ENOC 2011, 24-29 July 2011, Rome, ltaly

On the principle of Hamilton asvariational inequality

Remco Leinéand Ueli Aeberhard
*Institute of Mechanical Systems, Department of MechamigdlProcess Engineering, ETH Zurich,
Switzerland

SummaryThe classical form of Hamilton’s principle holds for congaive systems with perfect bilateral constraints. In geiper we
derive Hamilton’s principle for perfect unilateral coratits (involving impulsive motion) using so-called wealdastrong variations.
The resulting principle has the form of a variational indigua

I ntroduction

The classical principle of Hamilton is the variational pierh

ty
s(q) = / L(q, q)dt — stationary )

to

with boundary conditiong(ty) = go andq(ty) = gy and Lagrange functiofi(q, g) = T'(q,q) — V(gq), whereT is a
quadratic form ing. The stationarity conditions = 0 of the principle of Hamilton leads after partial integratim the
variational equality

tr /oL d aL)
— — —— ) dqdt=0 Vg 2
A (5 @ @
and therefore to the Euler-Lagrange equati%sr %g—s = 0 for a conservative system with perfect bilateral constsain

In this paper we derive Hamilton’s principle for perfectlatéral constraints (involving impulsive motion) usingcalled
strong variations. The resulting principle has the form wégational inequality and is valid for elastic impact laws
Several attempts have been made in literature to genetdiirglton’s principle for mechanical systems with perfect
unilateral constraints involving impulsive motion [3—7This has led to a number of different variants of Hamilton’s
principle, some expressed as variational inequalities.tdJpow, the connection between these different principbes h
been missing. The current paper gives a unified frameworkamfilion’s principle as variational inequality by using the
concept of weak and strong virtual displacements. Thiseraenice proceeding is an abridged version of [2].

A mechanical system with unilateral constraints

Consider a mechanical system withdegrees of freedom and lg{t) € R™ describe the motion of the system on
the compact time-interval = [to,t¢]. The mechanical system is unilaterally constrained sueh tthe generalized
coordinates remain in an admissible #&ti.e. g(¢t) € K for all t. The setK is closed, not necessarily convex, and we
will assume that it is tangentially regular. The velocityt) is considered to be of bounded variation, which means that
we can define the left limit.~ (¢) and right limitw ™ (¢) for each timet andw(t) = ¢(t) for almost allt. Typically, we

will allow for impulsive motion ifg(¢.) € 0K. On K we define the tangent core (q) and the normal cond/k (q).
Admissible motion implies thatu™(t) € Tk (g(t)) andu™ () € Tk (q(t)) for all ¢.

The non-impulsive dynamics of the system is described by tjuation of motion

dor\" [oL\" s @)

dt du dq)
where f is the contact force enforcing the unilateral constragirt K. The assumption of perfect unilateral constraints
requires that the constraint forces are elements of the alarome to constraint sét':

—f € Nk(q). (4)
The latter can be expressed in a variational way as
f16q>0 Véq e Ti(q), (5)

which is the principle of d’Alembert-Lagrange in inequglibrm, i.e. the constraint forces produce a non-negatike vi
tual work for admissible virtual displacements. The nominsive dynamics is therefore described by the variational
inequality

(————)6«;20 Voq € Tic(q)- (6)
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In the following we will use the generalized momentprand the energy functiof, given by

aL\" dL
p(q,U)<%) , H(gu) =g u—L=T+V. @
The impulsive dynamics is described the impact equation
pf —p. =R, (8)

wherept = p(q(t.),u*(t.)) and R, is the contact impulsive force at the impact time The assumption of perfect
unilateral constraints requires that also the impulsiveds obey

—R. € Nk(q(t.)). 9)

The above description of a mechanical system with perfeitdtenal constraints has to be completed with an impact law
which relates the contact impulsive foréto kinematic quantities. Here, we will not adopt a specifipaut law. If the
energy is conserved by the impact law, then it holds Biat= H_ whereH* = H(q(t.),u™(t.)). Such kind of impact
laws are generally referred to as elastic impact laws.

Strong virtual displacements

Consider the following two norms (see [1, 8])

n
weak norm |lylly = > max]y; ()| + ess suplgi(t)],
— tel tel
i=1 (10)
rong norm = i .
strong norm |yllo Z;I{lgIXIyz(t)l
iz

In order to set up a virtual displacement we will consider(tiereafter called strong) family of comparison functions
d(€7t> = q(tif(sat))+€w(t7£(5vt>>a (11)

which are parameterized by the variation paramet@he motiong(¢) is contained in the family of comparison functions,
such thatg(s = 0,t) = q(t). The functioni(e, t), being continuous and differentiable with the propéity, ) = 0,
induces a virtual time-shift(t) = ¢.(0,t)de. The functionw, being continuous, induces a value shift. The strong

family of comparison functiong(e, t) converges tg(t) in the strong nornj| - || in the sense that
E{g”‘f(&')*QHO =0 (12)
becauséim. | 4(e,t) = ¢(0,t) = q(t), but it does not converge in the weak nojfm||;. The virtual displacement
5q(t) = aq{;‘i’” §e = —u(t) 6t(t) + w(t) oc (13)

e=0

is discontinuous and not defined for those time-instantefoch v () is discontinuous and not defined. Hence, the virtual
displacemeniq(t) is of bounded variation and admits for each I a left and a right limit

6qT(t) = —ur () 6t(t) + w(t) de. (14)

The virtual displacementq(t) should be understood as an infinitesimal difference betweercomparison function
d(e,t) and the functiorg(t) for the same value af Likewise, we can introduce the variatiog(t) ~ q(e, t+dt(t))—q(t),
or more explicitly using (17)

3q(t) = qu(t) 3t(t) + G- (0, ) 62 = u(t) 5t(t) + 5q(t) = w(t) be, (15)

for which also the time is varied. Clearly, the variati@y(t) is continuous, because(t) is continuous.
Weak virtual displacements

Consider the weak family of comparison functions

(j(& t) = q(t) + Ew(t)v (16)
which only induce value shift but not a virtual time-shifh@weak family of comparison functiog$e, t) = q(¢) +ew(t)
converges tg(t) in both the strong norr - ||o and weak nornjl - ||;. The resulting virtual displacement
_ 0q(z,t)
e

is continuous in time. Clearly, the weak family of companidonctions is contained in the strong family of comparison
functions.

dq(t)

de = w(t) e a7)

e=0
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Figure 1: The general variation of a functigiit).

The general variation of the action integral with kink

The time-intervall will be split in two non-impulsive sub-intervals = [to,t.] andlz = [t,¢s] and the variational
conditions at the impact timg will be set up. This requires the variation of the action gn& over time-intervals with
variable begin or end time, i.e. a general variation of th@adntegral with kink.

We first consider a time-intervl,, t,] C I on which the motiorg(t) is differentiable in its interior, i.eu(t) is continuous
on the open intervél,, t,). The general variation of the action integral

ty
s = [ Lo (18)

whereL(g, u) is the Lagrange function of a time-independent mechanjcaiés, involves a variation of the begin point
q(t.) = q., and end poiny(t,) = g, as well as a variable begin tinig and end time,,, see Figure 1. We introduce the
function

ty(e)

he) = /t  Hate ). ) (19)

whereq(e,t) = q(t — t(c,t)) + cw(t — i(e,t)) is the strong family of comparison functions. The generaiain s
of (18) is defined as the-derivativeds = h'(0) d¢, i.e.

ty t1ty
58:/ oL dt + {L(St]
ta

tit,
ty L 1 t1ty
=/ a—5q+ OL 50, dt + | L6t (20)
+. \0q ou tlt
9L d oL oL i1t
- T ) sqdt + | ==6q + Lot .
/ta (aq dtau) e +[au et h

The boundary terms in (20) are due to the variation of therbtégiet, and end time,, (see Figure 1), and are expressed
with left and right limits because the velocity and therefore, may not exist fort = ¢, ort = t,. Note thatiq(t)

is continuous in the open intervél,, t,). Using the generalized momentyrand the Hamiltonian functio®/ we can
express the boundary terms in (20) as

tin (8—Laq n Lat) — p(quud) (0 + ut ota) — Hlqe ul) ota, (21)
« \ Ou

Nz e B

lim( =—dq + Lt | =p(qs,w;, )" (dq, +u, 5ty) — H(qy, u, ) ots, (22)
ttty \ Ou

in which the abbreviatiog™ (t,) = dq;", u*(t,) = u/ etc. has been used. We recognize in (21) and (22) the variatio

0q(t) of the begin and endpoint
Sa. — sat + ut
5_qa = 5qg + ui Otq, 23)
0q, = 0q, + uy oty,

see Figure 1. The total variation (20) simplifies to

oL doL

ty
— gL _ 29 (T 5, \T5q. + g+ o ”
Js /ta (aq p” au) dqdt — (p, )" dq, + (p, ) oq,+ H, dt, b O, (24)
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Figure 2: The general variation of a functigiit) with kink.

where the notatiop;” = p(qa,u; ), Hi = H(q.,u]) etc. has been used.
In the following we will consider solution curvegt) which may have a kink at some point in timee I (see Figure 2).
The action integral, which is a Lebesgue integral over agruat I, can be decomposed into two differentiable parts

s(q):/ILdt:/I Ldt+/[ Ldt = si1(q) + s2(q), (25)

wherel; = [to,t.] andl> = [t.,t¢]. The end points = ¢, andt = t; are fixed and we require that the two differentiable
parts of the functiong(¢) join continuously at = t., but otherwise the point = t. can move freely under virtual
variations. The comparison functidie, ¢) is fixed at the end points= ¢, and¢ = ¢; and consists of two differentiable
parts which join continuously at= ¢, + 6¢.. The functiondq(t) is therefore continuous at= t., whereas the variation
5q(t) is discontinuous as = t.. The variation of the impact positioly, = dq(t.) can be assessed from the left and
from the right which gives the equality

6q. = bq; +u, dt. = dqF +uf bt., (26)

with the notationdg™ (t.) = dq*, see Figure 2. It holds thatu_ € Tx(q(t.)) andu} € Tk (q(t.)). Therefore, if
5t. < 0 anddq; € Tk (q(t.)) we havedq, = 6q; + u, dt. € T (q(t.)), whereas iit, > 0 andiq} € Tx(q(t.)) we
havedq, = dq; + u} t. € Tr(q(t.)). Hence, ifdgE € Tx(q(t.)) then it also holds thalg, € T (q(t.)).

We introduce the functions

te(e) ty
h(e) = / L(d(e, 1), ale, 1) bt ha(e) = / L(d(e, 1), (e, 1)) di (27)

to te (8)

such thath(s) = hi(e) + ha(e) and take the variation of the the action integrddy calculating the-derivativesh/ (¢)
andhj(e) separately. In other words, the variatidn has a variable end-point where&s has a variable starting-point.
Evaluation ofh (¢) andhj(e) gives

oL daL T
_ _ _ - _H-
§s1 = h}(0)de = /11 <6q o 6u> éqdt + (p.) dq.— H_ 6t., (28)
oL daL T=—
dso = hy(0)de = — — —— | dqdt—(p) o HY ét.. 29

Addition of } (0) andh}(0) yieldsh/(0). The variation ofs can be written as

oL doJL

= _ _ + o \T== + g
65_/1(341 dtau)éth (pc pc) 6qc+(Hc Hc)6t07 (30)

wherept and H are the pre- and post-impact values of the canonical vasabl
The principle of Hamilton in inequality form

We now address the question of finding conditions for whiehgtinciple of Hamilton holds in inequality form. We will
make use of the concepts of strong and weak local extremanofifunals (see [2] and references therein for more details)
If —ds > 0 for all strong/wealdg € Tk (q), then we cally a strong/weak local extremal of the functionad(q) on K.
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If —ds > 0 for all strongdq € Tk (q), then (30) yields

oL  d oL T R
/I(aq dta)(S o + (pf —p) 54, — (HY — H. )t >0 (31)

for all 6q(t) € T (q(t)), wheret € I\{t.}, for all 5q, € Tx(q(t.)) and for allst.. This analysis suggests to make the
following suppositions about the nature of the contact:

1. The supposition of perfect unilateral constraints. Triglies the Euler-Lagrange equations as variational inétyu
as in (6) and therefore

d do
/1<6§ dtaL>5 dt >0 Voq(t) € Tr(q(t)). (32)

2. The supposition of a perfect constraint remaining validrty the impact. This implies that the impulsive contact
force R. must be normal to the constraint in the sense that

-R. € NK(q(tC>>ﬂ (33)

wherep! — p. = R,, which is equivalent to
34. (pf —p;) 20 Vg, € Tic(qlte). (34)
3. The supposition of energy preservation during impaet, i.
Hf —H =0, (35)
which implies an elastic impact law.

The last two suppositions are for the unconstrained case=( R", Nk (q ( ) = 0) exactly the so-called first and
the second Weierstrass-Erdmann corner conditions. Gifenaional J(y) = [, f(z,y,y’) dz, the first Weierstrass-
Erdmann condition reads as

lim f, = hTm fys Orp;" =p., (36)

zlae

and the second Weierstrass-Erdmann condition reads as

hmf y' fyr fhmf y' fy, orHf =H_. (37)

Tlx,

The suppositions (32), (33) and (35) lead to the followingptfem:

Theorem 1 (The Strong Principle of Hamilton in Inequality Form)
Consider a conservative Lagrangian mechanical systempeitfect unilateral constraints and a non-dissipative ghpa
law. A functionq(t) € K is a motion of the system if and only if it is a strong local extral of the action integral, i.e.

75/Ldt >0 ViqeTk(qg)ae on] q(to) = qo, q(ty) = qy, (38)
I

which is the strong principle of Hamilton in inequality forfer impulsive motion.

Proof: If g(t) is a strong local extremal of the action integral then, byrigdin, —ds > 0 for all strong variations
dq € Tk (q). Using (30) we obtain the variational problem (39):

aL daL + NT — + —

for all 6q(t) € Tx(q(t)), wheret € I1\{t.}, for all 5q,. € Tx(q(t.)) and for all§t.. The variationsiq, 5q, anddt.. are
independent. Hence they yield two variational inequalitiad one variational equality:

oL d oL
— - — >
/ (5‘q " 6‘«1) dgdt >0 Voq(t) € Tk(q(t)), almosteverywhere oh (40)

(HX —H>)6te =0 Vét. (42)

c
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From (40) we see that the Euler-Lagrange inequality (6) $ifddalmost alk € 1. Equation (41) requires that the unilat-
eral constraints are perfect (in the sense of impulsiveanptind (42) that the impacts are non-dissipative. Consgltyle
if g is a strong extremal of the action integral, thgh) is a motion of the system. The proof can easily be followedthén t
opposite direction. O

From the strong principle of Hamilton we can almost immegliatome to a weak form of the principle of Hamilton by
considering weak families of comparison functions. The kwégtual displacement does not induce a virtual time-shift
and it therefore holds that(¢) = 0. The weak principle of Hamilton as variational inequaliged therefore not require
the preservation of energy during the impact.

Theorem 2 (The Weak Principle of Hamilton in I nequality Form)
Consider a conservative Lagrangian mechanical systempeitfect unilateral constraints. A functiarit) € K is a
motion of the system if and only if it is a weak local extremélfee action integral, i.e.

—5/Ldt >0 VYiog=wdie € Tk(q), 4q(to)=qo, q(ty) =gy, (43)

I

which is the weak principle of Hamilton in inequality formrfonpulsive motion.

Proof: The proofis identical to the proof of the strong principlergEmilton, but withdt, = 0. O
Conclusions

In this paper we have derived two different forms of Hamikoprinciple as variational inequality. The strong form
of Hamilton’s principle has been derived using the genegalation of the functional which leads to ‘generalized’
Weierstrass-Erdmann corner conditions. The first ‘geimd] Weierstrass-Erdmann condition demands that theacbnt
impulses are from the normal cone, i.e. the supposition déptunilateral constraints. The second Weierstrassrarth
condition requires that the collisions are completelyt&age. there is no energy loss during the impact. This fafm
the principle of Hamilton takes all neighbouring function® consideration for the substationarity of the solutom is
therefore a strong form of Hamilton’s principle as variatibinequality. A weak form of Hamilton’s principle has been
derived from the strong form by only considering weak vans for which there is not virtual time-shift. The weak form
of Hamilton’s principle only requires that the contact ingms are from the normal cone. No restriction is posed in the
weak form on the energy dissipation of the impact law.

The various forms of the principle of Hamilton as variatibimequality which exist in literature can now be put within
the context of weak and strong extrema. We conclude thatréne@ of [3] is the weak form of Hamilton’s principle,
while Theorem 4 of [3] (or Proposition 4 of [4]) is the strongih of Hamilton’s principle. This insight clarifies why
the various principles have different conditions on theaetdaw. The forms of the principle of Hamilton used by [5-7]
assume strong variations and the authors of these workeftinerstate that the principles are valid for completelgtita
impact.

What is the practical/theoretical relevance of the resaittd insight gained in this paper? An obvious application is
the development of numerical schemes through a Ritz-typaethod on the principle of Hamilton in inequality form.
However, in the opinion of the authors, the relevance of tepis more fundamental. One way to think about dynamics is
in terms of variational principles. History proved thatstiiay of thinking has been very rewarding. Variational ppfes
form the foundation of Classical Analytical Mechanics amdédnbeen essential for the development of modern physics,
e.g. quantum mechanics. Furthermore, variational priesigive the link to optimization theory and put dynamics in
an appropriate mathematical framework. Classical vamati principles, however, are strictly valid for perfeciléral
constraints. For this reason, if we endeavour to developpeauritheoretical foundation for non-smooth dynamics, & is
promising step to go back to these principles and reforradbem in terms of variational inequalities.
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