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ABSTRACT
This paper studies bifurcations in systems with impact and

friction, modeled with a rigid multibody approach. Knowledge
from the field of Nonlinear Dynamics is therefore combined with
theory from the field of Nonsmooth Mechanics. The nonlin-
ear dynamics is studied of a commercial wooden toy. The toy
shows complex dynamical behaviour but can be studied with a
one-dimensional map, which allows for a thorough analysis of
the bifurcations.

INTRODUCTION
Impact with friction can be present between two or more

bodies of a system. Periodic impact of colliding bodies or rub-
bing of bodies in contact can be highly detrimental to mechani-
cal systems, like rattling in gear boxes and stick-slip phenomena
in cutting processes. On the other hand, many mechanical sys-
tems rely on impulsive and stick-slip processes to perform their
intended functions (a hammer drill for instance). Modeling of
systems with impact and friction receives increasingly more at-
tention in literature, due to the need to predict, control or avoid
vibrations in systems with impact and friction. The global dy-
namics of the system is therefore of interest, and not the tribolog-
ical processes of the contact surface, which allows for simplified
contact models.

A rigorous way to deal with systems with impact and fric-
tion is the rigid multibody approach [Brogliato, 1999, Glocker,
1995, Pfeiffer and Glocker, 1996]. This approach models the
ll correspondence to this author.
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system as a set of rigid bodies, interconnected by joints, springs,
dashpots and nonlinear couplings. Wave effects are neglected in
the rigid body approach. Impact between the bodies and stick-
slip transitions of bodies in contact are considered to be instan-
taneous and are described by contact laws. Newton’s impact law
or Poisson’s law are usually taken as impact law in normal direc-
tion. Newton’s law relates post-impact velocities to pre-impact
velocities with a restitution coefficient. Poisson’s law treats the
impact as a compression and expansion phase and relates the
impulse stored during compression to the impulse released in
the expansion phase with a restitution coefficient. Amontons-
Coulomb’s law, in which the friction force is in the opposite di-
rection of the relative velocity and proportional to the normal
force, is usually taken as contact law in tangential direction.
The restitution coefficient and friction coefficient can be mea-
sured in a straightforward manner from simple experiments [Bei-
telschmidt, 1999]. The rigid body approach avoids stiff differ-
ential equations and is therefore more economical than regular-
ization methods. This advantage is at the cost of a more com-
plex mathematical formulation. Multibody systems with mul-
tiple contacts bring forth a combinatorial problem of large di-
mensions. If the state in one contact changes, for example from
contact to detachment or from stick to slip, all other contacts are
also influenced, which makes a search for a new set of contact
configurations necessary. A standard way to perform the search
for a new contact configuration is to formulate the problem as a
Linear Complementarity Problem, for which standard numerical
solvers are available. If the transition times of impact and stick-
slip transitions are small in comparison with the times between
transitions, and if wave effects can be neglected, then the rigid
Copyright  2001 by ASME



body approach can be expected to give good results.

As a second analysis step, one might not only be interested
in time integration, but also in studying stable and unstable equi-
libria and periodic solutions and their dependencies on parame-
ters of the system. Nonlinear analysis methods, such as shooting
and path-following techniques, have been developed in the field
of Nonlinear Dynamics, to find periodic solutions and to follow
branches of periodic solutions for varying system parameters. A
branch of periodic solutions can fold or bifurcate at critical val-
ues of the system parameter. This qualitative change is called
‘bifurcation’. Bifurcations are essential for understanding why
vibrations are created, disappear or change qualitatively when
a design variable of the system is varied. The theory of bifur-
cations is therefore important for the analysis of the dynamical
behaviour and design of systems.

Unilateral contact laws, as are used in the rigid body ap-
proach, lead to nonsmooth mathematical models with discon-
tinuities in the generalized velocities due to impacts. Bifurca-
tions in smooth systems are well understood [Guckerheimer and
Holmes, 1983] but little is known about bifurcations in nons-
mooth systems [Leine, 2000]. Literature on bifurcations in non-
smooth mechanical systems seems to be divided in two groups:

1. Bifurcations in systems with friction, which belong to the
class of Filippov-systems. Literature on this topic is vast
(for instance [Dankowicz and Normark, 2000, Galvanetto
and Knudsen, 1997, Leine and van Campen, 1999), Leine
and van Campen, 2000, Popp et al., 1995, Van de Vrande et
al., 1999,Wiercigroch, 1996,Yoshitake,and Sueoka, 2000]).
A general theory for bifurcations in Filippov-systems is
not available but attempts to explore in that direction are
made [di Bernardo et al., 1999, Leine et al., 2000, Leine,
2000].

2. Bifurcations in systems with impact [Foale and Bishop,
1994, Ivanov, 1996, Meijaard, 1996, Nordmark, 1997, Pe-
terka, 1996]. The impacts are almost always considered to
be frictionless.

Literature on bifurcations in systems with combined friction and
impact is hardly available. An impact oscillator with friction is
studied in [Blazejczyk-Okolewska and Kapitaniak, 1996] but the
impact and friction are in different contact points for this system
and the contact problem is therefore decoupled.

The present paper studies bifurcations in a geometrically
simple dynamical system with impact and friction occurring in
the same contact. The system is a mechanical wooden toy, which
shows limit cycling behaviour, and can very well be modeled
with the rigid body approach. Although the toy might look sim-
ple at first sight, its dynamics is rather complicated and governed
by non-standard bifurcations.
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Figure 1. Flowchart of the algorithm.

MATHEMATICAL MODELING OF IMPACT WITH FRIC-
TION

The dynamics of a constrained multibody system can be ex-
pressed by the equation of motion

M(t;q)q̈�h(t;q; q̇)�∑
i2IS

(wNλN +wT λT )i = 0; (1)

where M is the symmetric mass matrix, q the vector with gen-
eralized coordinates, h the vector with all smooth elastic, gyro-
scopic and dissipating generalized forces and λλλN and λλλT the vec-
tors with normal and tangential contact forces. The time-variant
set IS contains the nS indices of the potentially active constraints.
The constraints are specified by the normal contact distances gNi

and the tangential relative velocity ġTi of contact point i. The
contact velocities and accelerations in normal and tangential di-
rection can be expressed in the generalized velocities

�
ġN
ġT

�
=

�
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WT

�
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ŵT
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2 IR2nS

; (2)
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g̈N
g̈T

�
=
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q̈+

�
w̄N

w̄T

�
2 IR2nS

: (3)

A mathematical theory for the dynamics of rigid bodies with
Poisson-Coulomb impact is formulated in [Glocker, 1995,
Copyright  2001 by ASME



Figure 2. The Woodpecker Toy.

Glocker, 2000, Pfeiffer and Glocker, 1996]. The contact prob-
lem for stick-slip transitions, detachment and impact are formu-
lated in [Glocker, 1995, Pfeiffer and Glocker, 1996] as a Linear
Complementarity Problems. A linear complementarity problem
(LCP) [Cottle and Dantzig, 1968] is a set of linear equations

y = Ax+b (4)

subjected to the complementarity conditions

y� 0; x� 0; yTx = 0; (5)

for which the vectors x and y have to be solved for given A
and b. The impact law of Poisson is applied, consisting of an
compression phase during which impulse is stored and an expan-
sion phase during which part of the stored impulse is released.
Coulomb’s friction law is applied for the tangential constraint.

Figure 1 shows how the order of the different phases in the
integration procedure. The equation of motion for given index
sets is numerically integrated until an impact, stick-slip or de-
tachment event occurs. If the event is an impact event, the LCP’s
for compression and expansion have to be solved, after which the
new generalized velocities q̇ are known. Subsequently, a LCP
on acceleration level has to be solved, because the impact might
cause stick-slip transitions or detachment of other contacts. The
new accelerations q̈ are known after having solved all necessary
LCP’s. The new index sets can then be setup and a new integra-
tion phase can start.
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Figure 3. Model of the Woodpecker Toy (not on scale).

THE WOODPECKER TOY
A Woodpecker Toy (Figure 2) hammering down a pole is a

typical system with limit cycles combining impacts, friction and
jamming. The toy consists of a sleeve, a spring and the wood-
pecker. The hole in the sleeve is slightly larger than the diameter
of the pole, thus allowing a kind of pitching motion interrupted
by impacts with friction.

The scientific study of this toy dates back to [Pfeiffer, 1984].
At that time one was not able to deal with systems with im-
pact and friction. A heuristic model was presented in [Pfeiffer,
1984], in which the friction losses were determined experimen-
tally. The lack of a more general theory gave the onset for the
work in [Glocker, 1995, Pfeiffer and Glocker, 1996], in which a
mathematical theory for impact problems with friction is formu-
lated. In [Glocker, 1995,Pfeiffer and Glocker, 1996] a model for
the Woodpecker Toy was presented as example for the developed
theory. In this section a bifurcation analysis will be given of the
model presented in [Glocker, 1995, Pfeiffer and Glocker, 1996],
with the aid of a one-dimensional mapping. First the model will
be briefly given.

The Woodpecker Toy is a system which can only operate
in the presence of friction as it relies on combined impacts and
jamming. Restitution of the beak with the pole is not essential for
a periodic motion but enlarges the resemblance with the typical
behaviour of a woodpecker. The motion of the toy lies in a plane,
which reduces the number of degrees of freedom to model the
system.

The system (Figure 3) possesses three degrees of freedom
q =

�
y ϕM ϕS

�T
, where ϕS and ϕM are the absolute angles of

rotation of the woodpecker and the sleeve, respectively, and y
describes the vertical displacement of the sleeve. Horizontal dis-
placement of the sleeve are negligible. Due to the clearance be-
Copyright  2001 by ASME



tween sleeve and pole, the lower or upper edge of the sleeve may
come into contact with the pole, which is modeled by constraints
2 and 3. Furthermore, contact between the beak of the wood-
pecker with the pole is expressed by constraint 1. The special
geometry of the design enables us to assume only small devi-
ations of the rotations. Thus a linearized evaluation of the sys-
tem’s kinematics is sufficient and leads to the model listed below.
The mass matrix M, the force vector h and the constraint vectors
w follow from Figure 3 in a straightforward manner. They are

M =

2
4(mS +mM) mSlM mSlG

mSlM (JS+mSl2
M) mSlMlG

mSlG mSlMlG (JS +mSl2
G)

3
5 (6)

h =

2
4 �(mS+mM)
�cϕ(ϕM �ϕS)�mSglM
�cϕ(ϕS�ϕM)�mSglG

3
5 (7)

gN1 = (lM + lG� lS� r0)�hSϕS

gN2 = (rM � r0)+hMϕM

gN3 = (rM � r0)�hMϕM

(8)

wN1 =

2
4 0

0
�hS

3
5
; wN2 =

2
4 0

hM

0

3
5
; wN3 =

2
4 0
�hM

0

3
5 (9)

wT 1 =

2
4 1

lM
lG� lS

3
5
; wT 2 =

2
4 1

rM

0

3
5
; wT 3 =

2
4 1

rM

0

3
5 (10)

w̄N = ŵN = w̄T = ŵT = 0: (11)

Results
We consider for the numerical analysis of the Woodpecker

Toy the same data set as taken in [Glocker, 1995, Pfeiffer and
Glocker, 1996]:

Dynamics: mM = 0:0003 kg; JM = 5:0 10�9 kg m2;
mS = 0:0045 kg; JS = 7:0 10�7 kg m2; g = 9:81 m/s2;
Geometry: r0 = 0:0025 m; rM = 0:0031 m;
hM = 0:0058 m; lM = 0:010 m; lG = 0:015 m;
hS = 0:020 m; lS = 0:0201 m;
Contact: µ1 = µ2 = µ3 = 0:3; εN1 = 0:5; εN2 = εN3 = 0:0;
4
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Figure 4. Time history of the coordinates.
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Figure 5. Phase space portraits.

The motion of the sleeve and woodpecker are limited by the con-
tacts, jϕMj � (rM�r0)=hM = 0:1034 rad and ϕS � (lM+ lG� lS�
r0)=hS = 0:12 rad. The system has a (marginally stable) equilib-
rium position, in which the woodpecker is hanging backward on
the jamming sleeve, q =

�
y �0:1034 �0:2216

�T
. The jamming

of the sleeve with the pole at that position is only possible if
µ2 � 0:285. The equilibrium point is marginally stable because
no damping is modeled between woodpecker and sleeve, but is
stable in practice due to ever existing dissipation in reality.

Using the above data set, the motion of the woodpecker was
simulated and a stable periodic solution was found with period
time T = 0:1452 s. The time history of two periods of this peri-
odic solution is shown in Figure 4 and the corresponding phase
Copyright  2001 by ASME
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Figure 6. Phase space portraits.

space portraits in Figure 5 and 6. The numbers 1–8 correspond
with the frames depicted in Figure 7. Let t j denote the time at
frame j. Just before t = t1 the sleeve is jamming and the wood-
pecker is rotating upward, thereby reducing the normal force in
contact 2. At t = t1, the sleeve starts sliding downward, due to the
reduced normal contact force, and contact is lost at t = t2. In the
time interval t2 < t < t3, the toy is in free fall and is quickly gain-
ing kinetic energy. The first upper sleeve impact occur at t = t3
but the contact immediately detaches. A beak impact occurs at
t = t4, which changes the direction of motion of the woodpecker.
The beak impact is soon followed by the second upper sleeve
impact at t = t5. Detachment of the upper sleeve contact occurs
at t = t6. The toy is again in unconstrained motion during the
time interval t6 < t < t7. A high frequency oscillation can be
observed during this time interval and corresponds to the 72,91
Hz eigenfrequency of the woodpecker–spring–sleeve combina-
tion. Impact of the lower sleeve occurs at t = t7, after which the
sleeve is sliding down. The woodpecker is rotating downwards,
increasing the normal force, and jamming of the sleeve starts at
t = t8. The succession of sliding and jamming of contact 2 trans-
fers the kinetic energy of the translational motion in y direction ,
obtained during free falling, into rotational motion of the wood-
pecker. The woodpecker therefore swings backward when the
lower sleeve contact jams, stores potential energy in the spring
and swings forward again, t = t1 +T , which completes the peri-
odic motion.

Note that due to the completely filled mass matrix M, an
impact in one of the constraints affects each of the coordinates,
which can be seen by the velocity jumps in the time histories and
phase portraits of Figure 5 and 6.

The system has three degrees of freedom, which sets up a 6-
dimensional state space (q; q̇) 2 IR6. However, the accelerations
q̈ are only dependent on z = (ϕM;ϕS; q̇) 2 IR5 and not on the
vertical displacement y. The 6-dimensional system can therefore
5
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upper sleeve impact,
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body rotating downward
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impact
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3.

4.

lower sleeve stick to slip transition,
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lower sleeve detachment,
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body rotating upward

upper ,
sleeve rotating downward after impact,
body rotating upward

sleeve impact with detachment

beak impact with detachment,
sleeve rotating upward after impact,
body rotating downward after impact

Figure 7. Sequence of events of the Woodpecker Toy.

be looked upon as a set of a 5-dimensional reduced system ż =
f(z) and a one-dimensional differential equation ẏ= g(z). The on
average deceasing displacement y can never be periodic. With a
periodic solution of the system we mean periodic motion of the
5 states z.
Copyright  2001 by ASME



The reduced system f(z) possesses a set of solutions

ϕM = ϕS; jϕMj � (rM � r0)=hM = 0:1034;
ϕ̇M = 0; ϕ̇S = 0; ẏ = gt+ ẏ0:

which correspond with a free falling motion of the toy along the
shaft. This free falling can indeed be observed in the real toy,
abruptly ended by an impact on the basement on which the shaft
is mounted.

During the interval t8 < t < t1+T , the sleeve is jamming and
the woodpecker achieves a minimum rotation of ϕS =�0:53 rad.
The rotation ϕS is the only non-constrained degree of freedom
during jamming, which allows for a one-dimensional Poincaré
mapping. Consider the 4-dimensional hyperplane Σ as a section
of the 5-dimensional reduced phase space defined by

Σ = f(ϕM;ϕS; q̇) 2 IR5
j ϕM =�(rM � r0)=hM; q̇ = 0g: (12)

If the woodpecker arrives at a local extremum for ϕS during jam-
ming, then the state z must lie on Σ. From a state zk 2 Σ, a
solution evolves which may return to Σ at ϕS = ϕSk+1 . We define
the one-dimensional first return map P1 : Σ! Σ as

ϕSk+1 = P(ϕSk): (13)

Periodic solutions of period–1 and equilibria, which achieve a
local extremum during jamming of the sleeve, are fixed points of
P1. Periodic solutions might exist, at least in theory, which do
not contain a jamming part during the period (for instance when
the friction coefficient µ2 is small). Those types of solutions can
not be found by means of this Poincaré map. Still, the map P1 is
suitable to study the manufacturers intended operation of the toy,
which is a period–1 solution with jamming, and deviations from
that.

The Poincaré map P1 for εN1 = 0:5 (being the restitution
coefficient of the beak) is shown in Figure 8, obtained by numer-
ical integration with 1000 initial values of ϕSk (uniformly dis-
tributed between �2:5 < ϕS < 0:11 rad). The map appears to
be very irregular and shows two distinct dips at ϕS =�1:23 rad
and ϕS =�0:27 rad. These starting conditions lead to solutions
evolving to the free falling motions along the shaft, and will con-
sequently never return to the hyperplane Σ. Starting conditions
around these singularities lead to solutions which fall for some
time along the shaft, but finally return to constrained motion and
to the section Σ. The kinetic energy, built up during the free fall,
causes the woodpecker to swing tremendously backward, which
explains the form of the dip: the smaller the return value ϕSk+1 ,
the longer the fall time was. The map has no value at the center of
the dip, because the solution does not return to the Poincaré sec-
tion. The dips are infinitely deep, but become smaller and steeper
6
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Figure 8. Poincaré map, εN1 = 0:5.

near the center. A finite depth is depicted due to the finite numer-
ical accuracy. The most right dip consists of solutions which are
directly trapped by the falling motion, whereas the left dip con-
sists of solutions which first have an upper-sleeve impact before
being trapped. More dips exist left of the depicted domain, all
characterized by a sequence of events before the solution comes
into free fall.

Several points can be observed in Figure 8 on which the map
is discontinuous (for instance at ϕSk = �0:76 and �2:35 rad).
The solution from a starting point on the section Σ undergoes
several events (impacts, stick-slip transitions) before returning to
Σ. The order, type and number of events in the sequence changes
for varying initial conditions ϕSk . When the order of two impact
events changes at a critical initial condition ϕSc , then a disconti-
nuity in the solution occurs with respect to the initial condition.
This discontinuity with respect to initial condition causes dis-
continuities in the Poincaré map. At the values ϕSk =�0:76 and
�2:35 rad for instance, the order of an upper sleeve impact and
a beak impact are interchanged.

The Poincaré map P1 has been calculated for 94 different
values (not uniformly distributed) of the beak restitution coef-
ficient εN1 (where each mapping costs about one hour computa-
tion time). A bifurcation diagram was constructed from the set of
mappings P by finding the crossings of the maps with the diago-
nal ϕSk+1 = ϕSk . Each crossing is, for a locally smooth mapping,
a stable or unstable periodic solution or equilibrium. The stabil-
ity depends on the slope of the mapping at the crossing with the
diagonal. The map P1 is discontinuous and also the jumps in the
map can have crossings with the diagonal. Those discontinuous
crossings are, however, not periodic solutions or equilibria.

Figure 9 shows the period–1 solutions of the Woodpecker
Toy for varying values of the restitution coefficient of the
Copyright  2001 by ASME
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Figure 10. Bifurcation diagram, period–1 and 2 solutions.

beak εN1. Black lines indicate stable periodic solutions and light
gray unstable periodic solutions. The woodpecker can oscillate
with small amplitude around the equilibrium point. These solu-
tions are centers, due to the lack of damping between sleeve and
woodpecker, and are indicated by a dark gray band in Figure 9
around the equilibrium at ϕS = �0:2216. Discontinuous cross-
ings of the map with the diagonal are indicated by dotted lines
and connect stable and unstable branches of periodic solutions.
Two stretched islands, I1 and I2, with unstable periodic solutions
and discontinuous crossings can be observed in Figure 9. They
are created by the two dips in the Poincaré map (Figure 8). It
should be noted that the bifurcation diagram in Figure 9 is not
7
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complete. Small islands and additional branches of periodic so-
lutions/discontinuous crossings might have been lost by the finite
accuracy and the finite domain of the P map. More islands prob-
ably exist due to additional dips left of the considered domain.

From the P1 maps one can, in theory, construct higher order
maps Pj, j= 2;3; :: by mapping P1 onto itself, but the accuracy of
the maps decrease for increasing order due to the finite discretiza-
tion of P1. The set of P2 maps were constructed from the set of
maps P1. Figure 10 shows the period–2 solutions/discontinuous
crossings (and also the period–1 solutions/crossings), obtained
by finding the crossings of P2 with the diagonal. Many addi-
tional branches appear in Figure 10, some branches of period–2
solutions, others discontinuous crossings of P2 with the diagonal.
Higher order branches (3 and higher) most surely also exist, but
could not be computed accurately from P1.

Branches of period–2 solutions appear in Figure 10 in pairs,
as can be expected. It must hold for a period–2 solution that
ϕSk+2 = ϕSk and ϕSk+3 = ϕSk+1 . In general holds that ϕSk+1 is
not equal to ϕSk and they therefore appear as two different cross-
ings in the P2 map and as different branches in the bifurcation
diagram. The two branches of one pair just contain the same
periodic solution but shifted in time.

Very remarkable is that discontinuity crossings of P2 do not
appear in pairs, as can be seen for example at point A in Fig-
ure 10. At point A the branch of unstable period–1 solutions
turns around and becomes a branch of P1 discontinuity cross-
ings, after which it is folded back to a stable branch at point B. A
branch of P2 discontinuity crossings bifurcates from the period–1
branch at A and makes a connection with point C. The P2 discon-
tinuity branch between A and C is clearly single (not a pair).

More insight into what exactly happens at the non-
conventional bifurcation point A can be gained from a local anal-
ysis of the mappings P1 and P2. Figure 11 shows a zoom of P1

and P2 around the crossings of interest for εN1 = 0:125, which
Copyright  2001 by ASME



is between A and C. The map P1 is locally discontinuous and
crosses the diagonal three times, leading to a stable and unstable
solution and a discontinuity crossing. Studying the movement
of the map for changing εN1, the map appeared to shift upward
for increasing εN1. We will now study a simple piecewise linear
discontinuous map, which locally approximates the numerically
obtained P1-map.

Consider the piecewise linear mapping, dependent on the
constants a > 1 and r,

PL
1 (x) =

(
�2+ r x � 0

�ax+ r x > 0
(14)

which is depicted on the left in Figure 12 for a = 5
4 and r = 1.

The map shifts upward for increasing values of r. The map has
two regular crossings with the diagonal

x =
r

1+a
> 0; x =�2+ r < 0

for r > 0 and r < 2 respectively. A discontinuous crossing exists
at x = 0 for 0 < r < 2. Mapping PL

1 (x) onto itself gives PL
2 (x):

PL
2 (x) =

8><
>:
�2+ r x � 0

a2x+(1�a)r 0 < x < r
a

�2+ r x � 0

(15)

and is depicted in the right picture of Figure 12. The PL
2 (x) map

is again piecewise linear in x and has two discontinuities at x= 0
and x = r

a . The same regular crossings of PL appear of course in
PL

2 . Additionally, PL
2 (x) has a single discontinuous crossing with

the diagonal at x = r
a but does not contain a discontinuous cross-

ing at x = 0, like PL
1 . Note that PL

1 and PL
2 look indeed similar

to P1 and P2 in Figure 11. Varying r gives the bifurcation dia-
gram depicted in the right of Figure 12, which is similar to what
can be observed in Figure 10 around point A. Point B is also re-
trieved from the piecewise linear analysis. The local analysis by
the piecewise linear map only predicts the behaviour in a small
neighbourhood of point A. The bifurcation at point C is due to
other changes in the map P1 and can therefore not be observed in
Figure 12.

Remark that regular crossings of PL are also regular cross-
ings of PL

2 , because they correspond to the periodic solutions and
equilibria of the system. Discontinuous crossings of PL are in
general not discontinuous crossings of PL

2 .
Branches of higher order discontinuous crossings of PL

j , j >
2, also start at point A. It can therefore be expected that these
branches can also be found for the Woodpecker Toy if the higher
order maps would be calculated accurately.
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Figure 12. Analytical analysis of point A in Figure 10.

Bifurcation point A shows behaviour similar to a fold bi-
furcation, at which a branch is folded around, albeit that the
branch changes to a branch of discontinuous crossings after fold-
ing. Apart from the folding action, also a branch with P2 discon-
tinuous crossings bifurcate from the period–1 branch. In some
sense, this behaviour is similar to a flip or period-doubling bi-
furcation, at which a period-doubled solution bifurcates from the
period–1 branch. The bifurcation point A therefore shows both
folding and a kind of flip action. This is not in conformity with
the bifurcation theory for smooth systems, which predicts that
bifurcations are either fold or flip bifurcations (or of other type).
Bifurcation point A is therefore a non-conventional bifurcation
point. A similar bifurcation point, showing both fold and flip
action, was found for a system of Filippov-type in [Leine et al.,
2000, Leine, 2000]. The combined fold–flip behaviour is related
to the tent map, which is more elaborately explained in [Leine et
al., 2000, Leine, 2000]. Remark that the P1 map shows indeed a
peak, similar to the tent map, although one flange is vertical.

CONCLUSIONS
The nonlinear dynamics of the Woodpecker Toy was stud-

ied in this paper. The analysis is not complete, because many
other parameters can be varied. The chaotic attractors are also
not considered. Still, the variation of εN1 gives more insight
Copyright  2001 by ASME



in the complex dynamical phenomena present in the system. A
one-dimensional mapping was found for the Woodpecker Toy.
This mapping turns out to be very valuable for the construction
of bifurcation diagrams, because it detects not only the periodic
solutions but also the discontinuity crossings. Branches of dis-
continuity crossings appear to connect branches of periodic so-
lutions and are therefore a new kind of objects in the bifurca-
tion diagram, different from attractors. Furthermore, the one-
dimensional mapping can be used to gain a better understanding
of non-conventional bifurcation points.
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