
Modeling and Analysis of Wireless Resonant Magnetic Microactuators

Zoltán Nagy, Dominic R. Frutiger, Remco I. Leine, Christoph Glocker, and Bradley J. Nelson

Abstract— We present a dynamic model of the wireless

resonant magnetic microactuator (WRMMA), which is a key

component of the MagMite family of microrobots. We analyze

the interbody force and integrate the nonsmooth and nonlinear

equations of motion using a time-stepping integration scheme.

We investigate the influence of system parameters, such as

friction, the frequency of the applied force, the magnitude

of the applied field, the effect of a clamping force, and the

effect on velocity when phase shifting the clamping signal with

respect to the magnetic signal. Our results are qualitatively

consistent with experimental observations, and explain several

nonintuitive phenomena. We show that the robots are highly

sensitive to the phase of the clamping force, that the velocity

can switch directions with changing frequency, and that both

erratic and controlled motion occur under specific conditions.

I. INTRODUCTION

Microactuators are of general interest because they allow
precise positioning and manipulation at the microscale. They
are a prerequisite for powering and enabling biomedical
microrobots that have the potential for “noninvasive” pro-
cedures, offering less injury and faster patient recovery time
in comparison with current laparoscopic techniques. Possible
applications of microrobots are delivery and implantation
of active structures in the human body, targeted therapy,
marking, and biopsy [1].

While many technologies must be developed and syner-
gistically integrated in order to realize such applications, the
aspects that need to be addressed first when it comes to
wireless mobile microrobotic platforms are power supply and
propulsion. These aspects remain challenging to date since
both onboard batteries and classical wireless power trans-
mission using, e.g., electromagnetic coupling between coils,
are inefficient for microdevices due to scaling effects [2]. As
a result, veritable microrobotic systems featuring wirelessly
controlled agents with principle dimensions in the submil-
limeter range have only emerged in recent years [3]–[11].

For effective propulsion at the microscale, methods that
convert external energy directly into mechanical motion
without any complex mechanisms, e.g., those involving cogs
or electronic circuits, are more practical as they lower energy
loss and fabrication complexity. As an example, consider
the wireless resonant magnetic microactuator (WRMMA)
shown in Fig. 1(a) and introduced in [7]. The WRMMA
consists of two nickel masses connected through a gold
spring and has overall dimensions of 300 × 300 × 50µm3.
As shown in Fig. 1(b), one mass—the body—rests on a
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Fig. 1. (a) Wireless resonant magnetic microactuator in size comparison
with a US penny. (b) Mechanical model of the WRMMA.

gold support structure which in turn has frictional contact
with the substrate, whereas the other one—the hammer—
is lifted above the ground and can move freely without
friction. Initially not magnetized, the nickel bodies become
magnetized when an external magnetic field is applied.
As a result, an attractive magnetic force arises between
them. Then, time-variant magnetic fields are used to induce
oscillatory motion and, it is assumed, impact between the
hammer and the body drives the robot forward. An additional
electrostatic clamping force between the body and the ground
allows arbitrary rectification of the oscillation by effectively
controlling the friction between the robot and the ground.
Such a device can be used for propelling microrobots—in
particular the MagMites—a family of microrobotic agents
based on the WRMMA, which were introduced in 2007,
described in detail in [7], [8], [12] and demonstrated by
video [13], [14].

Primary responses and driving behaviors have been experi-
mentally characterized [12], and the overall performance was
observed to be largely as intended by design: firstly, reliable
turning behavior thanks to alignment with the external mag-
netic field; and secondly controlled forward and backward
motion at near resonance thanks to rectification with a phase-
shifted clamping potential in the substrate. Besides these
primary behaviors several other modes of operation have
been discovered, e.g, naturally driving backwards without
the need for a clamping signal. Furthermore, phenomena
such as changing the velocity direction when increasing or
decreasing the frequency, and also erratic behaviors, were
observed.
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An analytical or numerical model is necessary in order to
understand the observed modes of operation. Several impact
actuators have been presented in literature (see [15] and
references therein), and analysis of their nonlinear behavior
is also available. In general, the analysis is focused on the
conditions necessary for impact, and it is implicitly assumed
that impact is necessary for motion. However, in [16] it is
experimentally observed that the actuator might drive back-
wards under certain conditions. Yet, the model of the actuator
presented in [15] does not address this issue. In fact, most
models do not address the influence of external parameters,
such as friction or actuation schemes, that are different from
a harmonic force. However, in the case of the WRMMA,
these parameters have significant influence on the driving
performance. For example, with the electrostatic clamping
force, the robot can be fixed and released periodically, or an
additional variable friction force can be applied.

In this paper, we model and numerically analyze the dy-
namics of the WRMMA. The simulations are validated with
experimental data available for the tethered mode (i.e., when
the body is fixed to the substrate) and from the literature.
We investigate the influence of the system parameters on
the performance, e.g., the velocity, of the robot. That is,
we show the influence of friction, and that the direction of
motion is reversed with varying frequencies. Finally, we also
demonstrate that the velocity of the robot is highly sensitive
to the phase of the clamping force.

II. THEORY

The magnetic torque on the WRMMA will act such that
the device will align with the applied field. Since rotational
inertia scales down faster with size compared with the
mass, we assume that the forward motion begins after the
WRMMA is aligned with the field. This assumption is well
supported by experimental observations. Thus, a 1D model
will be employed to describe its motion.

A. Magnetic Interaction
In a homogeneous magnetic field, no net force is exerted

on a single, ideally soft, magnetic body. Thus the force
between the parts of the WRMMA arises solely due to the
interaction of both magnetizations. To estimate this force, we
perform a finite element analysis (Maxwell 3Dv12) using a
continuous magnetization curve [17], and for fields B =
(1, 5)mT. As shown in Fig. 2, we find that the data can be
fit well, the root mean square error being 5.1 × 10−4N/T2,
to a rational curve of the form

Fm(x) =
pB

2

x2 + q1x + q2
, (1)

where q1 ≈ 43.1µm and q2 ≈ 201µm2 for each B, and p is
a constant such that p/B

2 ≈ constant.

B. Dynamics
To model the dynamics of the WRMMA, we use the non-

smooth dynamics approach as described in [18]–[21]. This
approach provides a mathematically sound formalism for the
dynamics of rigid bodies with set-valued interaction laws
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Fig. 2. Force between the the body and the hammer for different applied
fields. The lines represent the best rational fit (see text).

for the description of unilateral contact, friction and impact.
Furthermore, Moreau’s time-stepping method in combination
with a linear complementary problem (LCP) formulation of
the contact problem is used for the numerical simulation [19].
Moreau’s time-stepping method discretizes the equality of
measures

Mdu− h(q,u, t)dt−
�

wNidPNi −
�

wTidPTi = 0,

(2)
which is a combined description of the nonimpulsive and
impulsive motion. Here, dt is the Lebesgue measure on
R, M is the (constant) mass matrix of the mechanical
system, u are the velocities associated with the generalized
coordinates q, and h is the vector of noncontact forces such
as spring, damper and gravitational forces. The generalized
force directions wNi, wTi and the percussion measures
dPNi and dPTi describe the contribution of the contact
forces/impulses to the dynamics of the system, with the
subscripts N and T representing normal and tangential
directions and i the contact number. The percussion measure
Pi can be decomposed into a nonimpulsive contact force λi

and the impulsive contact force Λi as

dPi = λidt + Λidη, (3)

where dη is the atomic differential measure. For more details
on this formulation, see [18], [20].

Figure 3 shows the free body diagram of the WRMMA
consisting of the body with coordinates (x1, y1) and the
hammer with coordinate x2. The generalized coordinates and
the associated velocities are

q =
�
x1 y1 x2

�T
, u =

�
vx,1 vy,1 vx,2

�T (4)

with q̇ = u for almost all t. The system has a frictional
contact between the body and the floor with a gap distance
given by gN1(q) = y1 −H/2. We assume that this contact
always remains closed, i.e., gN1 = 0, and, therefore, consider
it to be a frictional bilateral contact with sliding velocity
γT1(u) = vx,1 and friction coefficient µ. Furthermore, there
is a frictionless unilateral contact between the body and
the hammer with gap gN2 = x2 − x1 − L ≥ 0 and
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Fig. 3. Free body diagram of the WRMMA.

restitution coefficient ε. The matrices WN =
�
wN1 wN2

�

and WT =
�
wT1 wT2

�
of generalized force directions are

WN =
�

0 1 0
−1 0 1

�T

, WT =
�

1 0 0
0 1 0

�T

. (5)

The mass matrix M = diag (m, m,m) is constant and the
vector h of the non-contact forces is composed of a normal
force Fn, the clamping force Fc on the body, the spring
force Fs, damping Fd and magnetic force Fm between the
body and the hammer; i.e.,

h = Fn + Fs + Fd + Fm + Fc, (6)

with

Fn =
�
0 −βmg 0

�T
, (7)

Fs(gN2) =
�
−k∆g 0 k∆g

�T
, (8)

Fd(vx,1, vx,2) =
�
c∆vx 0 −c∆vx

�T
, (9)

where the normal force is given in units β of the gravitational
force mg to examine the effect of friction, ∆g = gN2−gN2,0

is the elongation of the spring with respect to the equilibrium
gap gN2,0 = 15µm, ∆vx = vx,2−vx,1 is the relative velocity
of the bodies, c is the linear damping constant, and

Fm(gN2, t) =
�
fm(gN2, t) 0 −fm(gN2, t)

�T (10)

Fc(t) =
�
0 −fc(t) 0

�T
. (11)

As in the experiments in [12], we set fm(gN2, t) and fc(t)
as positive square wave functions, i.e., on/off signals, with
frequency f and their phase being shifted by ϕ; i.e.,

fm(gN2, t) =
Fm(gN2)

2
sgn (sin (2πft)) +

Fm(gN2)
2

,

(12)

fc(t) =
Fc

2
sgn (sin (2πft + ϕ)) +

Fc

2
, (13)

where sgn( · ) is the signum function. For the amplitude of
the magnetic force, Fm(g2), we use (1) with x = gN2, and
Fc is set such that no motion of the body is observable when
clamping is active.

C. Numerical Integration
Following the LCP description from [19], eq. (2) is

integrated using a midpoint integration scheme to find the
velocity and the position of the both bodies. The main ad-
vantage of using this scheme over an event-driven algorithm

is its robustness, as it does not require the explicit distinction
between the impact, stick and slip phases. In addition, it is
easily extendable to problems with even more contacts, i.e.,
devices with multiple bodies/hammers.

The integration is performed by sweeping over system pa-
rameters such as the frequency f . In these parameter sweeps,
the initial conditions at a specific frequency are the results
of the simulation at the previous frequency. When sweeping
the parameters in different directions, this may result in
different steady-state solutions—an inherent phenomenon of
a nonlinear system. Typically, for each parameter set, we
integrate for about 30 periods T = 1/f of the actuation
force to allow the system to reach steady-state. Then, for
the subsequent 20 periods, the value of the parameter of
interest, e.g. the velocity of the robot, at the end of each
period is plotted. This results in 20 data points at a specific
actuation frequency, and allows for analysis of the periodic
response of the system with identification of up to period-20
solutions. Finally, the time-step for the integration dt is set
to one thousandth of the actuation period, dt = 10−3

T , in
order to ensure sufficient temporal resolution.

Parameters available from [7] are set as L = 150µm,
W = 130µm, H = 50µm, m = 8.6775 × 10−6g, k =
2µN/µm. Experimentally unavailable parameters are fixed for
this study as c = 1× 10−6µNs/µm, µ = 0.5 and ε = 0.5.

III. RESULTS

A. Tethered Behavior
It is possible to obtain experimental data for the hammer

velocity when the body is fixed to the substrate using a laser
doppler vibrometer. In this mode, the WRMMA behaves as a
single mass-spring system with undamped natural frequency
fn = 1

2π

�
k/m, driven by the excitation force (12). In the

following, we express the actuation frequency f in units f̃

of the natural frequency, i.e. f = f̃fn, where, using the
parameters from the previous section, we have fn = 2416Hz.

The experimental frequency response of the tethered de-
vice from [7] is shown in Fig. 4(a), and the frequency
response as predicted by our model in Fig. 4(b). The choice
for the applied fields is guided by the available experi-
mental data. We observe good quantitative agreement for
low applied fields (B ≤ 1.42mT); for larger fields, our
model predicts larger velocities. Possible reasons for this
are differences in the geometry (and hence in the forces)
due to fabrication variations, and nonlinear and squeeze-film
damping. These cause the hammer to impact already at lower
velocities. Nevertheless, the impact behavior of the model is
in good qualitative agreement with the data, i.e. it plateaus
when impact occurs, and is sufficient for our study.

Figure 5 shows the numerically predicted response of the
maximal hammer displacement (x2) for an applied field of
B = 5mT. We observe that when increasing the frequency,
x2 increases and plateaus almost horizontally, before a
fold bifurcation occurs at f̃ ≈ 1.11 and x2 drops to the
equilibrium gap (15mm). When decreasing the frequencies,
hysteresis is observed with, again, a fold bifurcation at
f̃ ≈ 1.01. This behavior is qualitatively consistent with
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Hysteresis is observed at f̃ = 1.0− 1.12.

results presented in [15], and we conclude that our model
adequately predicts the motion of the hammer.

B. Untethered Behavior

The untethered robot behaves as a two-mass oscillator with
undamped resonant frequency

√
2fn. We perform frequency

sweeps for different parameter sets and monitor their effects
on the mean displacement of the body per actuation period,
i.e.,

urobot =
x1(t + T )− x1(t)

T
(14)

For these sweeps, we typically scan roughly the area
around the resonant frequency of the untethered device (f̃ =
(0.8, 2)), and then we increase the resolution of the frequency
steps in the interesting areas while decreasing the range of
the sweep. The investigated parameters are the strength of
the magnetic field B = {1, 5}mT, the friction β = {10, 100}
and clamping with a phase shift ϕ = (0, 2π).

First, we discuss the unclamped mode (fc = 0). For
β = 10, i.e. low friction, the robot can be actuated with
frequencies f̃ =

√
2, that is, close to its natural frequency.

As shown in Fig. 6(a) we observe chaotic behavior around
f̃ = 1.37. After the chaotic segment, the device moves
with velocities of up to a maximum of about 7mm/s, or
about 20 body lengths per second. When the frequency is
increased further, the device suddenly stops due to stiction.
To overcome this stiction, the driving frequency has to
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Fig. 6. (a) Untethered and unclamped (fc = 0) motion is relatively chaotic
for low friction. (b) The motion becomes more repeatable at larger friction
and a downshift of the actuation frequencies compared with the low-friction
case is observable. The time evolution of the motion at the point P is shown
in Fig. 7.

be decreased to f̃ ≈
√

2. This corresponds well with
experimental observations [7].

At higher friction, i.e. β = 100 (still B = 5mT),
we observe a different behavior, shown in Fig. 6(b). The
robot now only moves for actuation frequencies close to
f̃ = 1. This is due to the large friction that makes the
device behave similarly to the tethered case. The motion
of this mode seems comparatively regular. In fact, it is
interesting that the system exhibits both positive and negative
velocities with a sharp transition between them. Since there
is no significant hysteresis in the system, this configuration
allows bidirectional motion with velocities of about 0.4mm/s
by only sweeping the frequency. The lower velocities are
intuitively clear: If the friction in the system is large, the
robot will move slowly, if at all. On the other hand, the sign
change of the velocity—unusual for impact drives—suggests
that motion occurs in two manners, i.e., the hammer pushing
and pulling the body, and it is not clear if impact occurs at
all.

To answer this question, we further examine the motion of
both bodies as predicted by the numerical model for the point
P in Fig. 6(b), that is f̃ ≈ 1.06. Figure 7 shows the results
for one actuation period T . In Fig. 7(a) we observe two
stick-slip phases in the velocity of the body. The examination
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reveals that these stick-slip phases are slightly different and
thus a net motion in one direction is obtained. In addition,
it is clear from Fig. 7(b), where the gap gN2 between the
bodies is shown, that no impact occurs during this motion as
gN2 �= 0. Finally, the frequency-dependent velocity change
is due to the fact that the stick-slip phases vary depending on
the phase of gN2 with respect to the magnetic signal (data
not shown).

We recall our observation that for low friction, the robot
operates around its untethered natural frequency f̃ =

√
2,

while for higher friction, the operating frequency is around
f̃ = 1. This means that the operating frequency in the
freely moving mode is an indicator of the friction. Impact
drives reported in the literature all operate around their
tethered resonant frequency, and thus at high friction; and
impact is indeed necessary to overcome the static friction and
propel the actuator forward. On the other hand, an upward
shift of actuation frequency by a factor of 1.2–1.4 for best
performance has been reported when switching from tethered
to mobile operation in the case of the MagMites [12]. We
conclude that the friction in the system is comparatively
small and consequently motion without impact is possible.

We now consider the system with a clamping force (13).
Figure 8 shows the significant influence of ϕ on the system
for frequencies f̃ = 1, 1.1, 1.2, with β = 10, and B =
2.5mT. First, we observe that changing ϕ by approximately π

can switch the direction of the velocity—an intended feature
of the system. The following effects are revealed by our
model: For a specific frequency, the curves may exhibit large
changes in the velocity over small changes in ϕ. For example,
for f̃ = 1.2, increasing ϕ from about π/10 to π/5 will
decrease the velocity from 2mm/s to 0.3mm/s, i.e. almost by
a factor 10. We also observe that the curves for the individual
frequencies cross. This means that changing frequencies will
not always have the same effect. For example, increasing the
frequency from f̃ = 1 to 1.2 at ϕ = 0 will result in an
increase in velocity. However, the same frequency increase
at ϕ = π/2 will first increase the velocity, but then the
velocity drops to practically zero. This demonstrates the large
sensitivity of the system with respect to the phase shift as
a reason for the unintuitive behavior of the robots often
expressed in sudden changes of the velocity.

Finally, in Fig. 9, we show the performance of the robot
when varying the applied field and the friction on the robot
for a phase shift ϕ = π. In 9(a), we see for B = 2.5mT
and β = 10 that the motion starts in the negative direction
for increasing frequencies, and after f̃ = 0.95 it becomes
positive. The velocity reaches its maximum around 1.2 and
then drops suddenly due to stiction. When reversing the
frequencies, slight hysteresis is observed. For larger fields
(see 9(b)), the device could theoretically be operated in a
large frequency range. However, we see chaotic behavior
from f̃ = 1.17 to 1.27, and at the same time very large
velocities. Both effects result in a device that might be
difficult to operate. For large fields and large friction, 9(c)
shows that the velocity is reduced again and that hysteresis
is also much smaller. The device can now be operated in
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a band around f̃ = 1. Reducing the field now results in
a narrower operation band and further decreased velocities
(see 9(d). This demonstrates that the model is able to predict
a large range of motion patterns that are in good qualitative
agreement with experimental observation, i.e. the influence
of frequency and friction on the velocity—including seg-
ments of chaotic behavior.

IV. SUMMARY AND CONCLUSIONS

We presented a model of the wireless resonant magnetic
microactuator.Based on the interbody forces a nonsmooth
dynamic analysis was performed to investigate the behavior
of the device. We analyzed the influence of various param-
eters, such as friction and the clamping force. We conclude
that the model predicts a large range of motion patterns,
which are in good agreement with experimental observations.
Specifically, we predict the change in the velocity’s direction
for increasing frequencies, sudden changes in the velocity
due to small variations of the phase shift, and identify
relatively low friction as a major source of unintuitive and
sometimes chaotic motion. In conclusion, the model can
be used to optimize the performance of the system and
determine boundaries for the parameters to ensure smooth
operation.
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