for isotropic friction without Stribeck effect.
Mode-coupling instability is characterized by the con-
vergence of oscillation frequencies of structural modes
under the influence of a parameter. When they merge,
a pair of an unstable and stable mode is created [35].

In Fig. 13b a planar three degree of freedom model
is proposed. It consists of a mass being constrained
by springs that are always horizontal, vertical or diag-
onal, respectively, and a belt attached to the ground
via vertical springs. The belt is constrained to move
only in the vertical direction. Small vibrations are con-
sidered, i.e., geometric nonlinearity due to the springs
is neglected. The model differs from the models pre-
sented by [62] and [63] in that the mass is in direct
contact with the belt, instead of the contact between a
massless slider and the belt. If the system with closed
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contact is considered, in addition to the symmetric
structural coupling terms, displacement dependent fric-
tional coupling terms occur in the equation of motion
that can cause instability of the equilibrium. Besides
mode-coupling, sprag-slip is a friction-induced insta-
bility phenomenon occurring due to a nonconstant nor-
mal force.This effect hasfirst beendescribed in the con-
text of brake squeal in [34] using a system of inclined
rigid rods pressed on a moving surface. In [64], an
elastic beam in contact with a belt is used to model
sprag-slip, while [58] made use of the multibody sys-
tem shown in Fig. 13c to model a similar effect, which
is closely related to the Painlevé paradox [65]. The fric-
tional impact oscillator, consisting of a rigid rod, two
pointmasses and linear as well as rotational springs and
dampers, can be approximated for small angles with
linear springs and dampers as shown in the same Fig.
[58]. Unlike in the example of mode-coupling, where
the dependence of the normal force on the displacement
is responsible for the instability of an equilibrium, in
this case the feedback of the velocity dependent part
of the normal force causes the equilibrium to become
unstable.

If the friction coefficient as well as the normal force
are assumed to be constant, the follower force char-
acteristic of a friction force can be a third cause of
friction-induced instability. Such a force is acting on a
body and changing the direction according to the dis-
placement of the body. Frictional follower forces occur,
e.g., between a mass and a disk due to the deforma-
tion of the disk [66]. In [67], experimental evidence
of instability caused by a frictional follower force is
provided. The follower force characteristic of the fric-
tion force causes the generalized force direction to be a
function of the generalized coordinates q. A frictional
follower force can be realized as shown in Fig. 13d.
The model consists of a double pendulum with mass-
less rods connected via rotational springs. At the tip of
the pendulum, a wheel with negligiblemass is mounted
to the pendulum such that it can spin freely around its
axis. The wheel is in contact with a belt moving with
constant velocity. The isotropic Coulomb friction force
λr acting at the contact point of the wheel and the belt
is assumed to be transmitted to the pendulum only in
axial direction of the wheel, which causes the general-
ized force direction wr to be nonconstant. In the fol-
lowing, systems without the Stribeck effect and with a
constant normal force as well as a constant generalized
force direction are considered.

4.2 Stability of systems with anisotropic friction

Consider the autonomous differential inclusion

ẋ(t) ∈ F (x(t)) , (74)

with the state vector x(t) ∈ R
r . The set of admissible

states is calledA . A solution x(t) = ϕ(t, t0, x0) of the
differential inclusion with initial condition x0 ∈ A is
an absolutely continuous function x : R → R

r which
fulfills Eq. (74) for almost all t ≥ 0. Statements on
the stability of all solutions can be made. If all solution
curves in forward time remain close to their neighbor-
ing solutions, it is referred to as incremental stability
(see [42]).

Definition 17 (Incremental Stability of a Differential
Inclusion) The differential inclusion Eq. (74) is called
incrementally stable if for all t0 ∈ R, arbitrary admis-
sible initial conditions x1(t0), x2(t0) ∈ A and for all
corresponding solution curves x1(t) = ϕ(t, t0, x1(t0))
as well as x2(t) = ϕ(t, t0, x2(t0)), it holds that for
each ε > 0 there exists a δ = δ(ε) such that
‖x1(t0) − x2(t0)‖ < δ implies ‖x1(t) − x2(t)‖ < ε

for almost all t ≥ 0.

In this section, the effect of anisotropic friction laws
on the stability of sliding motion is analyzed. To date,
no literature exists that specifically studies the stabil-
ity properties of systems with anisotropic friction. To
eliminate all factors being capable of causing friction-
induced instability for isotropic friction, a system hav-
ing one frictional contact with

– Constant normal force,
– Constant generalized force direction,
– No Stribeck effect,

is considered, which excludes all mechanisms of
self-excitation mentioned before. In the following, a
minimal mechanical model to analyze the effect of
anisotropic friction is presented.

Figure 14a shows a mass constrained by two linear
springs, sliding on a horizontal belt having anisotropic
friction properties. The top view of the model is
depicted in Fig. 14b. The sliding body is modeled as a
point mass on a surface moving constantly with veloc-
ity v. The generalized coordinates q = [x y]T are ori-
ented parallel to the axes eT1 and eT2 . The equation of
motion of the system is given as

Mq̈ + Kq = WTλT , (75)
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Fig. 14 a Mass on belt with
anisotropic friction
properties. b Two degree of
freedom model of the mass
on belt system

(a) (b)

with the diagonal system matrices and belt velocity
vector χ

M =
[
m 0
0 m

]
, K =

[
k 0
0 k

]
, WT =

[
1 0
0 1

]
,

χ =
[
v cosϕ

v sin ϕ

]
. (76)

The relative sliding velocity γ T is given by the motion
of the mass and the motion of the belt as γ T =
WT

T q̇ − χ . The matrix of the generalized force direc-
tion WT , defined by WT = (∂γ T /∂ q̇)T, in this case is
simply the identity matrix. In the following, different
anisotropic friction laws are implemented for the fric-
tion force λT . In all cases, the normal force resulting
from gravity is constant, λN = mg. For vanishing gen-
eralized velocities and accelerations, i.e., q̇ = q̈ = 0,
the system is at the equilibrium qeq = K−1WTλT .
Since the belt is moving continuously (χ �= 0), the rel-
ative sliding velocity γ T is nonzero for q̇ = 0 so the
equilibrium is not in the stick phase. We will now con-
sider different types of anisotropic friction and discuss
the stability properties.

First, the associated Coulomb friction law specified
in Definition 12, γ T ∈ NC (−λT ), is considered. Here,
no additional restrictions on the shape of the force reser-
voir C other than convexity are made.

Theorem 1 (Stability for the associated Coulomb fric-
tion law) The differential inclusion given by the
mechanical system Eq. (75) in combination with the
associated Coulomb friction law is incrementally sta-
ble. Consequently, equilibria of the system are stable.

Proof From Proposition 4, it is known that the asso-
ciated Coulomb friction law is maximal monotone.

Therefore, for all pairs (γ T , λT ) and (γ ∗
T , λ∗

T ), the
monotonicity condition

−(λT − λ∗
T )T(γ T − γ ∗

T ) ≥ 0 (77)

from Definition 13(i) holds. We choose two arbitrary
solutions of the differential inclusion, qI(t) and qII(t).
Incremental stability (see Definition 17) can be proven
by analyzing the distance between the two solutions.
Introducing the incremental Lyapunov candidate func-
tion with terms similar to the kinetic and potential
energy of the system as a function of the position and
velocity error between the two solutions gives

V = 1

2

(
q̇I − q̇II

)T M
(
q̇I − q̇II

)

+1

2

(
qI − qII

)T K
(
qI − qII

)
. (78)

Only if the two solutions are identical, it holds that V =
0. Since M and K are positive definite, the Lyapunov
candidate function V is positive definite. Taking the
time-derivative and substitution of Eq. (75) leads to

V̇ = (
q̇I − q̇II

)T (
M

(
q̈I − q̈II

) + K
(
qI − qII

) )

= (
q̇I − q̇II

)T (
WTλTI − WTλTII

)

= (
WT

T

(
q̇I − q̇II

))T (
λTI − λTII

)

= (
γ TI − γ TII

)T (
λTI − λTII

)
,

(79)

where in the last step by subtracting the two solutions
the velocity of the belt χ cancels out. From the mono-
tonicity condition of the force law Eq. (77) it follows
that V̇ ≤ 0. Therefore, V is a Lyapunov function which
cannot increase over time. This means that the distance
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between two solutions is never increasing, i.e., the sys-
tem is incrementally stable. Since for one of the two
solutions the equilibrium qeq can be taken, stability of
the equilibrium is proven. Note that attractivity of the
equilibrium does not directly follow and depends on
additional damping in the system. ��

Anisotropic friction modeled with the associated
Coulomb friction law is therefore never responsible
for friction-induced instability of mechanical systems
given in the form of Eq. (75). Of course, instability can
still arise if in addition one of the effects described in
Sect. 4.1 is taken into account. The incremental stabil-
ity result in the associated case directly follows from
the maximal monotonicity property and an equivalent
conclusion can also be found in [68] inwhichLur’e sys-
tems with a maximal monotone operator in the feed-
back loop are considered. In the following, we will
consider friction laws which do not enjoy the maximal
monotonicity property and show that this can lead to
instability.

Weanalyze the stability of the equilibriumof the sys-
tem given in Eq. (75) in combination with the extended
normal cone inclusion friction law. Anisotropic fric-
tion is shown to be a possible cause of friction-induced
instability. In the following discussion, the occurrence
of instability is demonstrated for sets having a smooth
boundary. In addition, a condition of the relationship
between the sliding direction and the shape of the force
reservoir is given that is responsible for anisotropic
friction-induced instability.

FromDefinition 16, the extended normal cone inclu-
sion friction law is known as

γ T ∈ ND (−αλT ) (80)

with

α = 1

kD (−λT ) − kC (−λT ) + 1
. (81)

The formulation is equivalent to −αλT ∈ ∂Ψ ∗
D (γ T )

(see Eq. (68)). We assume a set D being strictly con-
vex and having a smooth boundary, i.e., the set has no
vertices. The force reservoirC is assumed to be strictly
star-shaped with a smooth boundary. The subdifferen-
tial of the support function Ψ ∗

D (γ T ) for γ T �= 0 can
then be replaced by the gradient with

∇Ψ ∗
D (γ T ) =

(
∂Ψ ∗

D (γ T )

∂γ T

)T

, (82)

and the friction law is single-valued in the sliding state.
For a constant velocity χ at the contact, an equilibrium
must occur during slip. Therefore, the friction force
takes a value at the boundary of the force reservoir C ,
and for the gauge function it holds that kC (−λT ) = 1.
Substitution of the friction force

−λT = 1

α
∇Ψ ∗

D (γ T ) (83)

in the positively homogeneous gauge function yields
the scaling parameter α during slip as a function of the
sliding velocity as α = kC (∇Ψ ∗

D (γ T )). Consequently,
during slip, the friction force is described by the explicit
function

−λT = 1

kC (∇Ψ ∗
D (γ T ))

∇Ψ ∗
D (γ T ). (84)

For an explicit function of the friction force, the equa-
tion of motion of the system given by Eq. (75) with a
constant matrix of the generalized force direction WT

can be linearized around the equilibrium qeq giving

Mq̈ + Bq̇ + K
(
q − qeq

) = 0, (85)

where

B = −WT
∂λT

∂γ T

∣∣∣∣
q̇=0

WT
T . (86)

For the given example of a pointmass on a belt, the
matrix WT is the identity matrix. The matrix B is thus
defined by the Jacobian of the friction force,

− ∂λT

∂γ T
= 1

kC (∇Ψ ∗
D )

[
I − L̃

]
H, (87)

where the argument of the support function is sup-
pressed for brevity. Herein, the matrix L̃ and the Hes-
sian matrix H are given as

L̃ = 1

kC (∇Ψ ∗
D )

∇Ψ ∗
D

∂kC (x)

∂x

∣∣∣∣∇Ψ ∗
D

, H = ∂2Ψ ∗
D

∂γ 2
T

.

(88)
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To determine the stability properties of the equilibrium,
we analyze the eigenvalues of the matrix B. Each part
of the matrix B is considered separately.

First, the eigenvalues of the matrix L̃ ∈ R
2×2 are

determined. The matrix consists of an outer product
of nonzero vectors multiplied by a scalar factor being
greater than zero. Consequently, the matrix is of rank
one. One eigenvalue is zero, l L̃1 = 0 and if L̃ is
diagonalizable, then the second eigenvalue is given
by the trace of the matrix. In general, it holds that
tr
(
x yT

) = xT y, and since the gauge function is posi-
tively homogeneous of degree one, it holds that

∂kC (x)

∂x

∣∣∣∣
y
y = kC ( y). (89)

It follows that l L̃2 = kC (∇Ψ ∗
D )−1kC (∇Ψ ∗

D ) = 1.

A corresponding eigenvector is given by v L̃
2 = λT

which is verified using Eqs. (84), (88) and (89) giv-
ing L̃λT = λT . An eigenvector to the zero eigenvalue
is called v L̃

1 = w. It holds that

L̃w = 0 (90)

�⇒ ∂kC (x)

∂x

∣∣∣∣∇Ψ ∗
D

w = 0. (91)

Since the gradient of the gauge function ofC is orthog-
onal to the boundary of the set, the vector w must be
tangent to the boundary.

Next, the matrix L = I − L̃ is considered.

Proposition 6 Let v be an eigenvector of the square
matrix L̃ with the corresponding eigenvalue l. It holds
that v is also an eigenvector of the matrix L = I − L̃
with the corresponding eigenvalue (1 − l).

Proof From L̃v = lv it follows that

Lv = (I − L̃)v = v − lv = (1 − l)v. (92)

��
With Proposition 6, the eigenvalues and eigenvectors of
L are found to be lL1 = 1, lL2 = 0, vL

1 = w, vL
2 = λT .

The support function of the convex setD is convex,
and the Hessian matrix of a convex function is positive
semidefinite. Furthermore, the support function Ψ ∗

D is
positively homogeneous of degree one, i.e., it holds that

Ψ ∗
D (aγ T ) = aΨ ∗

D (γ T ) for all a > 0, and differentia-
tion yields

∇Ψ ∗
D (aγ T ) = ∇Ψ ∗

D (γ T ) ∀a > 0. (93)

A Taylor series expansion of the gradient of the support
function is given by

∇Ψ ∗
D ((1+ε)γ T ) = ∇Ψ ∗

D (γ T )+∂2Ψ ∗
D

∂γ 2
T

∣∣∣∣
γ T

εγ T+O(ε2).

(94)

In addition, from Eq. (93) it follows that

∇Ψ ∗
D ((1 + ε)γ T ) = ∇Ψ ∗

D (γ T ) ∀ε > 0. (95)

From Eqs. (94) and (95) we can conclude that

∂2Ψ ∗
D

∂γ 2
T

∣∣∣∣
γ T

εγ T + O(ε2) = 0 ∀ε > 0, (96)

which implies

∂2Ψ ∗
D

∂γ 2
T

γ T = 0. (97)

Hence, γ T is an eigenvector to the zero eigenvalue of
the Hessian matrix. Since the Hessian matrix is sym-
metric, all eigenvalues are real and the eigenvectors are
orthogonal. Therefore, a second eigenvalue lH2 > 0 and
an eigenvector γ ⊥

T orthogonal to γ T must exist.
The scalar factor kC (∇Ψ ∗

D ) > 0 in Eq. (87) has
no influence on the sign of the eigenvalues and can be
neglected in the stability analysis. In summary, so far,
we have

LλT = 0, Lw = w, Hγ T = 0, Hγ ⊥
T = lH2 γ ⊥

T

(98)

with lH2 > 0. Finally, the eigenvalues of thematrix LH
are studied. From Hγ T = 0, it directly follows that
LHγ T = 0. Thus, the first eigenvalue of the matrix
product is zero and the corresponding eigenvector is
γ T . Since the extended normal cone inclusion friction
law is strictly dissipative, i.e., −λT

T γ T > 0 holds for
all γ T �= 0, the condition
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�k ∈ R : γ ⊥
T = kλT (99)

is fulfilled. In addition, from the first two equations of
Eq. (98), we obtain that

�k ∈ R : w = kλT , (100)

which describes that the friction force λT can not be
collinear to the vector w which is nonzero and tangent
to the force reservoir. This is related to the assumption
that the force reservoir is strictly star-shaped.

Proposition 7 Let L ∈ R
2×2 and H ∈ R

2×2 be square
matrices and let Eqs. (98)–(100) be fulfilled. It holds
that the nullspaceof thematrix product LH is of dimen-
sion one.

Proof The vector γ T is in the nullspace of LH . Con-
sider another vector v = a1γ T + a2γ ⊥

T with a2 �= 0.
With Eq. (98) it follows that

LHv = LH(a1γ T + a2γ
⊥
T )

= a2l
H
2 Lγ ⊥

T

= a2l
H
2 L(b1λT + b2w)

= a2b2l
H
2 w �= 0,

(101)

where the vector γ ⊥
T can be expressed by the com-

ponents in λT and w direction due to Eq. (100), and
b2 �= 0 because of Eq. (99). ��
In the case of γ T and w being parallel, i.e., the relative
sliding velocity γ T is tangent to the boundary of the
force reservoir, the following statement on the algebraic
multiplicity of the zero eigenvalue can be made.

Proposition 8 Let L ∈ R
2×2 and H ∈ R

2×2 be square
matrices and let Eqs. (98)–(100) be fulfilled. If ∃c �=
0 : γ T = cw, then the zero eigenvalue of the matrix
LH has the algebraic multiplicity two.

Proof From Proposition 7, we know that the geometric
multiplicity of the zero eigenvalue must be one. The
vector γ T is an eigenvector of LH with eigenvalue
zero. From Eq. (101) and γ T = cw, with c �= 0, it
follows that for every vector v ∈ R

2

LHv = βw = β

c
γ T (102)

and, hence, (LH)2 v = 0. If γ T = cw, every vector is
a generalized eigenvector. ��

In the following, the tangent coneTC of the force reser-
voir C , which is given by Definition 7, is used.

Proposition 9 Let L ∈ R
2×2 and H ∈ R

2×2 be square
matrices and let Eqs. (98)–(100) be fulfilled. The vector
w is an eigenvector of the matrix LH . For the corre-
sponding eigenvalue it holds that if γ T ∈ TC (−λT ),
then the eigenvalue lLH

2 is non-positive. The eigenvalue
is negative if

γ T ∈ intTC (−λT ) (103)

and strictly positive if γ T /∈ TC (−λT ).

Proof We first consider the case ∃c �= 0 : γ T =
c (−λT ), i.e., the relative sliding velocity is collinear
to the friction force. Therefore, it holds that
γ T /∈ TC (−λT ). From the dissipativity of the friction
law it is known that c > 0. Let

w = a1γ T + a2γ
⊥
T = −a1cλT + a2γ

⊥
T (104)

�⇒ γ ⊥
T = 1

a2
w + a1

a2
cλT , (105)

where a2 �= 0 holds due to Eq. (100). Similar reasoning
as shown in Eq. (101) results in LHw = lH2 w. Thus, in
the case of collinear sliding velocity and friction force,
w is an eigenvector with strictly positive eigenvalue.

Next, we consider the case c2 �= 0 and

γ T = c1(−λT ) + c2w (106)

�⇒ w = 1

c2
γ T + c1

c2
λT . (107)

The friction force can be written as:

− λT = d1γ T + d2γ
⊥
T (108)

�⇒ γ ⊥
T = − 1

d2
λT − d1

d2
γ T , (109)

where d2 �= 0 follows from Eq. (106) with c2 �= 0.
The signs of c2 and d2 depend on the arbitrarily chosen
positive direction of the vectorsw and γ ⊥

T (see Fig. 15a)
and have no influence on the following consideration.
From the dissipation rate−λT

T γ T = d1‖γ T ‖2 > 0, we
obtain d1 > 0. Consecutive substitution of Eqs. (106)–
(109) together with Eq. (98) yields
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Fig. 15 a Relationship
between the direction of the
friction force λT , sliding
velocity γ T and eigenvector
w of the damping matrix. b
Ellipsoidal sets with rotated
force reservoir C

(a) (b)

LHw = LH
(
1

c2
γ T + c1

c2
λT

)

= LH
(
1

c2
γ T − c1

c2

(
d1γ T + d2γ

⊥
T

))

= − d2
c1
c2
lH2 Lγ ⊥

T

= − d2
c1
c2
lH2 L

(
− 1

d2
λT − d1

d2
γ T

)

= − c1
c2
lH2 L (−λT − d1 (−c1λT + c2w))

= c1d1l
H
2 w. (110)

It follows thatw is an eigenvector of LH . Since d1 > 0
and lH2 > 0, the sign of the corresponding eigenvalue
only depends on the parameter c1. The eigenvector w

is tangent to the boundary of the force reservoir C (see
Fig. 15a). Hence, for c1 < 0 in Eq. (106), the sliding
direction is in the interior of the tangent cone of the
force reservoir at −λT and the eigenvalue being the
product c1d1lH2 is negative. In contrast, if c1 is strictly
positive, then the sliding direction is not in the tangent
cone and the eigenvalue is strictly positive. If the sliding
direction is parallel to the boundary of the force reser-
voir (c1 = 0), then the zero eigenvalue has algebraic
multiplicity two (see Proposition 8). ��
The statement on the sign of the nonzero eigenvalue
given in Proposition 9 also holds true for the sign of
the nonzero eigenvalue of the Jacobian matrix given
in Eq. (87). In conclusion, we have that the matrix B
defined by Eq. (86), which is in general nonsymmetric,
is always singular, even if WT has full rank. This is
the case because, due to the assumption of Coulomb
friction without Stribeck effect, the friction force only
depends on the direction of sliding and not on its mag-
nitude. The zero eigenvalue always corresponds to the
eigenvector γ T . Furthermore, the nonzero eigenvalue

of B is shown to be negative for sliding directions in the
interior of the tangent cone of the force reservoir. This
is impossible in the case of an associated or collinear
friction law. However, with the extended normal cone
inclusion friction law, it is possible, even for convex
sets C and D as shown later in this work.

We can separate the generally nonsymmetric matrix
B into the symmetric damping matrix D and skew-
symmetric gyroscopic matrix G by

D = 1

2

(
B + BT

)
, G = 1

2

(
B − BT

)
. (111)

In the case of B having a nonzero eigenvalue, i.e., γ T
is not tangent to the boundary of the force reservoir,
the matrix B is diagonalizable and the trace of B is
given as the sum of the eigenvalues of B. For B having
a negative eigenvalue, we have tr B = tr D < 0. In
general, no statement on the stability can be made from
the trace of the damping matrix. However, it is possible
to formulate the following sufficient condition for the
instability of an equilibrium (see [69]).

Proposition 10 (Sufficient Condition for Instability)
Let the equation of motion of a mechanical system be
given by Eq. (85). The equilibrium of the system is
unstable if the condition

tr
(
M−1B

)
= tr

(
M−1D

)
< 0 (112)

is fulfilled.

Proof The system can be rewritten in first-order form
with the state vector x = [

qT q̇T
]T and the system

matrix

A =
[

0 I
−M−1K −M−1B

]
. (113)
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as ẋ = Ax. The equilibrium is unstable if the real
part of at least one eigenvalue of A is strictly positive
[70]. If Eq. (112) holds, then trA = −tr

(
M−1B

) =
−tr

(
M−1D

)
> 0 . With the trace being the sum of all

eigenvalues, there must be at least one eigenvalue with
strictly positive real part. ��
Wehave that the symmetricmassmatrix is positive def-
inite and the eigenvalues of B are zero and a negative
scalar. But since B is in general nonsymmetric and its
symmetric part D can have positive and negative eigen-
values, it is problematic to exploit trace inequalities or
the similarity-invariance of the trace for proving gen-
eral statements on the stability. However, for the gen-
eral class of systems having a mass matrix in the form
of a scalar multiple of the identity matrix, instability
of the equilibrium can be proven if B has a negative
eigenvalue. This is the case in the mass on belt system
given in Eq. (75).

Proposition 11 Let a linearized mechanical system be
described by Eq. (85) and let M = mI with m > 0. If
the only nonzero eigenvalue of B is negative, then the
equilibrium qeq is unstable.

Proof The negative eigenvalue of the matrix B causes
the trace of B to be negative.

For the admissible form of the mass matrix, we can
conclude that the instability condition Eq. (112) is ful-
filled. ��
Finally, a theorem stating the instability of an equilib-
rium for a system with anisotropic frictional behavior
can be given if the extended normal cone inclusion fric-
tion law is considered.

Theorem 2 (Anisotropic Friction-Induced Instability)
Let a mechanical system with a single contact point
with anisotropic Coulomb friction be described by
Eq. (75) with M = mI and m > 0. Let the friction
force be defined by the extended normal cone inclusion
friction law (see Definition 16). If for the relative slid-
ing velocity γ T �= 0 at an equilibrium of the system the
friction law yields

γ T ∈ intTC (−λT ), (114)

then the equilibrium is unstable.

Proof The theorem follows fromPropositions 9 and 11
and the above discussion. ��

Theorem 2 proves that even for a constant normal
force, a constant matrix of generalized force direction
and a constant force reservoir, an anisotropic friction
law can cause friction-induced instability.

Numerical Example

To illustrate the occurrence of anisotropic friction-
induced instability with the extended normal cone
inclusion friction law, the friction law with ellipsoidal
sets C and D is considered as an example [71]. The
dynamics is given by themass on belt system described
by Eqs. (75) and (76). For ellipsoidal sets centered
around the origin and having parallel principal axes,
the eigenvalues of the matrix B, defined by Eq. (86),
never have a negative real part. Instead, we consider
an ellipsoidal force reservoir rotated around the origin
with angle ζ as shown in Fig. 15b. The gauge and sup-
port functions of the sets are given with their positive
axis intercepts n1, n2, p1, p2 and rotation parameter ν

as

kC (−λT ) =
√(

λT1

n1

)2

+
(

λT2

n2

)2

+ νλT1λT2 , (115)

kD (−λT ) =
√(

λT1

p1

)2

+
(

λT2

p2

)2

, (116)

Ψ ∗
D (γ T ) =

√(
p1γT1

)2 + (
p2γT2

)2
. (117)

For an ellipsoidal force reservoir, the condition |ν| <

2/(n1n2) has to be fulfilled. An eigenvalue analysis
of the resulting singular damping matrix B of the
linearized system yields that the nonzero eigenvalue
becomes negative for certain relative sliding directions
if

|ν| >
p1 p2

p21 + p22

4

n1n2
. (118)

For p1 = p2, the two conditions for ν coincide. Thus,
for the collinear friction law for which the setD is cir-
cular, anisotropic friction-induced instability is impos-
sible. Whenever p1 �= p2, the conditions can be ful-
filled. Let the semi-axes ratios of both ellipsoidal sets
be 3/1. The critical range of the rotation angle ζ of the
force reservoir, allowing for a negative eigenvalue is
then found to be approximately 17◦ < ζ < 73◦. In the
following, ζ = 30◦ is considered. The friction law does
not guarantee instability for all sliding directions. Sta-
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Fig. 16 Stability analysis
for a rotation angle of the
force reservoir ζ = 30◦. a
Bifurcation diagram with
the angle of the belt
direction as parameter. b
Graphical representation of
the friction law

10

20

30

0° 40° 80° 120° 160°

(a) (b)

Fig. 17 a Limit cycle of the
displacement of the mass on
the moving belt for
ϕ = 50◦. b Friction force
and relative sliding velocity
of the mass during one cycle
and friction force
reservoir C

(b)(a)

bility of the equilibrium depends on the direction of the
belt movement defined by the angle ϕ (see Fig. 14b). A
bifurcation diagram showing the stability of the equi-
librium as a function of the bifurcation parameter ϕ

is plotted in Fig. 16a. Instability occurs in the critical
range of approximately 44◦ < ϕ < 76◦. Figure 16b
demonstrates that in the critical range of ϕ, the rela-
tive sliding velocity at the equilibrium γ T = χ is in
the tangent cone of the force reservoir, which agrees to
Theorem 2. For the limit values of the critical range of
ϕ, the relative sliding direction is tangent to the bound-
ary of the force reservoir at the corresponding value of
the friction force.

We consider the mass on belt system with unit mass
and stiffness matrix and an ellipsoidal force reservoir
with semi-axes 30 N and 10 N rotated around the ori-
gin with ζ = 30◦. For angles in the critical range, the
equilibrium is unstable. When a small perturbation is
applied, themass on the belt spirals away from the equi-
librium position and starts to oscillate. For the example
of ϕ = 50◦, a numerical simulation using Moreau’s
time-stepping scheme as described in Sect. 2.3, with
the extension given in Sect. 3.4, shows that after some

time, a limit cycle is reached. The limit cycle in the x-y
displacement plane is plotted in Fig. 17a. Since the belt
velocity is chosen low (v = 1m/s), the mass sticks to
the belt during each cycle, which results in the straight
segment of the limit cycle. For higher belt velocities,
limit cycles without stiction are observed. In the plot,
the position for every eighth time step is marked with a
cross. In Fig 17b, the corresponding friction forces and
relative sliding velocities are plotted together with the
force reservoir C . During the stick phase, the friction
force increases and linearly approaches the boundary
of the force reservoir, while the relative sliding velocity
is zero. When the friction force reaches the boundary,
the mass starts to slide and the friction force moves
along the boundary of C . At the end of the slip phase,
the friction force jumps to a value in the interior of the
force reservoir, and the cycle repeats.

5 Experimental analysis of anisotropic friction

Accurate modeling of anisotropic friction relies on
detailed experimental data of the frictional behavior
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Fig. 18 Tracking of the
sliding path of a disk on a
horizontal anisotropic
surface. a Schematic view
of the experiment. b Top
view of the sliding path of a
polymer disk on surface
ground steel

(a) (b)

of materials. This section starts with a discussion of
the surface conditions of the surface ground steel spec-
imens considered in the experiments. In Sect. 5.1, an
experiment used to study the qualitative behavior of a
disk sliding on an anisotropic surface is presented. Sec-
tion 5.2 deals with the measurement of friction forces
with a novel tribometer. Finally, the experimentally
obtained data is used to compare different friction laws
in Sect. 5.3.

Due to the broad field of application of machined
metals in engineering, the experimental work in this
paper is focused on the frictional behavior of sur-
face ground steel. Case hardening steel with the mate-
rial number 1.7139 and the chemical composition
16MnCrS5 is utilized. Since this tool steel has a high
wear resistance, it is often used for camshafts, gears
and other parts that are subjected to friction and wear.
The plain, flat surface is machined using a horizontal-
spindle (peripheral) surface grinder. Peripheral grind-
ing produces a straight, parallel pattern of grinding
grooves which is expected to cause anisotropic fric-
tional behavior. Using confocal microscopy, the grind-
ing grooves are found to be parallel with a mean spac-
ing of approximately 8µm and the arithmetic average
of the roughness profile orthogonal to the grooves is
Ra = 0.35µm.

5.1 Experimental analysis of sliding paths

To experimentally confirm that the friction force in the
case of anisotropic friction is not necessarily collinear
to the sliding direction, the sliding paths of disks sliding
on a surface having anisotropic friction properties are
analyzed. A schematic view of the experimental setup
is shown in Fig. 18a.

The anisotropic surface is a horizontal surface
ground steel disk, having a diameter of 30 cm. On top

of the steel plate, a disk with a diameter of 28 mm
and a height of 13 mm is accelerated and slides under
the influence of friction until it comes to a stop on the
plate. Not the whole bottom surface of the sliding disk
is in contact with the steel plate. Instead, three circu-
lar contact areas, each having a diameter of 7 mm, are
equally distributed on a circle with diameter 21 mm.
The material at the contact areas is polyvinyl chloride
(PVC) and the weight of the disk is 18 g. The accel-
eration unit, consisting of a linear solenoid and a cen-
tering device, is used to accelerate the disk at a speci-
fied angle ϕ with respect to the direction of the grind-
ing grooves. The initial velocity v0 of the sliding disk
depends on the applied voltage at the solenoid. The slid-
ing path is recorded with a Sony RX10 II camera with a
frame rate of 500 fps. For further image processing, the
recorded frames are filtered using a two-dimensional
Gaussian filter. A red mark centered on the top of the
sliding disk is tracked by evaluation of the RGB chan-
nels of the images. The convex hull of the detected
red pixels of the mark is determined using Delaunay
triangulation. To find the center of the mark, a circle
is fitted to the convex hull using the method of least
squares. Figure 18b shows an example of the tracked
points with a time interval of 2 ms between two points
and the last frame of the record in the background.
From the position of the tracked mark on the top of
the sliding disk, the displacement of the disk can be
calculated.

Figure 19a shows the resulting sliding paths for the
constant angle ϕ = 47◦ and varying initial velocities
v0. The sliding disk is clearly deflected from a straight
line. Higher initial velocities obviously lead to longer
sliding paths. In addition, the figure shows that the final
sliding direction in all cases is in the direction of the
grinding grooves. The same is seen in Fig. 19b for the
initial velocity v0 = 1.49m/s and different angles ϕ.
When the initial sliding velocity is parallel or orthog-
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Fig. 19 Measured sliding
paths of a PVC disk on a
horizontal surface ground
steel plate. a Results for
ϕ = 47◦ and different initial
velocities. b Results for
v0 = 1.49m/s and different
angles ϕ

(b)(a)

Fig. 20 Experimental
pin-on-disk setup for the
measurement of friction
forces

k

onal to the grinding grooves, the disk is not deflected.
Furthermore, it holds that the sliding path is longer
when the disk is sliding parallel to the grinding grooves
than when it is sliding orthogonal to them.

The experiments show that themagnitude of the fric-
tion force depends on the sliding direction. Moreover,
the deflection of the sliding disk proves that the direc-
tion of the friction force is also dependent on the sliding
direction. In general, anisotropic friction forces are not
collinear to the sliding direction.

5.2 Measurement of friction forces

The previous section is concerned with the qualitative
behavior of anisotropic dry friction. Next, an experi-
mental setup tomeasure the friction forces is described.
The experimental results can be used to determine the
force reservoir C and direction set D of the extended
normal cone inclusion friction law.

Experimental Setup

Various kinds of experimental setups to measure fric-
tion forces are used in the field of tribology. Such exper-
iments utilize linear or rotationalmotionwith a constant
or oscillating sliding velocity. Point, line and flat con-
tact areas are usually studied. Most conventional tri-
bometers measure the friction force solely in the direc-
tion of sliding, even if anisotropic frictional behavior
is considered (e.g., [72]). The findings of Sect. 5.1,
however, show that if anisotropic friction forces are
expected, it is not sufficient to measure the force in
just one direction, as the friction force is not collinear
with the sliding direction. The frictional behavior can
only be analyzed accurately by measuring the forces in
two directions in the contact plane, for different sliding
directions.

In this work, an experimental setup consisting of
a turning anisotropic surface and a stationary pin (pin-
on-disk tribometer) is utilized [71]. In contrast to many
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Fig. 21 Schematic diagram
of the experimental setup

tribometers, friction forces aremeasured in two orthog-
onal directions and the rotation angle of the disk is
recorded. During one full rotation of the disk, the
friction forces for all possible sliding directions are
observed. The pin-on-disk setup is shown in Fig. 20.
The rotating disk has a diameter of 30 cm. It is driven
with a synchronous servomotor with an integrated
resolver and a harmonic drive gear such that the max-
imum speed of the disk is 200 rpm. The normal force
is applied using weights that are placed on a linear ball
spline shaft. The friction forces in tangential and radial
direction of the disk, as well as the normal force are
measured using a 3D force sensor. A schematic dia-
gram of the experimental setup is shown in Fig. 21.

The tested pins have hemispherical or cylindrical
shapes (diameter dP ) with a maximum diameter of 7
mm, resulting in a maximum apparent contact area of
38mm2. The position of the pin in radial direction of
the rotating disk, denoted by rP , is variable in the range
from 60 to 149 mm and is constant during a measure-
ment. The ratio between the diameter and radial posi-
tion of the pin is chosen such that dP/rP � 1. Thus, the
influence of varying sliding velocities along the radius
of the disk,which leads to combined sliding anddrilling
friction, is minimized. For a given position, the relative
sliding velocity is adjusted by the rotation speed of the
disk.

During a measurement, the time signals of the fric-
tion forces in radial and tangential direction, the normal
force, and the rotation angle of the disk are recorded.

Signal Processing

The output signals F = [
Fx Fy Fz

]T of the force sen-
sor do not directly correspond to the components of the
contact force λ = [λr λt λN ]T in radial, tangential, and
normal direction. Crosstalk in multi-axis sensors pro-
duces an output signal in channels that do not correlate
with the direction of the applied load. To minimize the
effect, a compensation matrix T is used to transform

the channel output into the reference frame of the sen-
sor, i.e., λ = T F. The matrix is determined by apply-
ing known loads using weights in each of the reference
directions and calculating the inverse of thematrix con-
sisting of the measured values. For the sensor used in
thiswork, thematrixT is close to the identitymatrix but
has nonzero off-diagonal terms. The measured signals
are filtered using a zero-phase low-passButterworth fil-
ter. With the obtained data, it is possible to determine
the shapes of the force reservoir C and direction set
D that define the extended normal cone inclusion fric-
tion law (see Definition 16). The friction forces λr and
λt are measured in the I -frame of the sensor in radial
and tangential direction of the disk (see Fig. 22a). With
the measured current rotation angle ϕ of the disk, the
forces can be transformed into the co-rotating frame K
of the disk such that

[−λT1
−λT2

]
=

[
cosϕ − sin ϕ

sin ϕ cosϕ

] [
λt
λr

]
, (119)

Plotting the transformed forces in a diagram gives dis-
crete points on the boundary of the force reservoir C .
The friction lawdefines the sliding direction by normal-
ity to the setD . In the described experimental setup, the
relative sliding velocity is known to point in tangential
direction of the rotating disk. In the K -frame the vector
γ T can therefore be expressed as

γ T = ‖γ T ‖
[
cosϕ

sin ϕ

]
. (120)

We address points on the boundary ofD with the vector
rD as shown in Fig. 22b. With the magnitude rD and
tan θ = λT2/λT1 , the vector rD can be expressed in the
K -frame as a function of θ ,

rD (θ) = rD (θ)

[
cos θ

sin θ

]
. (121)
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Fig. 22 a Top view of the
rotating disk with
coordinate frames. b
Calculated sets C and D

(a) (b)

Fig. 23 Experimental
results for steel pin on
sandblasted steel disk. a
Measured friction forces in
tangential and radial
direction. b Calculated sets
C and D

(a) (b)

Its derivative with respect to θ ,

drD (θ)

dθ
:= r ′

D (θ) =
[
r ′
D (θ) cos θ − rD (θ) sin θ

r ′
D (θ) sin θ + rD (θ) cos θ

]
,

(122)

is tangential to the boundary of the set D . Since γ T is
normal to D , the condition

r ′
D (θ)⊥γ T ⇐⇒ r ′

D (θ) · γ T = 0 (123)

has to be met. Substitution of Eqs. (120) and (122) into
the scalar product for ‖γ T ‖ �= 0 yields the first-order
homogeneous differential equation

r ′
D (θ) − tan(θ − ϕ)rD (θ) = 0. (124)

for the magnitude of rD . From Fig. 22a, the relation
tan(θ −ϕ) = λr/λt is obtained. A solution of Eq. (124)
is found by separation of variables and integration giv-
ing

rD (θ) = rD (0)e
∫ θ
0

λr
λt
dθ̃

. (125)

As described in Sect. 3.4, the setD must be scaled such
that D ⊆ C . This is achieved by choosing an appro-
priate initial value rD (0). With the measured values of
one full rotation of the disk, the sets C and D can be
experimentally determined.

Experimental Results

The experimental setup can be used tomeasure the fric-
tion forces for various material combinations and sur-
face conditions. All experiments are conducted under
room temperature (20 − 22◦) and in the unlubricated
state. Before anisotropy is examined, a sample with a
frictional behavior that is expected to be isotropic is
analyzed.

Choosing a material and surface condition to repre-
sent isotropic frictional behavior is challenging since
most surfaces show a surface texture that has an influ-
ence on the frictional properties. In this work, a sand-
blasted steel disk is considered. A hemispherical steel
pin is pressed against the disk with a normal force of
λN = 14.0N. The relative sliding velocity depends
on the rotation speed of the disk and the pin position in
radial direction of the disk. It is set to ‖γ T ‖ = 50mm/s.
The measured friction forces in tangential and radial
direction, λt and λr , are shown in Fig. 23a. The tangen-
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Fig. 24 Experimental
results for PVC pin on
surface ground steel disk. a
Measured friction forces in
tangential and radial
direction. b Calculated sets
C and D

(a) (b)

Fig. 25 Experimental
results for steel pin on
surface ground steel disk. a
Measured friction forces in
tangential and radial
direction. b Calculated sets
C and D

(a) (b)

tial force is constant, whereas the radial force is approx-
imately zero. Small deviations are caused by irregular-
ities of the surface. As expected for an isotropic mate-
rial, the calculated sets C and D shown in Fig. 23b
are circular. Therefore, isotropic frictional behavior can
be described with the associated Coulomb friction law
with a circular force reservoir (see Eq. 33). Since the
magnitude of the friction force is independent of the
sliding direction, a single value for the friction coeffi-
cient can be determined as μ ≈ 0.14.

An example of an anisotropic surface is given by a
surface ground steel disk. Experiments with two differ-
ent contact partners are conducted. Each measurement
starts when the sliding direction is orthogonal to the
grinding grooves. In Fig. 24a, the results for a cylin-
drical PVC pin with a diameter of 7 mm are shown.
The experiment is performed with a normal force of
λN = 9.3N and a sliding velocity of ‖γ T ‖ = 50mm/s.
The friction forces exhibit a periodicity with two max-
ima per full rotation of the disk. This indicates an
orthotropic frictional behavior which is expected for
the surface ground disk due to symmetry. The tangen-
tial force component oscillates around a constant off-
set, while the radial force component shows a sawtooth

oscillation around zero. A similar behavior is found by
[22] for a different material combination. Maximum
and minimum values of the tangential force occur at
zero crossings of the radial force. For ϕ = kπ , where
k ∈ N, the pin is sliding orthogonal to the grinding
grooves and the tangential force is maximal. When the
pin is sliding along the grooves, the tangential force is
minimal. This behavior can be explained by the fact
that PVC is softer than steel and adapts to the grinding
grooves which hinders movement across the grooves.
The resulting sets are shown in Fig. 24b. The force
component orthogonal to the grooves is λT1 , whereas
λT2 points in the direction of the grooves. The sets sig-
nificantly differ from the circular shape in the isotropic
case. Both sets are similar to rounded rectangles. A
standard ellipse, as is often assumed for the force reser-
voir in the case of anisotropic friction in the literature,
does not accurately describe the experimentally deter-
mined sets. The friction coefficients for sliding direc-
tions orthogonal and parallel to the grinding grooves
are μ1 ≈ 0.54 and μ2 ≈ 0.48, respectively.

In addition to the measurements with a cylindri-
cal PVC pin, experiments using a hemispherical steel
pin are conducted. The results obtained using a nor-
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mal force of λN = 18.5N and a sliding velocity of
‖γ T ‖ = 100mm/s are shown in Fig. 25a. Again, the
tangential component oscillates around a nonzeromean
value, while the radial component shows a sawtooth
behavior. However, note that for the steel pin, the max-
imum values of the tangential force occur when the
pin is sliding along the grinding grooves. This behav-
ior agrees with results found in the literature. Mea-
surements performed by [73] show a higher friction
coefficient along the grinding grooves than in orthog-
onal direction for a steel ball on a surface ground steel
plate under lubricated conditions. Similar results are
obtained by [74] under dry conditions for a steel plate
with narrow groove-shaped textures. A physical expla-
nation might be a higher stiffness of the ridges between
the grooves in the longitudinal direction. The higher
stiffness hinders deformation and motion of the pin in
the direction parallel to the grinding grooves.

While in the literature usually only sliding along
or across the grooves is regarded, the present study
considers all sliding directions. The calculated sets are
shown in Fig. 25b. The shapes of C and D substan-
tially differ from each other. This behavior can not be
represented by an associated friction law. The extended
normal cone inclusion friction law, however, gives an
accurate description of the frictional behavior.

5.3 Experimental validation of the friction law

The experiments described in the previous sections
allow for an experimental validation of the extended
normal cone inclusion friction law. From the measured
friction forces of the contact pair PVC—surface ground
steel, the force reservoir C and direction set D can be

Table 1 Semi-axes parameters and roundness factors of fitted
sets

Set Semi-major Semi-minor Roundness

Ellipsoidal C 5.00 N 4.49 N 2

Superellipsoidal C 4.99 N 4.25 N 2.94

Superellipsoidal D 1.84 1.19 2.51

derived. The experimentally determined sets in com-
bination with the friction law are used for a numerical
simulation of a disk sliding on an anisotropic surface.
The result can be directly compared to the experimen-
tally obtained sliding path for the same material com-
bination and initial condition.

Often only the friction coefficients in the directions
orthogonal and parallel to the grinding grooves are
known and an ellipsoidal force reservoirC is assumed.
Figure 26a shows such a set for the measured values of
the PVC pin on the surface ground disk (see Fig. 24b)).
A better fit of the measured values is obtained with
the method of least squares for a superellipsoidal set
as shown in Fig. 26b. In addition, a fit for the set D is
plotted in Fig. 26c. The parameters of the sets are given
in Table 1.

The experimentally determined sets are used for
numerical simulations with different friction laws.
The associated friction law is considered with the
ellipsoidal and superellipsoidal force reservoir. The
collinear friction law is formulated in combinationwith
the superellipsoidal set. Finally, the extended normal
cone inclusion friction law with two superellipsoidal
sets is considered. The graphical representation of the
friction laws is shown in Fig. 26. Numerical simula-
tions of a sliding disk are performed with the time-

(a) (b) (c)

Fig. 26 Graphical representation of friction laws with fitted
force reservoirs C and direction set D for measured friction
forces of PVC on surface ground steel. a Associated friction law

with ellipsoidal C . b Associated and collinear friction law with
superellipsoidal C . c Extended normal cone inclusion friction
law with superellipsoidal C and D
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Fig. 27 Measured sliding
path of PVC disk on surface
ground steel and
numerically obtained sliding
paths using different friction
laws with parameters from
friction force measurement

stepping method explained in Sects. 2.3 and 3.4. The
initial sliding velocity v0 = 1.52m/s and the orienta-
tion of the semi-axes with respect to the initial sliding
direction ϕ = 58◦ agree with the parameters of a mea-
sured sliding path of a PVC disk. The results are plotted
in Fig. 27. Note that for reasons of clarity, only every
fifth data point of the measured sliding path is plotted.
The time between two plotted data points is 10ms.

The results show a very good agreement of the
measured sliding path and the path obtained with the
extended law. Both length and deflection of the sliding
path are similar. For the other friction laws, the deflec-
tion of the sliding path is much smaller. The collinear
friction law obviously causes no deflection at all.

6 Conclusions

This work contributes to three research fields: model-
ing and simulation of nonsmooth mechanical systems,
friction-induced instability and experimental analysis
of anisotropic frictional behavior. It has been shown
that all associated friction laws, i.e., friction laws char-
acterized by normality of the sliding direction to the set
of admissible friction forces are dissipative and that for
a given force reservoir the associated flow rule maxi-
mizes the rate of dissipation. Different frictional behav-
ior can be described by various shapes of the constant
force reservoir. However, associated friction laws are
limited to convex force reservoirs. Motivated by the
study of non-associated frictional behavior found in
the literature, in this work an extended normal cone
inclusion friction law has been formulated using tools
of convex analysis. The force law enables the descrip-
tion of set-valued anisotropic friction laws with pos-
sibly non-convex but star-shaped force reservoirs. The
mathematical framework allows for the direct imple-

mentation of the force law in efficient numerical time-
stepping schemes.

Furthermore, the stability of systemswith anisotropic
friction has been analyzed. From the maximal mono-
tonicity of the associated Coulomb friction law, it fol-
lows that the law is unable to cause instability of
an equilibrium. However, an eigenvalue analysis has
proven that the extended normal cone inclusion law
can lead to anisotropic friction-induced instability if the
sliding direction is in the tangent cone of the force reser-
voir.
This is impossible for collinear force laws but can occur
even for convex force reservoirs. Anisotropic friction-
induced instability is a novel instability phenomenon
that potentially occurs in systems with constant nor-
mal force and no dependence on the magnitude of the
sliding velocity.

Finally, two experimental setups for the study of an-
isotropic frictional behavior have been proposed.Using
a high-speed camera, it has been shown that, in general,
a disk sliding on an anisotropic surface is deflected.
This is caused by anisotropic friction forces that are
not acting parallel to the sliding direction. In addition,
friction forces have been measured in two orthogonal
directions with a pin-on-disk tribometer. The described
experimental procedure and data processing method
allow for the visualization of the friction force reser-
voir for different contact pairs and surface conditions.
Complex shapes of the force reservoir and no normal-
ity of the sliding direction to the force reservoir have
been found. The experimental results have confirmed
the benefit of the extended normal cone inclusion fric-
tion law.
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