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Abstract— In this paper we extend a non-smooth 3D mathe-
matical model of a snake robot to also include external obstacles
to enable obstacle aided locomotion. The model is based on the
framework of non-smooth dynamics and convex analysis. This
framework enables us to systematically and easily incorporate
unilateral contact forces (from the obstacles and the ground) and
isotropic friction forces based on Coulomb’s law. The obstacles
are shaped as vertical cylinders and we describe the contact
between a link of the snake robot and an obstacle with a single,
moving contact point. Hence, the effect of the link touching the
obstacle is accurately described. Simulation results for a 11 link
snake robot moving by the serpentine motion pattern ‘lateral
undulation’ while pushing against obstacles are given.

Index Terms— Non-smooth dynamics, contact modeling

I. INTRODUCTION

Many snakes exploit roughness in the terrain and narrow

passages to move forward [1]. A locomotion system that

could exhibit the same robust property of mobility would be

of great help for rescue workers and maintenance personnel

world wide. Rescue workers would then be able to locate and

aid people trapped by collapsed buildings or mines. In addi-

tion, surveillance and maintenance of complex and possible

dangerous structures could be performed by the maintenance

personnel from a safe distance. A snake robot, with its highly

articulated body, constitutes a locomotion system that could

be able to perform the tasks mentioned above. In this paper

we present a mathematical model of a snake robot which

includes external obstacles, as a first step towards developing

a snake robot that can exploit external obstacles and thus play

an important role in search and rescue missions.

We define in this paper obstacle aided locomotion as snake

robot locomotion where the snake robot utilizes walls or

other external objects, apart from the flat ground, for means

of propulsion. A snake robot moving by the principle of

obstacle aided locomotion would be able to exploit the chaotic

environment inside a collapsed building to move forward.

Also, such locomotion will be more robust to various kinds

of surfaces. Even though obstacle aided locomotion was in-

vestigated as early as in 1976 [2] and further elaborated on

in [3], the subject has not been mentioned in many papers

in the subsequent years apart from, for example, snake robot

locomotion with pegs in [4]. The latter paper adds linear

actuators along each link, increasing the complexity of the

snake robot. A complete analytical model of the dynamics

Fig. 1. Snake robot moving by lateral undulation by pushing against
cylindrical obstacles. The snake robot is moving towards the left in the picture.

of a snake robot with obstacles is important for analysis of

obstacle aided locomotion. However, no such model has been

found in literature.

Few mathematical models describing the 3D dynamics of

snake robots have been found in literature. The first 3D model

was presented in [5]. A 3D model with a compliant ground

contact model, modeled as a mass-damper-spring system, has

been published in [6], where a very high spring coefficient

is needed to model a hard floor. In addition, it is not clear

how to determine the dissipation parameters of the contact

unambiguously when using a compliant model [7]. The friction

force between the underside of the snake robot and the ground

has usually been described by a Coulomb or viscous-like fric-

tion model [8], [9], and the Coulomb friction has most often

been modeled using the sign-function [5], [8]. However, only

unidirectional friction can be described by a sign-function (see

Section IV-B.2). Moreover, a steep and smooth approximation

of the sign-function together with the compliant contact model

lead to stiff differential equations which are cumbersome to

solve numerically. Hence, there is a need for a non-smooth

model which correctly describes spatial Coulomb friction with

stiction as well as the unilaterality of the contact.

In this paper we extend the non-smooth analytical 3D model

of the snake robot presented in [10] to also include the possi-

bility of utilizing external obstacles, shaped as vertical cylin-

ders of any radius, for locomotion (See Fig. 1). Simulation

results using the serpentine motion pattern ’lateral undulation’

for obstacle aided locomotion are given. Set-valued force laws

for the unilateral contact force and the friction force in a three-

dimensional setting are described in the framework of non-

smooth dynamics and convex analysis [7], [11], [12]. Hence,

stick-slip transitions and impacts with the ground and obstacles

are modeled as instantaneous transitions. We describe the

contact between an obstacle and the surface of each link of the



snake robot with a single, moving contact point. This provides

us with an accurate description of where the various obstacle

contact forces act on the snake robot.

We choose six non-minimal absolute coordinates for each

link and include the bilateral constraint forces in the joints as

Lagrangian multipliers in the mathematical model. This choice

of coordinates yields a constant and diagonal mass matrix, and

very simple expressions for the gyroscopic forces which both

are beneficial for numerical efficiency.

The paper is organized as follows. The choice of coordinates

and reference frames, and the contact constraints on position

level presented as gap functions, are given in Section II.

Section III shows how to obtain expressions for the relative

velocities, needed to find the contact and friction forces,

from the gap functions. Section IV describes the non-smooth

dynamics of the snake robot and Section V explains how to

control the joint angles. A brief summary of the numerical

treatment of the model is given in Section VI, while Sec-

tion VII contains the simulation results. Concluding remarks

are given in Section VIII.

II. KINEMATICS

The kinematics of the snake robot with obstacles is pre-

sented here. From the kinematics, we develop gap functions

for obstacle and ground contact detection. These functions are

also used as a basis for calculating the contact forces.

This section will first give an overview of the coordinates

used to describe the position and orientation of the snake

robot. Subsequently, the gap functions for contact with external

obstacles and the ground will be presented.

A. Coordinates and Reference Frames

The snake robot consists of n links that are connected

by n− 1 cardan joints, each having two degrees of freedom

(DOF). The distance Li between two adjacent cardan joints

equals the length of link i. The surface of link i is defined

as a cylinder of length 2LGSi
and radius LSC . Two half-

spheres, each with radius LSC are mounted on each end of

the cylinder, see Fig. 2. Denote the centre of the front and

rear disc that constitute the ends of the cylinder as SFi and

SRi, with positions rSF i
and rSRi

, respectively. Fig. 2 also

depicts the earth-fixed coordinate frame I =
(

O, eI
x, e

I
y, e

I
x

)

used as an approximation to an inertial frame where its centre

O is fixed to the ground surface and the eI
z-axis is pointing in

the opposite direction of the acceleration of gravity vector g.

External objects (obstacles) are included in the model for the

snake robot to push against during locomotion. The external

object j is modeled as a cylinder of radius LHj
and infinite

height with its mid-line parallel to eI
z . The position of the

point Hj where the mid-line of obstacle j intersects with the
(

eI
x, e

I
y

)

-plane is denoted by rHj
.

The position and orientation of link i are described by the

non-minimal absolute coordinates

qi =

[

IrGi

pi

]

∈ R
7, (1)

Fig. 2. Link i and reference frames.

where IrGi
∈ R

3 is the position of the centre of gravity

of link i and the vector pi =
[

ei0 eT
i

]T
, where eT

i =
[

ei1 ei2 ei3

]

, contains the four Euler parameters used to

describe the rotation. The Euler parameters form a unit quater-

nion vector with the constraint pT
i pi = 1. The coordinates are

non-minimal because each link is described with 6 coordinates,

absolute because the position and orientation of link i is given

directly relative to the inertial frame I . The velocity of link i
is given by

ui =

[

IvGi

Bi
ωIBi

]

∈ R
6 (2)

where IvGi
is the translational velocity of the CG of link i

which is IvGi
= I ṙGi

when it exists (i.e. for impact free

motion). Moreover, Bi
ωIBi

is the angular velocity of frame

Bi relative to frame I , given in frame Bi. The transformation

Ir = R
I
Bi

Bi
r can be performed with the rotation matrix

R
I
Bi

= HiH̄i where

Hi =
[

−ei ẽi + ei0I
]

, H̄i =
[

−ei −ẽi + ei0I
]

, (3)

and the superscript ˜denotes the skew-symmetric form of e.

The time-derivative of the rotation matrix is found from [13]

as

Ṙ
I
Bi

= R
I
Bi Bi

ω̃IBi
. (4)

The generalised coordinates (positions and orientation)

and velocities of all links are gathered in the vectors

q =
[

qT
1 · · · qT

n

]T
and u =

[

uT
1 · · · uT

n

]T
.

B. Gap Functions for Contact with External Objects

We begin this section by giving a short description of what

a gap function is and what it is used for. Then, we introduce

the gap functions for the contact with external objects.

Consider two convex rigid bodies 1 and 2. Now, we want

to determine whether Body 1 is in contact with Body 2. This

can be achieved by determining whether the minimal distance

between the two bodies is equal to zero. The function that

gives us the minimal distance is called a gap function [14]

and the point on Body 1 that is closest to Body 2 is called a

(possible) contact point. Apart from determining if two rigid

bodies are in contact, the gap function will also be used as

a basis for calculating the direction and size of the forces

involved in the contact.

Link i can, at each time-instance, only touch a convex

obstacle j at one point, resulting in a contact point that may

move across the entire surface of a link. Hence, by inspecting



Fig. 3. Illustration of the shortest distance between link i and obstacle j.

the shape of the surface of a link, we need to consider the

distances between two cylinders, and a cylinder and a sphere to

calculate the shortest distance (i.e. the gap functions) between

the link and the obstacle, see Fig. 3.
1) Cylinder - Cylinder Contact: If the part of link i which

is shaped as a cylinder is closest to the obstacle (also being a

cylinder), then the gap function for object contact is defined

as the distance between these two cylinders. The distance

between two infinitely long cylinders equals the distance

between their mid-lines minus the sum of their radii. The

normal vector to the mid-lines of both the obstacle j and the

link i cylinder is

nij =
eI

z × eBi
z

‖eI
z × eBi

z ‖
. (5)

The shortest distance between the two mid-lines can now be

found as

dij =
(

rGi
− rHj

)T
nij , (6)

Hence, the gap function is

gHij
= |dij | −

(

LHj
+ LSC

)

. (7)

2) Cylinder - Sphere Contact: If one of the two half-spheres

of link i is closest to obstacle j, then the gap function between

the link and the obstacle is

gHij
= ‖rHjSi

‖ −
(

LHj
+ LSC

)

, (8)

where rHjSi
is a vector from Hj to the projection of either

SFi or SRi onto the
(

eI
x, e

I
y

)

-plane depending on which end

of the link is closest to the obstacle. Hence, it holds that

rHjSi
=

{

rHjSF i
, front part of link i is closest,

rHjSRi
, rear part of link i is closest,

(9)

where

rHjSF i
= Axy (rGi

+ rGiSF i
) − rHj

, (10)

rHjSRi
= Axy (rGi

+ rGiSRi
) − rHj

, (11)

with rGiSF i
= LGSi

eBi
z , rGiSRi

= −LGSi
eBi

z , and Axy =
diag ([1, 1, 0]).

3) Vector of Gap functions for Contact with External Ob-

jects: We now gather the gap functions gHij
for all n links

and ν obstacles in the vector

gH =
[

gH11 · · · gHn1 gH12 · · · gHn2 · · · gH1ν
· · · gHnν

]T
(12)

where the elements gHij
are found from either (7) or (8)

depending on which part of link i is closest to obstacle j.

Fig. 4. Surfaces (solid-drawn circles) on snake robot that constitute the
contact between the robot and the ground.

C. Gap Functions for Unilateral Constraints

The gap functions for the distance between the ground and

the front and rear end-sphere surfaces are illustrated in Fig. 4

and are written as (see [10] for a more thorough description)

gNF i
= (rSF i

)
T
eI

z −LSC , gNRi
= (rSRi

)
T
eI

z − LSC , (13)

where rSF i
= rGi

+ LGSi
eBi

z , rSRi
= rGi

− LGSi
eBi

z . The

gap functions are gathered in the vector

gN =
[

gNF1 · · · gNFn
gNR1 · · · gNRn

]T
. (14)

III. CONTACT CONSTRAINTS ON VELOCITY LEVEL

In this section we calculate the relative velocities between

the snake robot, and the obstacles and the ground, by taking

the time-derivative (when it exists) of the appurtenant gap

functions. The relative velocities are needed to set up the

set-valued contact forces for the closed contacts [15]. The

relative velocities concerned with the external obstacles are

introduced and detailed in this paper, while the remaining

relative velocities are included for the paper to be self-

contained and are more thoroughly described in [10].

A. Unilateral Contact - Obstacle Contact

The contact between link i and obstacle j is modeled as an

unilateral contact. To calculate the contact force, the relative

velocity γHij
:= ġHij

between obstacle j and the point on link

i closest to the obstacle needs to be found. This is obtained

from the gap functions defined in Section II-B. As for the

calculations of the gap functions, the relative velocity γHij
is

dependent on which part of the link is closest to the obstacle.

1) Cylinder - Cylinder Contact: If the cylinder part of link

i is closest to obstacle j, then the gap function is given by (7)

and the relative velocity γHij
:= ġHij

can be written as

γHij
=
(

ṙT
Gi

nij +
(

rGi
− rHj

)T
ṅij

)

sign(dij) (15)

where nij and dij are found from (5) and (6), respectively.

Define ‖ · ‖ := ‖ · ‖2 and let us consider

Iṅij = −
d
dt
‖Ie

I
z × Ie

Bi
z ‖

‖IeI
z × Ie

Bi
z ‖2

(

Ie
I
z × Ie

Bi
z

)

+
d
dt

(

Ie
I
z × Ie

Bi
z

)

‖IeI
z × Ie

Bi
z ‖

,

(16)

where

d

dt

(

Ie
I
z × Ie

Bi
z

)

= −I ẽ
I
zR

I
BiBi

ẽBi

z Bi
ωIBi

, (17)



and

d

dt
‖Ie

I
z × Ie

Bi
z ‖ =

−
(

Ie
Bi
z

)T
AxyRI

Bi Bi
ẽBi

z Bi
ωIBi

‖IeI
z × Ie

Bi
z ‖

. (18)

Substitution of the above results into (15) yields

γHij
= wT

Hij
ui (19)

with

wHij
= sign(dij) ·

[

(Inij)
T

cT
ijR

I
Bi

Bi
ẽBi

z

]T

(20)

and

cT
ij =

(

IrGi
− IrHj

)T

‖IeI
z × Ie

Bi
z ‖

(

Inij

(

Ie
Bi
z

)T
Axy

‖IeI
z × Ie

Bi
z ‖

− I ẽ
I
z

)

. (21)

The motivation to write the relative velocity in the form (19)

is that the vector wHij
∈ R

6 constitutes the generalised force

direction of the contact force between obstacle j and link i.
2) Cylinder - Sphere Contact: The gap function (8) is

employed to define the relative velocity γHij
:= ġHij

when

one of the two half-spheres on link i is closest to the obstacle

j. To find γHij
, let us first consider the vector giving the

shortest distance from obstacle j to the centre of one of the

end spheres of link i

IrHjSi
=IrSi

−
(

IrHj
+ Az IrGiSi

)

=
(

IrGi
+ R

I
Bi Bi

rGiSi

)

− IrHj

− Az

(

IrGi
+ R

I
Bi Bi

rGiSi

)

,

(22)

where the point Si is either SFi or SRi depending on

which end of the link is closest to the obstacle, and Az =
diag([0, 0, 1]). We also need the derivative

I ṙHjSi
= Axy

(

I ṙGi
− AxyR

I
Bi Bi

r̃GiSi Bi
ωIBi

)

. (23)

We find the relative velocity between obstacle j and the point

closest to the obstacle on the front or rear sphere of link i as

γHij
= wT

Hij
ui, (24)

where

wT
Hij

=
Ir

T
HjSi

‖IrHjSi
‖

[

Axy −Axy R
I
Bi

Bi
r̃GiSi

]

, (25)

rHjSi
is defined in (9), and

rGiSi
=

{

rGiSF i
, front part of link i is closest,

rGiSRi
, rear part of link i is closest.

(26)

3) Vector of Relative Velocities for the External Objects:

We now gather the relative velocities γHij
for all n links and

ν obstacles in the vector

γH = W
T
Hu (27)

where

γH =
[

γH11 · · · γHn1γH12 · · ·γHn2 · · ·γH1ν
· · ·γHnν

]T
, (28)

WH =
[

WH1 · · · WHν

]

, (29)

and

WHj
=













wH1j
06×1 · · · 06×1

06×1
. . .

...
...

. . . 06×1

06×1 · · · 06×1 wHnj













∈ R
6n×n. (30)

Depending on which part of the link is closest to the obstacle,

wHij
is obtained from either (20) or (25).

B. Unilateral Contact - Ground Contact

The relative velocities between the snake robot and the

ground will be presented. These velocities include both relative

velocities along the vertical eI
z-axis, and the tangential relative

velocities along the eI
x- and eI

y-axis.

1) Relative Velocities Along eI
z: The relative velocities

between the front and rear part of link i and the ground along

the eI
z-axis are defined as γNF i

:= ġNFi
and γNRi

:= ġNRi
,

respectively (if they exist) [15]. The relative velocities for the

front and rear part of link i are

γNQi
= (wNQi

)Tui (31)

where

wNQi
=
[

(Ie
I
z)

T −(Ie
I
z)

T
R

I
Bi

Bi
r̃Bi

GiSQi

]T

, (32)

for Q = F,R. A vector gathering all γNFi
and γNRi

is

γN = W
T
Nu, (33)

where γN =
[

γNF1 . . . γNF n
γNR1 . . . γNRn

]T
,

WN =
[

WNF
WNR

]

∈ R
6n×2n, and WNQ

is given

similarly to (30) by replacing all wHij
with wNQi

for Q =
F,R, and i = 1, . . . , n.

2) Tangential Relative Velocities: The relative velocities

between the front part of link i and the ground along the

eI
x- and eI

y-axis are denoted by γTF xi
and γTF yi

, respectively.

The same notation principle applies for γTRxi
and γTRyi

. The

tangential relative velocities are found as

γTF ζi
= (wTF ζi

)Tui, γTRζi
= (wTRζi

)Tui, (34)

where

wTF ζi
=
[

(Ie
I
ζ)

T −(Ie
I
ζ)

T
R

I
Bi Bi

ẽBi

z LGSi

]T

, (35)

wTRζi
=
[

(Ie
I
ζ)

T (Ie
I
ζ)

T
R

I
Bi

Bi
ẽBi

z LGSi

]T

, (36)

for ζ = x, y.

The tangential relative velocities for the front and rear part

of link i are

γTQi
= W

T
TQi

ui, WTQi
=
[

wTQxi
wTQyi

]

(37)

for Q = F,R, where γTQi
=
[

γTQxi
γTQyi

]T
.

We gather the vectors γTF i
and γTRi

in the vector

γT = W
T
T u, (38)



with γT =
[

γT
TF1

. . . γT
TF n

γT
TR1

. . . γT
TRn

]T
, WT =

[

WTF
WTR

]

∈ R
6n×4n, and WTF

, WTR
are found sim-

ilarly to (30) by replacing the zero-vectors with 06×2 and

replacing the vectors wHij
with the matrices WTF i

, WTRi
,

respectively.

C. Bilateral Constraints - Joints

Let gJχi
, χ = x, y, z, be the translational gaps in the joint

between link i and link i+1. Let gJφi
be the rotational ‘gap’.

Hence, in the absence of numerical errors we have that gJχi
=

gJφi
= 0 (see [10]). The relative velocities for the translational

gap between link i and link i+ 1 are defined as γJiχ
:= ġJχi

for i = 1, . . . , n− 1 and χ = x, y, z. We find that

γJχi
= wT

Jχi

[

ui

ui+1

]

, (39)

where

wJχi
=













(Ie
I
χ)

−
(

(Ie
I
χ)T Li

2 R
I
Bi

Bi
ẽBi

z

)T

−(Ie
I
χ)

−
(

(Ie
I
χ)T Li+1

2 R
I
Bi+1 Bi+1 ẽ

Bi+1
z

)T













. (40)

The relative velocity for the rotational gap is defined as

γJφi
:= ġJφi

for i = 1, . . . , n− 1. Hence, it holds that

γJφi
= wT

Jφi

[

ui

ui+1

]

, (41)

where

wJφi
=













03×1

−
(

R
I
Bi

Bi
ẽBi

y

)T
(

Ie
Bi+1
x

)

03×1

−
(

R
I
Bi+1 Bi+1 ẽ

Bi+1
x

)T
(

Ie
Bi
y

)













. (42)

Using γJi
=
[

γJxi
γJyi

γJzi
γJφi

]T
, all the relative

velocities concerned with the bilateral constraints are gathered

as

γJ = W
T
Ju, (43)

where γJ =
[

γT
J1

· · · γT
Jn−1

]T
,

WJ =











W
T
J1 04×6 · · · 04×6

04×6 W
T
J2 04×6

...
. . . 04×6

04×6 · · · 04×6 W
T
Jn−1











T

∈ R
6n×4(n−1) (44)

and WJi =
[

wJix
wJiy

wJiz
wJiφ

]

∈ R
12×4 for i =

1, . . . , n− 1.

IV. NON-SMOOTH DYNAMICS

The starting point for describing the dynamics of the snake

robot is the equality of measures as introduced in [16]. The

equality of measures includes the equations of motion for

impact free motion as well as the impact equations, which give

rise to impulsive behaviour [14]. In this section, we employ

all the previous results to find the various components of the

equality of measures.

A. The System Dynamics as the Equality of Measures

The equality of measures describes the dynamics of the

snake robot within the context of non-smooth dynamics.

Velocity jumps, usually associated with impacts, are modeled

to occur instantaneously. By considering the velocity to be a

function t 7→ u(t) of locally bounded variation on a (short)

time-interval I = [tA, tE ] [16], the function u(t) admits a right

u+ and left u− limit for all t ∈ I , and its time-derivative

u̇ exists for almost all t ∈ I . To be able to obtain u from

integration we need to use the differential measure du where

it is assumed that the measure can be decomposed into

du = u̇dt+
(

u+ − u−
)

dη (45)

where dt denotes the Lebesgue measure and dη denotes the

atomic measure where
∫

{t1}
dη = 1.

From the notation above, the Newton-Euler equations as

equality of measures can be written for the snake robot as

Mdu − h (u) dt− dR = τCdt (46)

where the mass matrix M, the vector of smooth forces h (u),
the force measure of possibly atomic impact impulsions dR,

and the vector of applied torques τC will be described in the

following.

For our choice of coordinates, the mass matrix is diagonal

and constant

M =







M1 0

. . .

0 Mn






∈ R

6n×6n (47)

with Mi = diag
([

mi mi mi Θ1i Θ1i Θ3i

])

, mi

is the mass of link i, and Θ1i and Θ3i are its mo-

ments of inertia. The smooth forces, here consisting

of gravity and gyroscopic accelerations, are described

by h(u) =
[

hT
1(u1) · · · hT

n(un)
]T

∈ R
6n, where

hi(ui) =
[

0 0 −mig − (Bi
ω̃IBi Bi

ΘGi Bi
ωIBi

)
T
]T

.

The force measure dR accounts for all contact forces and

impulses. The contact efforts that constitute dR are found from

the force-laws given in Section IV-B. Let I and H be the set of

all active contacts with the ground and obstacles, respectively,

I(t) = {a | gNa
(q(t)) = 0} ⊆ {1, 2, . . . , 2n} (48)

H(t) = {b | gHb
(q(t)) = 0} ⊆ {1, 2, . . . , nν} (49)

where gNa
is the a-th element of the vector gN in (14), and

gHb
is b-th element of gH in (12). Now, the force measure is

written as

dR =
∑

a∈I

((WN )a dΛNa
) + WJ dΛJ

+
∑

a∈I

(

(WT )2a−1 dΛTxa
+ (WT )2a dΛTya

)

+
∑

b∈H

(WH)b dΛHb

(50)

where dΛNa
is the normal contact impulse measure between

the ground and a link, dΛJ is the contact impulse measure due



to the bilateral constraints in the joints (these constraints are

always active), dΛTxa
and dΛTya

are the tangential contact

impulse measures (friction) between the ground and a link,

directed along eI
x and eI

y , respectively, dΛHb
is the normal

contact impulse measure between a link and an obstacle, and

the lower-case subscripts on the W-matrices indicate which

column of the matrix is used. The contact impulse measures

are decomposed in the same way as for du in (45). Let us

take the normal contact impulse measure as an example. The

measure can be written as

dΛNa
= λNa

dt+ PNa
dη (51)

where λNa
is the Lebesgue-measurable force and PNa

is the

purely atomic impact impulse. The same decomposition also

holds for the other impulse measures.

Each cardan joint has 2 DOF that are controlled by two

applied torques. For link i we define a positive control torque

τvi
to give a positive rotational velocity around e

Bi+1
x and a

positive control torque τhi
to give a positive rotational velocity

around eBi
y . The total torque τCi

∈ R
3 applied to link i is

τCi
=
[

0 τhi
0
]T

− R
Bi

Bi−1

[

0 τh(i−1)
0
]T

+ R
Bi

Bi+1

[

τvi
0 0

]T
−
[

τv(i−1)
0 0

]T
(52)

for i = 1, . . . , n, where the relative rotation matrix is

R
Bi

Bi+1
=
(

R
I
Bi

)T
R

I
Bi+1

, (53)

and τh0 = τv0 = τhn
= τvn

= 0.

The vector of the torques applied to all links τC ∈ R
6n is

τC =
[

01×3 τ T
C1

01×3 τ T
C2

· · · 01×3 τ T
Cn

]T
. (54)

B. Constitutive Laws for the Contact Forces

In this section, we introduce set-valued force laws for

normal contact with the ground and obstacles, and Coulomb

friction. These laws will all be formulated on velocity level

using the relative contact velocities γ given by (27), (33), and

(38). Subsequently, the set-valued force laws are formulated as

equalities in Section IV-B.3 using the so-called ‘proximal point

function’ in order to include the force laws in the numerical

simulation [12].

1) Normal Contact Force: The normal contact between a

link and the ground or an obstacle is described by the condition

γN ≥ 0, λN ≥ 0, γNλN = 0, (55)

for a closed contact gN = 0, where λN is the normal contact

force, γN is the relative velocity, and gN is the gap function.

The condition (55) is equivalent to the inclusion

−γN ∈ NCN
(λN ), (56)

where the convex set CN = {λN | λN ≥ 0} = R
+ is

the set of admissible contact forces, and NCN
is the normal

cone to CN (see [10], [12]). This force law describes the

impenetrability of sustained contact, i.e. gN = 0 and γN = 0,

as well as detachment: γN > 0 ⇒ λN = 0. The force law

(56) only covers finite-valued contact efforts during impulse

Fig. 5. Relationship between tangential relative velocity and friction force.
The set CT is in grey.

free motion, i.e. all velocities are locally absolutely continuous

in time. When a collision occurs in a rigid-body setting, then

the velocities will be locally discontinuous in order to prevent

penetration. The velocity jump is accompanied by an impact

impulse PN , for which we will set up an impact law. The

relative velocity admits, similarly to the velocities u, a right

γ+
N and a left γ−N limit. The impact law for a completely

inelastic impact at a closed contact can now be written as

−γ+
N ∈ NCN

(PN ), CN = {PN | PN ≥ 0} = R
+. (57)

2) Coulomb Friction Force: Similarly to the force law (56)

for normal contact, we describe the constitutive description for

friction using an inclusion on a normal cone. The friction force

λT between the ground and a link, in the two-dimensional

tangent plane to the contact point, is modeled with an isotropic

Coulomb friction law

−γT ∈ NCT
(λT ), (58)

where γT is a relative sliding velocity, CT =
{λT | ‖λT ‖ ≤ µTλN} is the set of admissible friction

forces, µT > 0 is the friction coefficient, and NCT
is the

normal cone to the set CT (see Fig. 5). The set-valued force

law (58) contains to the cases of stick and slip

stick : γT = 0, ‖λT ‖ ≤ µTλN

slip : γT 6= 0, λT = −µTλN
γT

‖γT ‖
(59)

The advantage of formulating the friction law as the in-

clusion (58) now becomes apparent. A spatial friction law

such as (58), which is equivalent to (59), can not properly

be described by a set-valued sign-function. Some authors

model the spatial contact with two sign-functions for the two

components of the relative sliding velocity using two friction

coefficients µTx
and µTy

[8], [17]. This results however

directly in an anisotropic friction law, as the friction force and

the sliding velocity do no longer point in opposite directions.

If indeed set-valued sign-functions are chosen, then such a

double-sign-function force law corresponds to (58) with CT

being a rectangle with length µTx
λN and width µTy

λN . Also,

the (set-valued) sign function can be approximated with a

smoothening function, for example some arctangent function.

This results in a very steep slope of the friction curve near

zero relative velocity. Such an approach is very cumbersome

for two reasons. First of all, stiction can not properly be

described: an object on a slope will with a smoothened friction

law always slide. Secondly, the very steep slope of the friction

curve causes the differential equations of motion to become



numerically stiff. Summarising, we see that (58) or (59)

describes spatial Coulomb friction taking isotropy and stiction

properly into account. We prefer using (58) instead of (59),

because the latter becomes not well conditioned for very small

γT when used in numerics. Note also that (58) and (56) have

the same mathematical form. Moreover, the inclusion (58) is

much more general since we can easily change the convex set

CT to get a different (and hence anisotropic) friction model.
3) Constitutive Laws as Projections: An inclusion can not

be directly employed in numerical calculations. Hence, we

transform the force laws (56) and (58), which have been

stated as an inclusion to a normal cone, into an equality.

This is achieved through the so-called proximal point function

proxC(x), which equals x if x ∈ C and equals the closest

point in C to x if x /∈ C. The set C must be convex. Using

the proximal point function we transform the force laws into

implicit equalities (see [12])

−γκ ∈ NCκ
(λκ) ⇐⇒ λκ = proxCκ

(λκ − rκγκ) , (60)

where rκ > 0 for κ = N,T .

V. MOTION PATTERN AND JOINT CONTROL

In this section, we will define the joint angles and show

how to control them for snake robot locomotion.

A. Control of the Joint Angles

The joint angles are not directly accessible from the non-

minimal coordinates, but can be calculated from the relative

rotation matrices R
Bi

Bi+1
in (53) (see [10]). Let αvi and αhi

be the two joint angles in the cardan joint between link i and

i+ 1. We define e
Bi+1
x and eBi

y to be the axis of rotation for

αvi and αhi, respectively. We define αvi = αhi = 0 for the

case when link i and i+ 1 are parallel.
Let the desired values of αhi

and αvi
be αhi,r and αvi,r,

respectively. Then, the proportional-derivative controllers (PD-

control) for the joints are chosen to be

τhi
= Kh,p (αhi

− αhi,r) −Kh,d (Bi
ωIBi

)2 (61)

τvi
= Kv,p (αvi

− αvi,r) +Kv,d

(

Bi+1ωIBi+1

)

1
(62)

for i = 1, . . . , n − 1 where Kh,p, Kh,d, Kv,p, and Kv,d are

constants and equal for all i, and the subscripts 2 and 1 denote

the second and first element of their respective vectors.

B. Motion Pattern and Reference Angles

The motion pattern lateral undulation [3] is typical for

biological and robot snakes and has been implemented in

this paper. Snakes use this for locomotion by propagating

horizontal waves from the front to the rear of the snake

body while exploiting roughness in the terrain. In this paper,

cylindrical obstacles are introduced to model the roughness in

the terrain.
The desired joint angles for lateral undulation are

αhi,r = Ah sin (ωht+ (i− 1)δh) + ψh, (63)

and αvi,r = 0 for i = 1, . . . , n−1, where Ah is the amplitude

of joint oscillation, ωh is the angular frequency, δh is the phase

offset, and ψh controls the direction of motion [6], [8].

VI. NUMERICAL ALGORITHM - TIME-STEPPING

The numerical solution to the equality of measures is found

with an algorithm called the time-stepping-method introduced

in [16] (See also [12], [14]).

The implementation of the time-stepping-method for the

snake robot without external obstacles is described in [10].

The obstacle contact forces and impulses are included in the

numerical solution the same way as the ground contact forces

and impulses. A short description of the algorithm is given

as follows: Select a time-step size ∆t and consider the time-

interval I = [tA, tE ] where tE − tA = ∆t. Calculate the

states at the mid-point tM = tA + 1
2∆t and use these to

find the approximation of the gyroscopic forces hM , and the

directions of the various forces and impulses that act during the

time-interval. These directions are given by the matrices WΞ,

where Ξ = N,T,H, J , Then, employ the Modified Newton

Algorithm [18] to find the forces and impulses involved in the

active contact points together with the velocities at tE that are

found from the equality of measures. Finally, the positions at

the end of the time-interval (at tE) can be found by integrating

over the latter half part of the time-step ∆t.

VII. NUMERICAL RESULTS

In this section, we demonstrate that the non-smooth model

developed in this paper works for obstacle aided locomotion.

A. System and Simulation Parameters

The choice of parameters used to describe the snake robot

is based on the water-hydraulic based snake robot built by the

Norwegian research organisation Sintef in Trondheim [19].

The model parameters are: n = 11 links, Li = 0.269 m,

LSC = 0.0795 m, LGSi
= 0.1016 m, mi = 7 kg,

Θ1i = 0.0450 kg m2, Θ3i = 0.0055 kg m2,

i = 1, . . . , 11, and the PD-controllers are implemented with

the gains Kh,p = 400 Nm, Kh,d = 20 Nm, Kv,p = 200
Nm, and Kv,d = 10 Nm. The simulation parameters are

rH = rN = 2, rT = 0.5, and ∆t =
tstop−tstart

N−1 , where N
is the number of integration steps, and tstart and tstop is the

start and stop time of the simulation, respectively. The friction

coefficient is µT = 0.05. The radii (Lj) of the obstacles 1 to

ν = 10 are (in metres): 0.05, 0.2, 0.02, 0.05, 0.3, 0.05, 0.2,

0.1, 0.05, 0.25, respectively. The serpentine motion pattern

lateral undulation was implemented with Ah = 30π/180,

ωh = 60π/180, δh = 50π/180, and ψh = 0.

B. Simulation Result

The snake robot is set to move along the eI
x-axis with lateral

undulation using external obstacles. The obstacles are placed

along the estimated path of the snake robot. Illustrations of

the snake robot during simulation are given in Fig. 6.

The snake robot is positioned along the eI
x-axis. Fig. 7

shows the position (xCG, yCG) in the (eI
x, e

I
y)-plane of the

centre of gravity of the snake robot. We see that the snake

robot is able to move forward using only the obstacles to push

against.



Fig. 6. Snake robot during lateral undulation at four points in time.

VIII. CONCLUSION AND FURTHER WORK

An analytical model of a snake robot with external obstacles

has been developed in this paper. Such a model can be used for

both analysis of obstacle aided locomotion based on the equal-

ity of measures, and simulations of locomotion. Usually, the

serpentine motion pattern lateral undulation is implemented

on snake robots that have an anisotropic friction property

with the ground. This is because without this property, the

snake robots would hardly be able to move forward. In this

paper, we have used an isotropic friction model and included

obstacles that the snake robot could push against. This made

the snake robot independent of the anisotropic friction property

for locomotion. Hence, the locomotion is less dependent on

the surface properties of the ground.

It has been shown how to easily and systematically incorpo-

rate the various contact forces into the equality of measures by

set-valued force laws. In fact, the hardest part in the modelling

is finding the shortest distance between the two bodies under

consideration.

The contact between a link and an obstacle is modeled

with a single contact point that may move over the entire

surface of the link. This approach can also be employed for

modeling robot manipulators that come into contact with its

environment. The moving contact point gives us an accurate

description of how the contact with an obstacle affects the

torque around the centre of gravity (CG) of a link. Also, it

allows for cylindrical obstacles of any (strictly positive) radius

without having to worry about the snake robot getting stuck

during locomotion, or that the obstacle just goes through the

robot (both as for the case when only the CG is used as a

possible contact point).
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Fig. 7. Positions of the CG of the snake robot (a) along the e
I
x-axis (xCG)

and (b) along the e
I
y-axis (yCG).

The choice of non-minimal absolute coordinates resulted in

a constant and diagonal mass matrix, and a simple expression

for the gyroscopic forces. The coordinates are no longer

minimal with respect to the bilateral constraints and yield

in the absence of unilateral forces a differential algebraic

equation (DAE). However this is not a real complication, as

we already need a Lagrangian multiplier description for the

frictional unilateral contact forces.

Suggestions for further research are: 1) include friction in

the contact between the snake robot and the obstacles, and

2) develop snake robot motion patterns for both planar and

3D motion where the snake robot utilizes external obstacles

to optimize for terrainability and locomotion speed.
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