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Summary. The classical form of Hamilton’s principle holds for conservative systems with perfect bilateral constraints. In thispaper we
derive Hamilton’s principle for perfect unilateral constraints (involving impulsive motion) using so-called weak and strong variations.
The resulting principle has the form of a variational inequality.

Introduction

The classical principle of Hamilton is the variational problem

s(q) =

∫ tf

t0

L(q, q̇)dt → stationary (1)

with boundary conditionsq(t0) = q0 andq(tf ) = qf and Lagrange functionL(q, q̇) = T (q, q̇) − V (q), whereT is a
quadratic form inq̇. The stationarity conditionδs = 0 of the principle of Hamilton leads after partial integration to the
variational equality

∫ tf

t0

(

∂L

∂q
−

d
dt

∂L

∂q̇

)

δq dt = 0 ∀δq (2)

and therefore to the Euler-Lagrange equations∂L
∂q

− d
dt

∂L
∂q̇

= 0 for a conservative system with perfect bilateral constraints.
In this paper we derive Hamilton’s principle for perfect unilateral constraints (involving impulsive motion) using so-called
strong variations. The resulting principle has the form of avariational inequality and is valid for elastic impact laws.
Several attempts have been made in literature to generalizeHamilton’s principle for mechanical systems with perfect
unilateral constraints involving impulsive motion [3–7].This has led to a number of different variants of Hamilton’s
principle, some expressed as variational inequalities. Upto now, the connection between these different principles has
been missing. The current paper gives a unified framework of Hamilton’s principle as variational inequality by using the
concept of weak and strong virtual displacements. This conference proceeding is an abridged version of [2].

A mechanical system with unilateral constraints

Consider a mechanical system withn degrees of freedom and letq(t) ∈ R
n describe the motion of the system on

the compact time-intervalI = [t0, tf ]. The mechanical system is unilaterally constrained such that the generalized
coordinates remain in an admissible setK, i.e. q(t) ∈ K for all t. The setK is closed, not necessarily convex, and we
will assume that it is tangentially regular. The velocityu(t) is considered to be of bounded variation, which means that
we can define the left limitu−(t) and right limitu+(t) for each timet andu(t) = q̇(t) for almost allt. Typically, we
will allow for impulsive motion ifq(tc) ∈ ∂K. OnK we define the tangent coneTK(q) and the normal coneNK(q).
Admissible motion implies that−u−(t) ∈ TK(q(t)) andu+(t) ∈ TK(q(t)) for all t.
The non-impulsive dynamics of the system is described by theequation of motion

(

d
dt

∂L

∂u

)T

−

(

∂L

∂q

)T

= f , (3)

wheref is the contact force enforcing the unilateral constraintq ∈ K. The assumption of perfect unilateral constraints
requires that the constraint forces are elements of the normal cone to constraint setK:

−f ∈ NK(q). (4)

The latter can be expressed in a variational way as

fTδq ≥ 0 ∀δq ∈ TK(q), (5)

which is the principle of d’Alembert-Lagrange in inequality form, i.e. the constraint forces produce a non-negative vir-
tual work for admissible virtual displacements. The non-impulsive dynamics is therefore described by the variational
inequality

(

d
dt

∂L

∂u
−

∂L

∂q

)

δq ≥ 0 ∀δq ∈ TK(q). (6)
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In the following we will use the generalized momentump and the energy functionH , given by

p(q,u) =

(

∂L

∂u

)T

, H(q,u) =
∂L

∂u
u− L = T + V. (7)

The impulsive dynamics is described the impact equation

p+
c − p−

c = Rc (8)

wherep±
c = p(q(tc),u

±(tc)) andRc is the contact impulsive force at the impact timetc. The assumption of perfect
unilateral constraints requires that also the impulsive forces obey

−Rc ∈ NK(q(tc)). (9)

The above description of a mechanical system with perfect unilateral constraints has to be completed with an impact law
which relates the contact impulsive forceR to kinematic quantities. Here, we will not adopt a specific impact law. If the
energy is conserved by the impact law, then it holds thatH+

c = H−
c whereH±

c = H(q(tc),u
±(tc)). Such kind of impact

laws are generally referred to as elastic impact laws.

Strong virtual displacements

Consider the following two norms (see [1,8])

weak norm ‖y‖1 =

n
∑

i=1

max
t∈I

|yi(t)|+ ess sup
t∈I

|ẏi(t)|,

strong norm ‖y‖0 =

n
∑

i=1

max
t∈I

|yi(t)|.

(10)

In order to set up a virtual displacement we will consider the(hereafter called strong) family of comparison functions

q̂(ε, t) = q(t− t̂(ε, t)) + εw(t− t̂(ε, t)), (11)

which are parameterized by the variation parameterε. The motionq(t) is contained in the family of comparison functions,
such thatq̂(ε = 0, t) = q(t). The functiont̂(ε, t), being continuous and differentiable with the propertyt̂(0, t) = 0,
induces a virtual time-shiftδt(t) = t̂ε(0, t) δε. The functionw, being continuous, induces a value shift. The strong
family of comparison functionŝq(ε, t) converges toq(t) in the strong norm‖ · ‖0 in the sense that

lim
ε↓0

‖q̂(ε, ·)− q‖0 = 0 (12)

becauselimε↓0 q̂(ε, t) = q̂(0, t) = q(t), but it does not converge in the weak norm‖ · ‖1. The virtual displacement

δq(t) =
∂q̂(ε, t)

∂ε

∣

∣

∣

∣

ε=0

δε = −u(t) δt(t) +w(t) δε (13)

is discontinuous and not defined for those time-instants forwhichu(t) is discontinuous and not defined. Hence, the virtual
displacementδq(t) is of bounded variation and admits for eacht ∈ I a left and a right limit

δq±(t) = −u±(t) δt(t) +w(t) δε. (14)

The virtual displacementδq(t) should be understood as an infinitesimal difference betweenthe comparison function
q̂(ε, t) and the functionq(t) for the same value oft. Likewise, we can introduce the variationδq(t) ≈ q̂(ε, t+δt(t))−q(t),
or more explicitly using (17)

δq(t) = qt(t) δt(t) + q̂ε(0, t) δε = u(t) δt(t) + δq(t) = w(t) δε, (15)

for which also the time is varied. Clearly, the variationδq(t) is continuous, becausew(t) is continuous.

Weak virtual displacements

Consider the weak family of comparison functions

q̂(ε, t) = q(t) + εw(t), (16)

which only induce value shift but not a virtual time-shift. The weak family of comparison functionŝq(ε, t) = q(t)+εw(t)
converges toq(t) in both the strong norm‖ · ‖0 and weak norm‖ · ‖1. The resulting virtual displacement

δq(t) =
∂q̂(ε, t)

∂ε

∣

∣

∣

∣

ε=0

δε = w(t) δε (17)

is continuous in time. Clearly, the weak family of comparison functions is contained in the strong family of comparison
functions.
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Figure 1: The general variation of a functionq(t).

The general variation of the action integral with kink

The time-intervalI will be split in two non-impulsive sub-intervalsI1 = [t0, tc] andI2 = [tc, tf ] and the variational
conditions at the impact timetc will be set up. This requires the variation of the action integral over time-intervals with
variable begin or end time, i.e. a general variation of the action integral with kink.
We first consider a time-interval[ta, tb] ⊂ I on which the motionq(t) is differentiable in its interior, i.e.u(t) is continuous
on the open interval(ta, tb). The general variation of the action integral

s(q) =

∫ tb

ta

L dt, (18)

whereL(q,u) is the Lagrange function of a time-independent mechanical system, involves a variation of the begin point
q(ta) = qa and end pointq(tb) = qb as well as a variable begin timeta and end timetb, see Figure 1. We introduce the
function

h(ε) =

∫ tb(ε)

ta(ε)

L(q̂(ε, t), û(ε, t))dt, (19)

whereq̂(ε, t) = q(t − t̂(ε, t)) + εw(t − t̂(ε, t)) is the strong family of comparison functions. The general variation δs

of (18) is defined as theε-derivativeδs = h′(0) δε, i.e.

δs =

∫ tb

ta

δL dt+

[

L δt

]t↑tb

t↓ta

=

∫ tb

ta

(

∂L

∂q
δq +

∂L

∂u
δu

)

dt+

[

L δt

]t↑tb

t↓ta

=

∫ tb

ta

(

∂L

∂q
−

d
dt

∂L

∂u

)

δq dt+

[

∂L

∂u
δq + L δt

]t↑tb

t↓ta

.

(20)

The boundary terms in (20) are due to the variation of the begin timeta and end timetb (see Figure 1), and are expressed
with left and right limits because the velocityu and thereforeL may not exist fort = ta or t = tb. Note thatδq(t)
is continuous in the open interval(ta, tb). Using the generalized momentump and the Hamiltonian functionH we can
express the boundary terms in (20) as

lim
t↓ta

(

∂L

∂u
δq + L δt

)

= p(qa,u
+
a )

T(δq+
a + u+

a δta)−H(qa,u
+
a ) δta, (21)

lim
t↑tb

(

∂L

∂u
δq + L δt

)

= p(qb,u
−
b )

T(δq−
b + u−

b δtb)−H(qb,u
−
b ) δtb, (22)

in which the abbreviationδq+(ta) = δq+
a , u+(ta) = u+

a etc. has been used. We recognize in (21) and (22) the variation
δq(t) of the begin and endpoint

δqa = δq+
a + u+

a δta,

δqb = δq−
b + u−

b δtb,
(23)

see Figure 1. The total variation (20) simplifies to

δs =

∫ tb

ta

(

∂L

∂q
−

d
dt

∂L

∂u

)

δq dt− (p+
a )

T δqa + (p−
b )

T δqb +H+
a δta −H−

b δtb, (24)
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Figure 2: The general variation of a functionq(t) with kink.

where the notationp+
a = p(qa,u

+
a ), H

+
a = H(qa,u

+
a ) etc. has been used.

In the following we will consider solution curvesq(t) which may have a kink at some point in timetc ∈ I (see Figure 2).
The action integral, which is a Lebesgue integral over an intervalI, can be decomposed into two differentiable parts

s(q) =

∫

I

L dt =
∫

I1

L dt+
∫

I2

L dt = s1(q) + s2(q), (25)

whereI1 = [t0, tc] andI2 = [tc, tf ]. The end pointst = t0 andt = tf are fixed and we require that the two differentiable
parts of the functionq(t) join continuously att = tc, but otherwise the pointt = tc can move freely under virtual
variations. The comparison function̂q(ε, t) is fixed at the end pointst = t0 andt = tf and consists of two differentiable
parts which join continuously att = tc + δtc. The functionδq(t) is therefore continuous att = tc, whereas the variation
δq(t) is discontinuous ast = tc. The variation of the impact positionδqc = δq(tc) can be assessed from the left and
from the right which gives the equality

δqc = δq−
c + u−

c δtc = δq+
c + u+

c δtc, (26)

with the notationδq±(tc) = δq±
c , see Figure 2. It holds that−u−

c ∈ TK(q(tc)) andu+
c ∈ TK(q(tc)). Therefore, if

δtc < 0 andδq−
c ∈ TK(q(tc)) we haveδqc = δq−

c + u−
c δtc ∈ TK(q(tc)), whereas ifδtc > 0 andδq+

c ∈ TK(q(tc)) we
haveδqc = δq+

c + u+
c δtc ∈ TK(q(tc)). Hence, ifδq±

c ∈ TK(q(tc)) then it also holds thatδqc ∈ TK(q(tc)).
We introduce the functions

h1(ε) =

∫ tc(ε)

t0

L(q̂(ε, t), û(ε, t))dt, h2(ε) =

∫ tf

tc(ε)

L(q̂(ε, t), û(ε, t))dt (27)

such thath(ε) = h1(ε) + h2(ε) and take the variation of the the action integrals by calculating theε-derivativesh′
1(ε)

andh′
2(ε) separately. In other words, the variationδs1 has a variable end-point whereasδs2 has a variable starting-point.

Evaluation ofh′
1(ε) andh′

2(ε) gives

δs1 = h′
1(0)δε =

∫

I1

(

∂L

∂q
−

d
dt

∂L

∂u

)

δq dt+
(

p−
c

)T
δqc −H−

c δtc, (28)

δs2 = h′
2(0)δε =

∫

I2

(

∂L

∂q
−

d
dt

∂L

∂u

)

δq dt−
(

p+
c

)T
δqc +H+

c δtc. (29)

Addition of h′
1(0) andh′

2(0) yieldsh′(0). The variation ofs can be written as

δs =

∫

I

(

∂L

∂q
−

d
dt

∂L

∂u

)

δq dt−
(

p+
c − p−

c

)T
δqc +

(

H+
c −H−

c

)

δtc, (30)

wherep±
c andH±

c are the pre- and post-impact values of the canonical variables.

The principle of Hamilton in inequality form

We now address the question of finding conditions for which the principle of Hamilton holds in inequality form. We will
make use of the concepts of strong and weak local extrema of functionals (see [2] and references therein for more details).
If −δs ≥ 0 for all strong/weakδq ∈ TK(q), then we callq a strong/weak local extremal of the functional−s(q) onK.
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If −δs ≥ 0 for all strongδq ∈ TK(q), then (30) yields

−

∫

I

(

∂L

∂q
−

d
dt

∂L

∂u

)

δq dt+
(

p+
c − p−

c

)T
δqc −

(

H+
c −H−

c

)

δtc ≥ 0 (31)

for all δq(t) ∈ TK(q(t)), wheret ∈ I\{tc}, for all δqc ∈ TK(q(tc)) and for allδtc. This analysis suggests to make the
following suppositions about the nature of the contact:

1. The supposition of perfect unilateral constraints. Thisimplies the Euler-Lagrange equations as variational inequality
as in (6) and therefore

−

∫

I

(

∂L

∂q
−

d
dt

∂L

∂u

)

δq dt ≥ 0 ∀δq(t) ∈ TK(q(t)). (32)

2. The supposition of a perfect constraint remaining valid during the impact. This implies that the impulsive contact
forceRc must be normal to the constraint in the sense that

−Rc ∈ NK(q(tc)), (33)

wherep+
c − p−

c = Rc, which is equivalent to

δq
T

c (p
+
c − p−

c ) ≥ 0 ∀δqc ∈ TK(q(tc)). (34)

3. The supposition of energy preservation during impact, i.e.

H+
c −H−

c = 0, (35)

which implies an elastic impact law.

The last two suppositions are for the unconstrained case (K = R
n, NK(q(tc)) = 0) exactly the so-called first and

the second Weierstrass-Erdmann corner conditions. Given afunctionalJ(y) =
∫

I
f(x, y, y′)dx, the first Weierstrass-

Erdmann condition reads as

lim
x↓xc

fy′ = lim
x↑xc

fy′ , or p+
c = p−

c , (36)

and the second Weierstrass-Erdmann condition reads as

lim
x↓xc

f − y′fy′ = lim
x↑xc

f − y′fy′ , orH+
c = H−

c . (37)

The suppositions (32), (33) and (35) lead to the following theorem:

Theorem 1 (The Strong Principle of Hamilton in Inequality Form)
Consider a conservative Lagrangian mechanical system withperfect unilateral constraints and a non-dissipative impact
law. A functionq(t) ∈ K is a motion of the system if and only if it is a strong local extremal of the action integral, i.e.

−δ

∫

I

L dt ≥ 0 ∀δq ∈ TK(q) a.e. on I, q(t0) = q0, q(tf ) = qf , (38)

which is the strong principle of Hamilton in inequality formfor impulsive motion.

Proof: If q(t) is a strong local extremal of the action integral then, by definition, −δs ≥ 0 for all strong variations
δq ∈ TK(q). Using (30) we obtain the variational problem (39):

−

∫

I

(

∂L

∂q
−

d
dt

∂L

∂u

)

δq dt+
(

p+
c − p−

c

)T
δqc −

(

H+
c −H−

c

)

δtc ≥ 0 (39)

for all δq(t) ∈ TK(q(t)), wheret ∈ I\{tc}, for all δqc ∈ TK(q(tc)) and for allδtc. The variationsδq, δqc andδtc are
independent. Hence they yield two variational inequalities and one variational equality:

−

∫

I

(

∂L

∂q
−

d
dt

∂L

∂q̇

)

δq dt ≥ 0 ∀δq(t) ∈ TK(q(t)), almost everywhere onI (40)

(

p+
c − p−

c

)T
δqc ≥ 0 ∀δqc ∈ TK(q(tc)) (41)

(

H+
c −H−

c

)

δtc = 0 ∀δtc (42)
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From (40) we see that the Euler-Lagrange inequality (6) holds for almost allt ∈ I. Equation (41) requires that the unilat-
eral constraints are perfect (in the sense of impulsive motion) and (42) that the impacts are non-dissipative. Consequently,
if q is a strong extremal of the action integral, thenq(t) is a motion of the system. The proof can easily be followed in the
opposite direction. �

From the strong principle of Hamilton we can almost immediately come to a weak form of the principle of Hamilton by
considering weak families of comparison functions. The weak virtual displacement does not induce a virtual time-shift
and it therefore holds thatδt(t) = 0. The weak principle of Hamilton as variational inequality does therefore not require
the preservation of energy during the impact.

Theorem 2 (The Weak Principle of Hamilton in Inequality Form)
Consider a conservative Lagrangian mechanical system withperfect unilateral constraints. A functionq(t) ∈ K is a
motion of the system if and only if it is a weak local extremal of the action integral, i.e.

−δ

∫

I

L dt ≥ 0 ∀δq = wδε ∈ TK(q), q(t0) = q0, q(tf ) = qf , (43)

which is the weak principle of Hamilton in inequality form for impulsive motion.

Proof: The proof is identical to the proof of the strong principle ofHamilton, but withδtc = 0. �

Conclusions

In this paper we have derived two different forms of Hamilton’s principle as variational inequality. The strong form
of Hamilton’s principle has been derived using the general variation of the functional which leads to ‘generalized’
Weierstrass-Erdmann corner conditions. The first ‘generalized’ Weierstrass-Erdmann condition demands that the contact
impulses are from the normal cone, i.e. the supposition of perfect unilateral constraints. The second Weierstrass-Erdmann
condition requires that the collisions are completely elastic, i.e. there is no energy loss during the impact. This formof
the principle of Hamilton takes all neighbouring functionsinto consideration for the substationarity of the solutionand is
therefore a strong form of Hamilton’s principle as variational inequality. A weak form of Hamilton’s principle has been
derived from the strong form by only considering weak varitions for which there is not virtual time-shift. The weak form
of Hamilton’s principle only requires that the contact impulses are from the normal cone. No restriction is posed in the
weak form on the energy dissipation of the impact law.
The various forms of the principle of Hamilton as variational inequality which exist in literature can now be put within
the context of weak and strong extrema. We conclude that Theorem 3 of [3] is the weak form of Hamilton’s principle,
while Theorem 4 of [3] (or Proposition 4 of [4]) is the strong form of Hamilton’s principle. This insight clarifies why
the various principles have different conditions on the impact law. The forms of the principle of Hamilton used by [5–7]
assume strong variations and the authors of these works therefore state that the principles are valid for completely elastic
impact.
What is the practical/theoretical relevance of the resultsand insight gained in this paper? An obvious application is
the development of numerical schemes through a Ritz-type ofmethod on the principle of Hamilton in inequality form.
However, in the opinion of the authors, the relevance of the paper is more fundamental. One way to think about dynamics is
in terms of variational principles. History proved that this way of thinking has been very rewarding. Variational principles
form the foundation of Classical Analytical Mechanics and have been essential for the development of modern physics,
e.g. quantum mechanics. Furthermore, variational principles give the link to optimization theory and put dynamics in
an appropriate mathematical framework. Classical variational principles, however, are strictly valid for perfect bilateral
constraints. For this reason, if we endeavour to develop a proper theoretical foundation for non-smooth dynamics, it isa
promising step to go back to these principles and reformulate them in terms of variational inequalities.
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